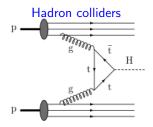


CLIC Physics and Detectors

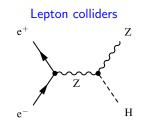
Eva Sicking (CERN) for the CLICdp collaboration

Summer School and Workshop on the Standard Model and Beyond 2016

Corfu, Greece - September 8, 2016

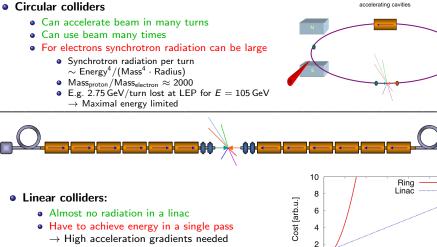


Linear lepton colliders



Introduction

Hadron versus lepton colliders


- 1) Proton is compound object
 - Initial state unknown
 - Limits achievable precision
- 2) High rates of QCD backgrounds
 - Complex triggers
 - High levels of radiation
- 3) High-energy circular colliders possible

- 1) e^+e^- are point-like
 - Initial state well-defined (energy, polarisation)
 - High-precision measurements
- 2) Clean experimental environment
 - Trigger-less readout
 - Low radiation levels
- 3) High energies require linear colliders

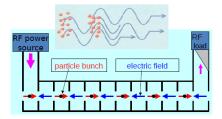
Circular vs. linear e⁺e⁻ colliders

- Have to achieve luminosity in single pass
 - \rightarrow Small beam size and high beam power needed

1.5 2 2.5

Ecm [arb.u.]

0.5


0

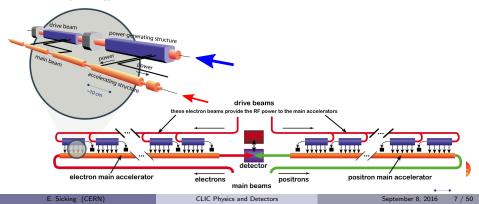
The Compact Linear Collider (CLIC)

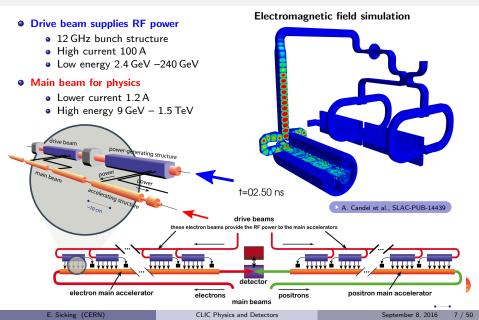
Reminder: particle acceleration

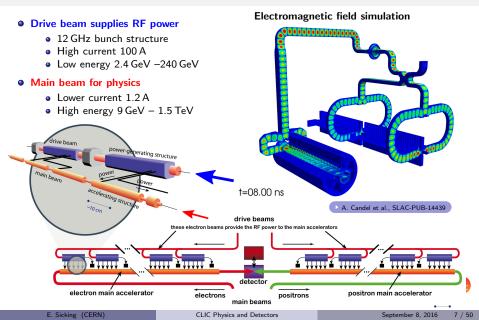
• Radio frequency (RF) accelerator: synchronise particles with an RF electromagnetic wave

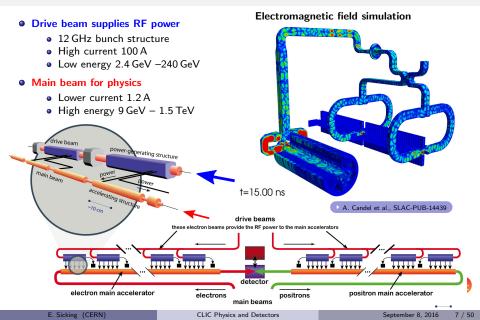
- CLIC aims for high collision energies (up to 3 TeV)
- Requires very strong acceleration to keep accelerator length reasonable
- Acceleration is more efficient at high frequency

 \rightarrow CLIC: 100 MV/m (100 million Volts per metre) at 12 GHz (LHC: 5 MV/m and 400 MHz)




• Drive beam supplies RF power


- 12 GHz bunch structure
- High current 100 A
- Low energy 2.4 GeV –240 GeV

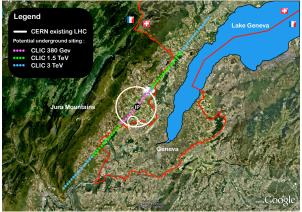

• Main beam for physics

- Lower current 1.2 A
- High energy 9 GeV 1.5 TeV

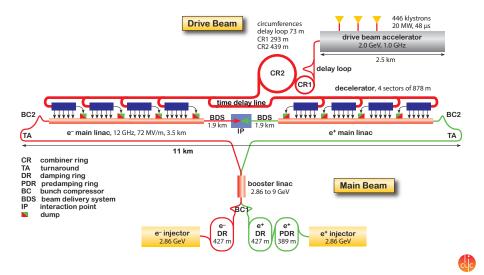
CLIC accelerator modules

CLIC two-beam module

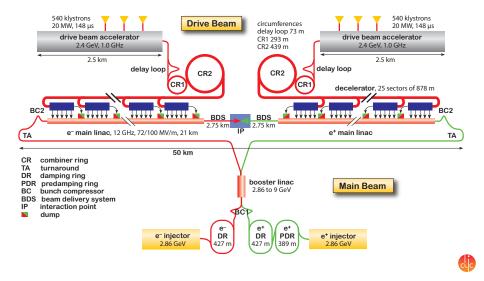
CLIC accelerating structure



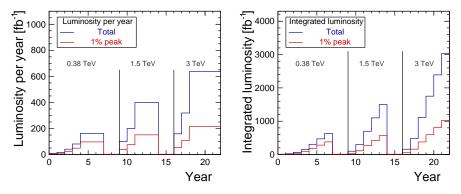
- Two-beam module of 2 m length
- Operating at room temperature
- 20,000 modules needed for 3 TeV accelerator of 50 km length


Staged implementation

- $\bullet\,$ Want to reach high luminosities ($\sim 10^{34}\, \text{cm}^{-2}\text{s}^{-1})$
- Achievable for \sqrt{s} from 350/380 GeV to 3 TeV in staged construction
- Three stages with 11 km 50 km length
- Constructing next stage while taking data with current stage




CLIC layout at 380 GeV


CLIC layout at 3 TeV

CLIC Test Facility at CERN

CLIC programme

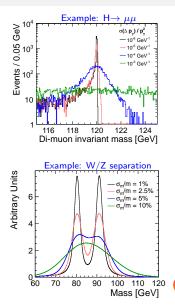
• CLIC programme of 22 years:

7 years (380 GeV), 5 years (1.5 TeV), 6 years (3 TeV) interleaved by 2-years upgrade periods

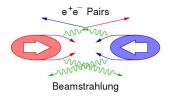
 Luminosity ramp up of 4 years / 2 years (5%, 10%,) 25%, 50%, 100%

Experimental conditions at 3 TeV CLIC

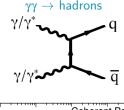
CLIC beam structure	20ms Not to scale
	CLIC at 3 TeV
Luminosity	$5.9\cdot10^{34}{ m cm}^{-2}{ m s}^{-1}$
Train repetition rate	50 Hz
Train duration	156 ns
Bunch crossings / train	312
Bunch separation	0.5 ns
Duty cycle	0.00078%
Beam size σ_x/σ_y	\sim 40 nm $/$ 1 nm
Beam size σ_z	44 µm

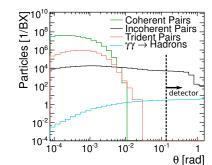


CLIC detector requirements


CLIC physics aims \rightarrow detector needs

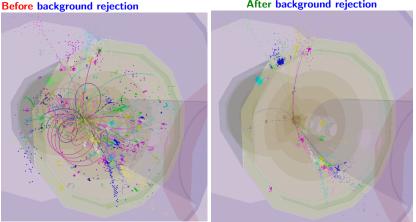
- Momentum resolution
 - Higgs recoil mass, smuon endpoint, Higgs coupling to muons $\rightarrow \sigma_{PT}/p_T^2 \sim 2 \times 10^{-5} \text{GeV}^{-1}$
- Impact parameter resolution
 - $\bullet~c/b\textsc{-tagging},~Higgs branching ratios$
 - $ightarrow \sigma_{rarphi} \sim 5 \oplus 15/(p[{
 m GeV}]\sin^{rac{3}{2}} heta)\mu{
 m m}$
- Jet energy resolution
 - $\bullet\,$ Separation of W/Z/H di-jets
 - $ightarrow~\sigma_{\it E}/\it E\sim$ 3.5% for jets above 100 GeV
- Angular coverage
 - Very forward electron tagging
 - \rightarrow Down to $\theta = 10 \text{ mrad}$
- Requirements from CLIC beam structure and beam-induced backgrounds
 - Tight timing cuts in the order of 1-10 ns (depending on detector region)




Detector needs: beam induced backgrounds

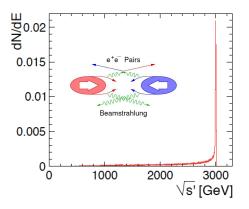
• Small bunch size: $\sigma_{x;y;z} = \{40 \text{ nm}; 1 \text{ nm}; 44 \mu\text{m}\} \rightarrow \text{strong beam-beam interactions}$

- Coherent e⁺e⁻ pairs
 - $7 \cdot 10^8$ per BX, very forward
- Incoherent e⁺e⁻ pairs:
 - $3 \cdot 10^5$ per BX, rather forward
 - High occupancies → impact on detector design
- $\gamma\gamma \rightarrow$ hadrons
 - "Only" 3.2 events per BX at 3 TeV
 - Main background in calorimeters and trackers \rightarrow Impact on physics



CLIC detector requirements

CLIC detector needs: beam-induced backgrounds


Example:

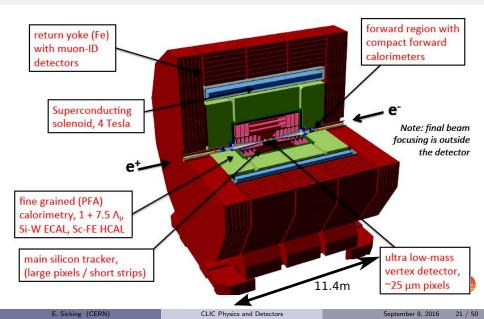
 $H \rightarrow Z\gamma$; $Z \rightarrow q\overline{q} @ 1.4 \text{ TeV}$ before and after rejecting out-of-time background

After background rejection

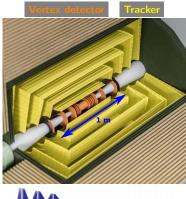
Beam energy spectrum

- Due to beamstrahlung energy is lost right at the interaction point
- Collision energy is reduced by the amount lost in beamstrahlung before collision
- Example:
 - Full luminosity at 3 TeV: $5.9 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - 1% most energetic part: $2.0 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

- Most physics processes are studied well above production threshold
- Can profit from almost full luminosity



CLIC detector


(selection)

CLIC detector

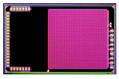
CLIC vertex detector

- Flavour tagging capabilities drive the design of the pixel detector
- Vertex detector needs to be extremely accurate and light
 - Single point resolution of $\sigma < 3\,\mu m$
 - $\rightarrow~$ Pixel pitch $\approx 25\,\mu m$ (25 times smaller pixels than at LHC) and analogue readout
 - Material budget $< 0.2 \% X_0$ per layer
 - $\rightarrow~50\,\mu m$ sensor $+~50\,\mu m$ ASIC, low mass support, power pulsing, air cooling
 - $\rightarrow~$ Low power dissipation of 50 $\rm mW/cm^2$
 - Time stamping $\leq 10 \text{ ns}$ for background suppression
 - Radiation level 10⁴ times lower than at LHC

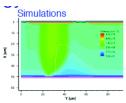
\rightarrow Comprehensive vertex detector R&D

Silicon Vertex and Tracker R&D

Sensors


Interconnects

Light-weight supports



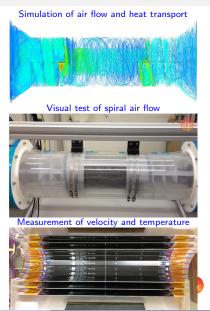
Readout ASICs

Powering

Cooling

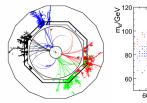
Example: Test beam experiments with pixel detectors

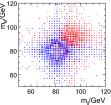
• Test-beam measurements with ultra thin sensors (50 $\mu m)$


- High detection efficiency (> 99%) under normal operating condition
- Resolution limited by single-pixel clusters
- Resolution degrades for thinner sensors

- CERN-LCD Timepix3 telescope
 - Permanent installation at CERN SPS H6B
 - Movement and rotation stages for automatic scans
 - High rate up to 10 M particles/s
 - Track timing < 2 ns accuracy
 - Track pointing resolution $2 \, \mu m$

Example: Vertex detector cooling

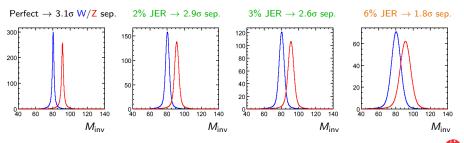

- Vertex detector with low material budget \rightarrow Power pulsing and air cooling
- Heat load of 50 mW/cm² extractable using spiral air flow
 - \rightarrow Test concept in simulations
- Verify simulation results using real size vertex-detector mockup
 - Visual test of air flow using smoke
 - Study spiral air-flow feasibility, temperature and vibrations

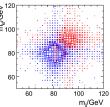


Calorimetry: Jet energy resolution

 $ZW \rightarrow q\overline{q}q\overline{q}$

- Jet energy resolution (JER) requirements depend on physics goals
- Starting point for detector design





Calorimetry: Jet energy resolution

- Jet energy resolution (JER) requirements depend on physics goals
- Starting point for detector design

• 3%–4% jet energy resolution gives $\sim 2.6-2.3\sigma$ W/Z separation

ZW→qqqq

Particle Flow Calorimetry

3%-4% jet energy resolution reachable with Particle Flow Analysis (PFA)

Motivation:

- Average jet composition
 - 60% charged particles
 30% photons
 10% neutral hadrons
- $\rightarrow\,$ Always use the best information
 - $60\% \rightarrow \text{tracker} \stackrel{\textcircled{\sc blue}}{\odot} 30\% \rightarrow \text{ECAL} \stackrel{\textcircled{\sc blue}}{\odot} 10\% \rightarrow \text{HCAL} \stackrel{\textcircled{\sc blue}}{\odot}$

Calorimetry

Particle Flow Calorimetry

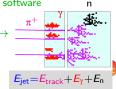
3%–4% jet energy resolution reachable with Particle Flow Analysis (PFA)

Motivation:

- Average jet composition
 - 60% charged particles 30% photons 10% neutral hadrons
- Always use the best information
 - $60\% \rightarrow \text{tracker}$ $30\% \rightarrow ECAL$ (:) $10\% \rightarrow \text{HCAL}$

Particle Flow Analysis: Hardware + Software

• Hardware: Resolve energy deposits from different particles \rightarrow High granularity calorimeters

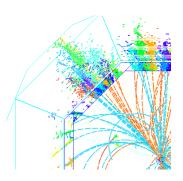


 $E_{\text{jet}} = E_{\text{ECAL}} + E_{\text{HCAL}}$

Software: Identify energy deposits from each individual particle

 \rightarrow Sophisticiated reco. software

CLIC Physics and Detectors



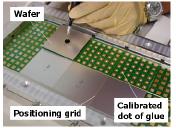
Calorimetry

Optimise calorimeter for particle flow

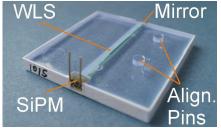
 \rightarrow Reco. details in backup slides

Pandora Preliminary

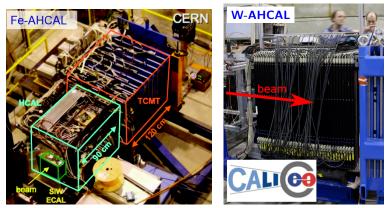
- High granularity of calorimeters
 - \rightarrow Separate overlapping showers to reduce confusion


$$\sigma_{\text{jet}} = \sqrt{\sigma_{\text{track}}^2 + \sigma_{\text{el.-m.}}^2 + \sigma_{\text{had.}}^2 + \sigma_{\text{confusion}}^2}$$

- JER of 3%–4% when using
 - \rightarrow ECAL cell size: $\sim 1 \times 1 \, \text{cm}^2$
 - \rightarrow HCAL cell size: $\sim 3 \times 3 \text{ cm}^2$

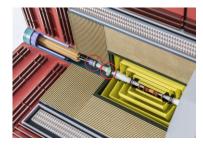

RMS₉₀(E) / Mean₉₀(E) [% 45 GeV let 250 GeV lets 80 GeV Jets 10 20 ECal Cell Size [mm] Pandora Preliminary RMS₉₀(E) / Mean₉₀(E) [% 45 GeV lets 100 GeV lets 180 GeV Jets 250 GeV Jets 50 100 HCal Cell Size [mm] rms_{90} and $mean_{90} \hat{=} rms$ and mean in smallest range of $E_{\rm rec}$ dist. containing 90% of events

Active layer technology: Examples


Silicon PIN diodes ($1 \times 1 \text{ cm}^2$ in 6×6 matrices) Scintillator tiles/strips (here $3 \times 3 \text{ cm}^2$) + SiPMs

CALICE test beam experiment: Example

- Test beam experiments in 2006-2015 at DESY, CERN, FNAL
- $\bullet\,$ Prototypes of up to ${\sim}1\,m^3,\,{\sim}2\,m^3$ including Tail Catcher Muon Tracker


AHCAL/Si-ECAL: $\sim 10\,000$ readout channels

Calorimetry

Forward CALorimetry: FCAL

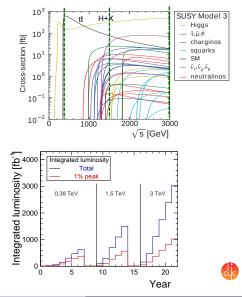
- Very forward e.m. calorimeters: LumiCal + BeamCal
- Very compact design (sensors, read-out + tungsten plates)

- Luminosity measurement
- Beam feedback
- BeamCal GaAs, LumiCal silicon
- Tungsten absorber

LumiCal module with Si sensor (one sector)

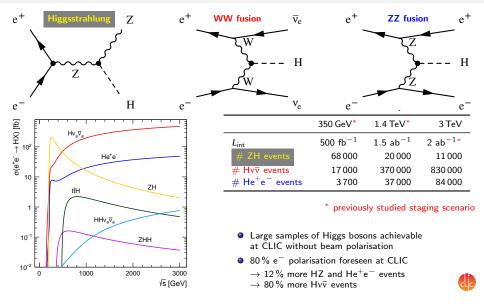
CLIC physics programme

(selection)

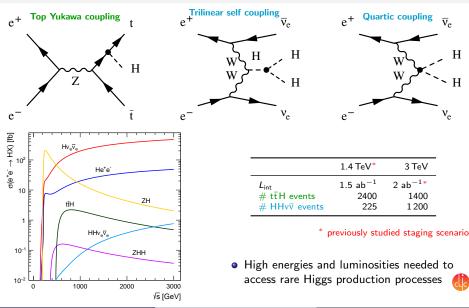


CLIC physics program

- High luminosity over wide range of \sqrt{s} \rightarrow Staged construction
- CLIC energy stages defined by physics \rightarrow Adapt to discoveries at LHC
- Proposed scenario
 - 1) $\sqrt{s} = 380 \,\text{GeV}, 500 \,\text{fb}^{-1}$ and $\sqrt{s} = \sim 350 \,\text{GeV}, 100 \,\text{fb}^{-1}$
 - SM Higgs physics including total width measurement
 - Top precision measurements
 - 2) $\sqrt{s} = 1.5 \,\text{TeV}$, 1.5 ab⁻¹
 - New physics
 - ttH, Higgs self coupling
 - Rare Higgs decays

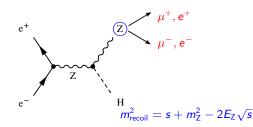

3) $\sqrt{s} = 3 \,\mathrm{TeV}$, $3 \,\mathrm{ab}^{-1}$

- New physics
- Higgs self coupling
- Rare Higgs decays

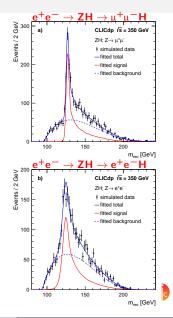


Higgs physics

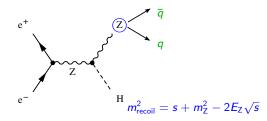
Higgs physics at CLIC (1)



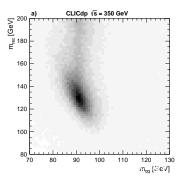
Higgs physics at CLIC (2)



E. Sicking (CERN)


Higgsstrahlung at $\sqrt{s} = 350 \,\text{GeV}$

- Measure HZ events from Z recoil mass
- Also sensitive to invisible Higgs decays
- Measurement of g_{HZZ} coupling
- $Z \rightarrow e^+e^-/\mu^+\mu^-$ decay
 - BR(Z $\rightarrow \mu^+\mu^-/e^+e^-) \approx 7\%$
 - Fully model independent
 - $\Delta \sigma_{\rm HZ} / \sigma_{\rm HZ} \approx 3.8 \% \rightarrow \Delta (g_{\rm HZZ}) / g_{\rm HZZ} \approx 1.9 \%$



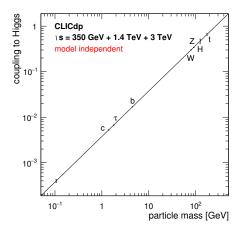
Higgsstrahlung at $\sqrt{s} = 350 \,\text{GeV}$

- Measure HZ events from Z recoil mass also in hadronic Z decays
- $Z \rightarrow q\overline{q}$ decay
 - BR(Z \rightarrow q \overline{q}) \approx 70 %
 - Challenge: $Z \rightarrow q\overline{q}$ reconstruction may depend on H decay mode
 - $\Delta \sigma_{\rm H7} / \sigma_{\rm H7} \approx 1.8 \% \rightarrow \Delta (g_{\rm H77}) / g_{\rm H77} \approx 0.9 \%$

$e^+e^- \rightarrow ZH \rightarrow a\overline{a}H$

Results from 25 independent full Geant4 detector simulations including backgrounds

			Statistical precision		
Channel	Measurement	Observable	350 GeV 500 fb ⁻¹	1.4 TeV 1.5 ab ⁻¹	3.0 TeV 2.0 ab
ZH	Recoil mass distribution	т _Н	110 MeV	_	-
ZH	$\sigma(HZ) \times BR(H \rightarrow invisible)$	Finv	0.6%	-	-
$H\nu_e \bar{\nu}_e$	$H \rightarrow b ar{b}$ mass distribution	^m H	-	47 MeV	44 MeV
ZH	$\sigma(HZ) \times BR(Z \rightarrow I^+I^-)$	^в н <i>zz</i> внzz внzzвнь/гн	3.8%	_	_
ZH	$\sigma(HZ) \times BR(Z \rightarrow q\bar{q})$	2	1.8%	_	_
ZH	$\sigma(HZ) \times BR(H \rightarrow b\bar{b})$	- π22 guzzgull / Γμ	0.84%	_	_
ZH	$\sigma(HZ) \times BR(H \rightarrow c\bar{c})$	g ² _{HZZ} g ² _{Hcc} /Γ _H	10.3%	_	_
ZH	$\sigma(HZ) \times BR(H \rightarrow gg)$	"HZZ"Hcc' H	4.5%	_	_
ZH	$\sigma(HZ) \times BR(H \rightarrow \tau^+ \tau^-)$	² _{HZZ} ² ² _{HTT} /Γ _H	6.2%	_	_
ZH	$\sigma(HZ) \times BR(H \rightarrow WW^*)$	^g HZZ ^g HWW / ^Γ H	5.1	-	_
Hveve	$\sigma(H\nu_e\bar{\nu}_e) \times BR(H \rightarrow b\bar{b})$	² дүүү вдьь / Гн	1.9	0.4%	0.3%
HVERE	$\sigma(H\nu_e\bar{\nu}_e) \times BR(H \rightarrow c\bar{c})$	g ² _{HWW} g ² _{Hcc} /Γ _H	14.3%	6.1%	6.9%
$H\nu_e\bar{\nu}_e$	$\sigma(H\nu_e\bar{\nu}_e) \times BR(H \to gg)$	"HVVV Hcc' H	5.7%	5.0%	4.3%
Ην _e ν _e	$\sigma(H\nu_e\bar{\nu}_e) \times BR(H \to \tau^+\tau^-)$	^g _{HWW} ² _H ⁷ / ^Γ _H	-	4.2%	4.4%
$H\nu_e \bar{\nu}_e$	$\sigma(H\nu_e\bar{\nu}_e) \times BR(H \rightarrow \mu^+\mu^-)$	² ^β _{HWW} ² _{Hµµ} /Γ _H	_	38%	25%
$H\nu_{\rho}\bar{\nu}_{\rho}$	$\sigma(H\nu_e\bar{\nu}_e) \times BR(H \to \gamma\gamma)$	- <i>mww-mµµ</i> , m	_	15%	10%*
$H\nu_e \bar{\nu}_e$	$\sigma(H\nu_e\bar{\nu}_e) \times BR(H \rightarrow Z\gamma)$		_	42%	30%*
$H\nu_e \bar{\nu}_e$	$\sigma(H\nu_e\bar{\nu}_e) \times BR(H \rightarrow WW^*)$	g ⁴ _{HWW} /Γ _H	-	1.0%	0.7%*
$H\nu_e \bar{\nu}_e$	$\sigma(H\nu_e\bar{\nu}_e)$ × BR($H \rightarrow ZZ^*$)	^{g4} _{HWW} /Гн ^{g2} HWW ^g HZZ /Гн	-	5.6%	3.9%*
Hee	$\sigma(Hee) imes { m BR}(H o b ar{b})$	$g_{HZZ}^2 g_{Hbb}^2 / \Gamma_H$	-	1.8%	2.3%*
tīH	$\sigma(t\bar{t}H) \times BR(H \rightarrow b\bar{b})$	$g_{Ht\bar{t}}^2 g_{Hbb}^2 / \Gamma_H$	_	8.4%	_
HHνeνe	$\sigma(HH\nu_e\bar{\nu}_e)$	λ	-	32%	16%
HHνeνe	with $-80\% e^-$ polarisation	λ	-	24%	12%
sults without beam polarisation				*: extrapolated	

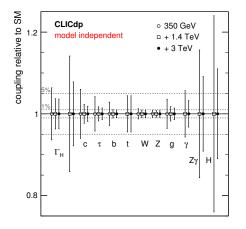


E. Sicking (CERN)

CLIC Physics and Detectors

Higgs coupling to mass

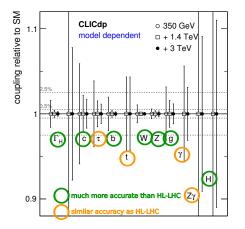
- Combine results of studied Higgs production and decay channels in global fit \rightarrow extract couplings and Higgs width
- Fully model independent approach, unique for lepton colliders



- Based on results from full Geant4 detector simulations including backgrounds
- Global fit assumes 80 % electron beam polarisation at 1.4 TeV and 3 TeV
- Publication "Higgs Physics at the CLIC Electron-Positron Linear Collider" • arXiv:1608.07538

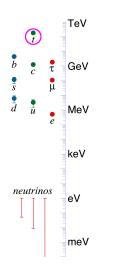
Higgs coupling to mass

- Combine results of studied Higgs production and decay channels in global fit \rightarrow extract couplings and Higgs width
- Fully model independent approach, unique for lepton colliders

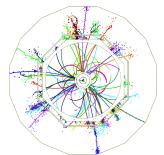


- Based on results from full Geant4 detector simulations including backgrounds
- Global fit assumes 80 % electron beam polarisation at 1.4 TeV and 3 TeV
- Publication "Higgs Physics at the CLIC Electron-Positron Linear Collider"
 arXiv:1608.07538

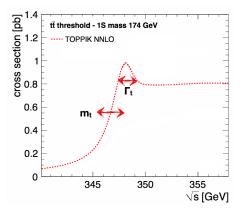
Higgs coupling to mass

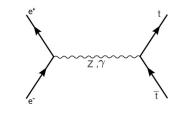

- Combine results of studied Higgs production and decay channels in global fit \rightarrow extract couplings and Higgs width
- Fully model independent approach, unique for lepton colliders

- Based on results from full Geant4 detector simulations including backgrounds
- Global fit assumes 80 % electron beam polarisation at 1.4 TeV and 3 TeV
- Publication "Higgs Physics at the CLIC Electron-Positron Linear Collider" • arXiv:1608.07538



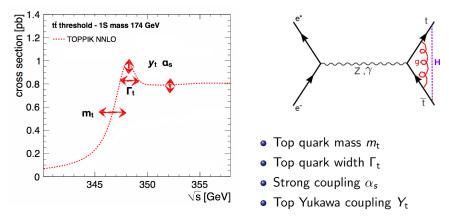
Top quark physics


- Top quark is heaviest known elementary particle
- Largest coupling to Higgs \rightarrow key to understanding of electroweak symmetry breaking
- The only quark that decays before hadronisation
- Contributes via loops to processes that can be studied with high precision
 - \rightarrow Sensitive to many BSM scenarios

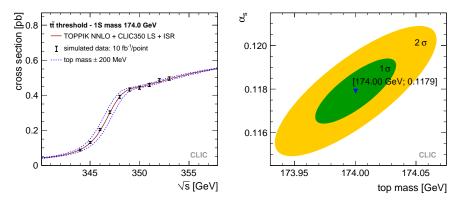

 $e^+e^- \rightarrow t \overline{t} \rightarrow 6~jets$

Top threshold scan

- Top pair production cross section around threshold
 - Resonance-like structure corresponding to narrow tt bound state
 - Very sensitive to top properties and model parameters
 - Measurement not possible at hadron colliders

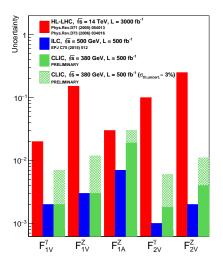


- Top quark mass $m_{\rm t}$
- \bullet Top quark width Γ_t

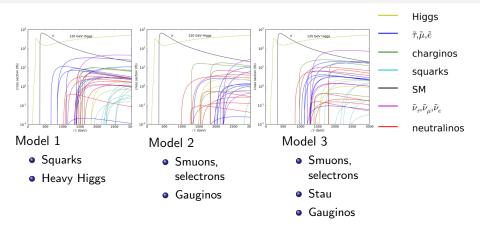

Top threshold scan

- Top pair production cross section around threshold
 - Resonance-like structure corresponding to narrow tt bound state
 - Very sensitive to top properties and model parameters
 - Measurement not possible at hadron colliders

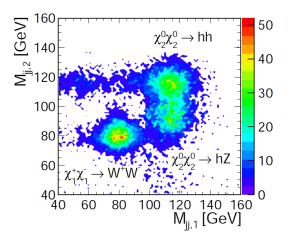
Top quark physics


K. Seidel et al. Eur. Phys. J. C (2013) 73: 2530

- Precision top mass measurement possible already with 100 fb⁻¹
- Energy scan with 10 cross-section measurements of each 10 fb⁻¹
- Total uncertainty on the top mass of 50 MeV feasible
 - \rightarrow Significantly better than at HL-LHC

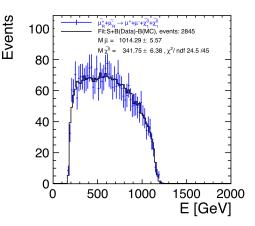

Top quark physics

- Above threshold, top quark pairs are produced via Z boson or γ exchange
- Contributions of Z and γ depend on the beam and top-quark polarisation
- Use polarised e⁻ beams
- Measure forward-backward asymmetry of top quarks
- Extract top-quark coupling to γ and Z (form factors)
- Already inital stage of boh CLIC and ILC significantly better than HL-LHC reach


Searches for physics beyond the standard model (BSM)

- Wide range of mass, spin and quantum numbers tested for CLIC
- Studied in full Geant4 detector simulations including beam induced backgrounds

Example: Chargino and Neutralino pair production



- Reconstructed W, Z and h candidates in hadronic decays
- Four jets and missing energy
- Combine W, Z and h candidates from same events
- Peaks for individual chargino and neutralino decays are visible

 Statistical precision achievable at CLIC in the sub-percent and percent region in studied models

Example: Smuons

- Slepton production very clean at CLIC
- Slepton masses approximately 1 TeV

• Example:

$$e^+e^- \rightarrow \tilde{I}\tilde{\tilde{I}} \rightarrow I^+I^-\tilde{\chi}^0\tilde{\chi}^0$$

- Events with leptons and missing energy
- Extract slepton masses from endpoints of lepton energy spectra
- Statistical precision of few GeV achievable at CLIC

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

CLIC conceptual design report

• 3 volumes CLIC conceptual design report

New CLIC publications

- Published mid-August 2016

 - CLIC Higgs paper arXiv:1608.07538

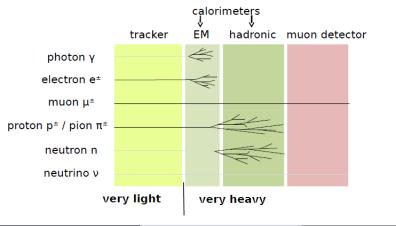
Summary

- CLIC is a very interesting option for the post-HL-LHC phase
- Rich field of R&D on accelerator, detectors and physics
- Physics benchmark studies show excellent physics potential of CLIC including precision measurements and a large discovery potential

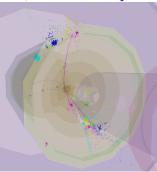
Participants of the CLIC workshop in January 2016

 Find more information on http://clicdp.web.cern.ch/ and http://clic-study.web.cern.ch/

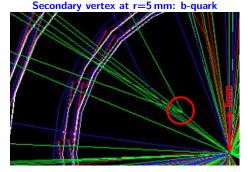
E. Sicking (CERN)


CLIC Physics and Detectors

Backup

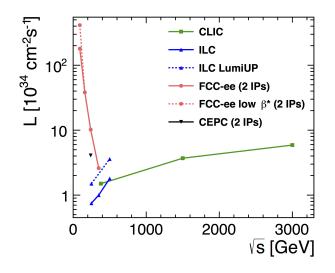

Reminder: Particle detection (1)

- Particles make small changes in the material they traverse
 - $\bullet\,$ ionisation, atomic effects, nuclear effect $\leftarrow\,$ all very small
- Particles differ in the way they interact with material
 - We can use it to identify particle types


Reminder: Particle detection (2)

- Many of the elementary particles we know have very short life times
 - W, Z, Higgs and many more
- We only see the products of their decay

Quarks hadronise to jets


 Cannot observe quarks directly, as they hadronise into jets of particles

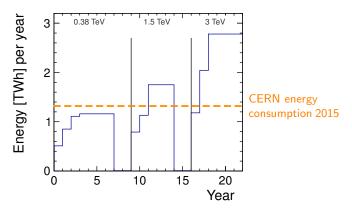
 Identify hadron containing b-quark via secondary vertex reconstruction

Backup

Future colliders

2-beam acceleration module in CTF3 First 2-beam tests stand reached 145 MV/m

drive beam

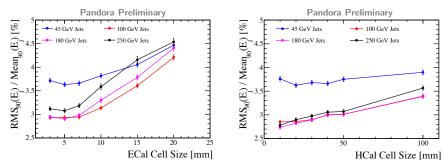

Backup

CLIC vs. ILC

Property	unit	ILC at 500 GeV	ILC at 1 TeV	CLIC at 380 GeV	CLIC at 3 TeV
L	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	$1.8\cdot10^{34}$	$3.5\cdot10^{34}$	$1.5\cdot 10^{34}$	$5.9\cdot 10^{34}$
L _{0.01}	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	$1.0\cdot 10^{34}$	$1.2\cdot10^{34}$	$0.9\cdot 10^{34}$	$2.0\cdot10^{34}$
$L_{0.01}/L$	%	58	59	60	34
Repetition rate	Hz	5 Hz	4 Hz	50 Hz	50 Hz
Train duration	ns	727 μs	897 μs	178 ns	156 ns
BX / train		1312	2450	356	312
Bunch separation	ns	554 ns	366 ns	0.5 ns	0.5 ns
Duty cycle	%	0.36	0.36	0.00089	0.00078
σ_x/σ_y	nm	474/5.9	481/2.8	$\sim \! 150/3$	${\sim}40/1$
σ _z	μm	300	250	70	44

Yearly energy consumption

- Including reduced operation in the first years at each energy
- At 380 GeV, a single positron target is used for the first three years (-10 MW with respect to nominal)


(Note \rightarrow 380 GeV numbers scaled from CDR design at 500 GeV

 \rightarrow To be repeated with detailed tech. description of 380 GeV CLIC)

Backup

Reconstruction information for cell size optimisation

- HCal timing cuts: 100 ns
- ECal timing cuts: 100 ns
- HCal Hadronic Cell Truncation: Optimised for each detector model
- Software: ilcsoft_v01-17-07, including PandoraPFA v02-00-00
- Digitiser: ILDCaloDigi, realistic ECal and HCal digitisation options enabled
- Calibration: PandoraAnalysis toolkit v01-00-00

More details in CCWS2015 talk by S. Green

