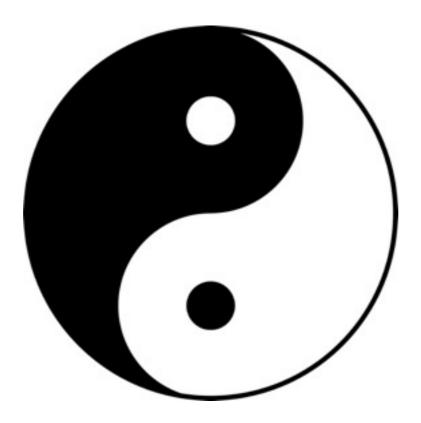
Double Field Theory



Corfu Summer Institute

16th Hellenic School and Workshops on Elementary Particle Physics and Gravity Corfu: Greece 2016

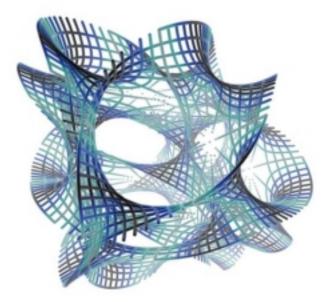


Ioannis Bakas 1960-2016

LECTURE I: World sheet approach

- Overview
- Symmetry, T-duality, Geometry

- Double sigma-models
- D-branes
- LECTURE 2: Target space approach
 - Double Field Theory
 - Generalised T-duality, Gauge Symmetries
 - Geometry

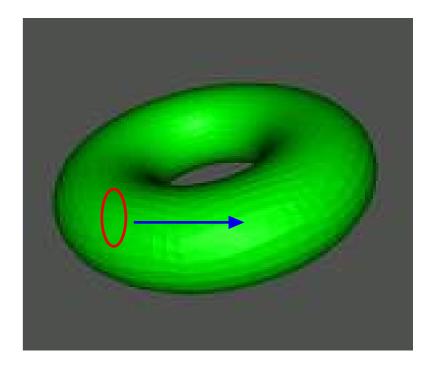


String/M Theory

- Supergravity limit misses stringy features
- Infinite set of fields: misses dualities,...
- World-sheet theory only perturbative string
- String field theory: captures interactions, Tduality, algebraic structure
- Holography only special spacetimes? AdS,...
- Matrix theory non-perturbative, geometry hidden or emergent
- Fundamental formulation?

Strings in Geometric Background

Manifold, background tensor fields G_{ij}, H_{ijk}, Φ Fluctuations: modes of string Treat background and fluctuations the same?



Stringy geometry? Singularity resolution? Dualities: mix geometric and stringy modes

Non-Geometric Background?

String theory: solutions that are not "geometric" Moduli stabilisation. Richer landscape?

Symmetries

- (G, B, Φ) satisfying field eqns determine CFT
- Same CFT can be given by $(G, B, \Phi), (G', B', \Phi')$
- if related by diffeos + B-field gauge transformations
- - if related by T-duality
- Same physics, so these are SYMMETRIES
- Stringy Equivalence Principle

T-duality

- Takes S¹ of radius R to S¹ of radius I/R
- Exchanges momentum p and winding w
- Exchanges S¹ coordinate X and dual S¹ coordinate \tilde{X}
- Acts on "doubled circle" with coordinates (X, \tilde{X})

Duality Symmetries

- Supergravities: continuous classical symmetry, broken in quantum theory, and by gauging
- String theory: discrete quantum duality symmetries; not field theory symms
- T-duality: perturbative symmetry on torus, mixes momentum modes and winding states
- U-duality: non-perturbative symmetry of type II on torus, mixes momentum modes and wrapped brane states

Symmetry & Geometry

- Spacetime constructed from local patches
- All symmetries of physics used in patching
- Patching with diffeomorphisms, gives manifold
- Patching with gauge symmetries: bundles
- String theory has new symmetries, not present in field theory. New <u>non-geometric</u> string backgrounds
- Patching with T-duality: T-FOLDS
- Patching with U-duality: U-FOLDS

Extra Dimensions

- Kaluza-Klein theory: extra dimensions to spacetime, charges from KK momenta
- String theory in 10-d, M-theory in 11-d
- KK momenta dual to string winding modes and brane wrapping modes. Further dimensions? Strings on torus see doubled spacetime: double field theory
- Extended spacetime as arena for M-theory?

String Geometries

- D-dimensional **Manifold** N with tensor fields $g, H = db, \phi$
- Generalised Geometry: doubled tangent space E a twisted form of $T \oplus T^*$ Action of O(D,D). Generalised metric $\mathcal{H}(g, b)$ and O(D,D) metric η on E.
- If N is D-torus T^D, T-duality symmetry O(D,D;Z) acts on D discrete momenta and D winding numbers. String theory "sees" double torus T^{2D}.
- If N is T^d torus bundle, string theory "sees" bundle with double torus fibres T^{2d}. T-duality O(d,d;Z) geometric.

- T-folds: torus bundles with T-duality transition functions. Good string backgrounds. g,H no longer tensors: "non-geometric"
- **Doubled torus bundle** geometric.
- More general "non-geometric" spaces with "R-flux"
- Non-toroidal backgrounds: supergravity can be rewritten in duality covariant form by introducing extra coordinates. What is geometry of enlarged spacetime if can't be understood in terms of windings?

String Theory

- Standard: 2-d sigma model with target space (N,g,H,...)
- Gives infinite tower of fields on N
- Doubled sigma model, with target space double geometry
 Tseytlin; CH
- Gives infinite tower of double fields on double space:
 Double Field Theory
 Siegel; CH + Zwiebach
- Some physics can be studied using finite set of fields
- Polarisations and Section Conditions

• DFT written in terms of "generalised metric" $\mathcal{H}(g,b)$ and O(D,D) "metric" η

$$\mathcal{H}_{MN} = \begin{pmatrix} g^{ij} & -g^{ik}b_{kj} \\ b_{ik}g^{kj} & g_{ij} - b_{ik}g^{kl}b_{lj} \end{pmatrix} \cdot \eta_{MN} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

- Transform as "generalised tensors" via "generalised Lie derivative"
- Derived for torus, but gives duality covariantised supergravity for more general spaces. Meaning of extra coordinates?
- If η were a metric on doubled space, it would define a flat geometry, so would be highly restrictive

Strings on a Torus

- States: momentum p, winding w
- String: Infinite set of fields $\psi(p,w)$
- Fourier transform to doubled space: $\psi(x, \tilde{x})$
- "Double Field Theory" from closed string field theory. Some non-locality in doubled space
- Infinite set of fields in doubled space

CH & Zwiebach

Double Field Theory

- Double field theory on doubled torus
- General solution of string theory: involves doubled fields $\psi(x, \tilde{x})$
- Real dependence on full doubled geometry, dual dimensions not auxiliary or gauge artifact.
 Double geom. physical and dynamical (with weak constraint)
- Strong constraint restricts to subsector in which extra coordinates auxiliary: get conventional field theory locally. Siegel's duality covariant formulation of (super)gravity, T-theory

Sigma Model

$$S = \frac{1}{2} \int (g_{ij} dx^i \wedge *dx^j + b_{ij} dx^i \wedge dx^j)$$

Hamiltonian density

$$h = \frac{1}{2} \mathcal{H}_{MN} P^M P^N + \dots$$

$$\mathcal{H}_{MN} = \begin{pmatrix} g^{ij} & -g^{ik}b_{kj} \\ b_{ik}g^{kj} & g_{ij} - b_{ik}g^{kl}b_{lj} \end{pmatrix} \cdot \qquad P^M = \begin{pmatrix} p_m \\ w^m \end{pmatrix}$$

Involves generalised metric

Hamiltonian density $h = \frac{1}{2} \mathcal{H}_{MN} P^M P^N + \dots$

Rewrite
$$h = \frac{1}{2} \hat{\mathcal{H}}_{MN} \hat{P}^M \hat{P}^N + \dots$$

 $\hat{\mathcal{H}}_{MN} = \begin{pmatrix} g^{ij} & 0 \\ 0 & g_{ij} \end{pmatrix}$ Natural metric on $T \oplus T^*$

$$\hat{P}^{M} = \begin{pmatrix} \hat{p}_{m} \\ w^{m} \end{pmatrix} = \begin{pmatrix} p_{m} - b_{mn} w^{n} \\ w^{m} \end{pmatrix} \quad \text{Section of} \quad T \oplus T^{*}$$

 P^M Section of E, with metric \mathcal{H}_{MN}

E is $T \oplus T^*$ twisted by b-field

Generalised Geometry. Gives transformations under Diff(N) and b-field gauge transformations, transition functions

Strings on Circle

$M = S^1 \times X$

Discrete momentum p=n/RIf it winds m times round S¹, winding energy w=mRT Energy = $p^2+w^2+...$

<u>T-duality</u>: Symmetry of string theory

Ρ	\leftrightarrow	W
m	\leftrightarrow	n
R	\leftrightarrow	/RT

•Fourier transf of discrete p,w gives periodic coordinates X, \tilde{X} Circle + dual circle

- Stringy symmetry, not in field theory
- •On d torus, T-duality group $O(d, d; \mathbb{Z})$

Strings on T^d
$$X = X_L(\sigma + \tau) + X_R(\sigma - \tau), \qquad \tilde{X} = X_L - X_R$$

X conjugate to momentum, \tilde{X} to winding no. $dX = *d\tilde{X}$ $\partial_a X = \epsilon_{ab} \partial^b \tilde{X}$

Need "auxiliary" \tilde{X} for interacting theory Vertex operators $e^{ik_L \cdot X_L}$, $e^{ik_R \cdot X_R}$

Strings on T^d
$$X = X_L(\sigma + \tau) + X_R(\sigma - \tau), \qquad \tilde{X} = X_L - X_R$$

X conjugate to momentum, \tilde{X} to winding no. $dX = *d\tilde{X}$ $\partial_a X = \epsilon_{ab} \partial^b \tilde{X}$

Strings on torus see **DOUBLED TORUS T-duality** group $O(d, d; \mathbb{Z})$

Doubled Torus 2d coordinates Transform linearly under $O(d, d; \mathbb{Z})$

 $X \equiv \begin{pmatrix} \tilde{x}_i \\ x^i \end{pmatrix}$

DOUBLED GEOMETRY Duff;Tseytlin; Siegel;Hull;...

Strings on d-Torus

Target space $T^d \times \mathbb{R}^D$ T^d Coordinates $X^i, i = 1, ..., d$ Moduli on torus (constant) G_{ij}, B_{ij} $E_{ij} = G_{ij} + B_{ij}$

T-Duality Symmetry $O(d, d; \mathbb{Z})$

i) Large Diffeos ii)B-shifts iii) Inversions

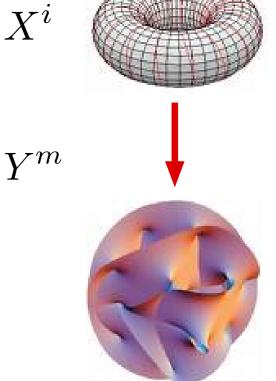
 $GL(d;\mathbb{Z})$ $B \to B + \Theta, \quad \Theta_{ij} \in \mathbb{Z}$ $R_i \to 1/R_i$

 $E \to (aE+b)(cE+d)^{-1}$ $h = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O(d,d;Z)$

 $|p_i, w^i\rangle$ Lie in 2d-lattice, action of $O(d, d; \mathbb{Z})$

T-Duality

- Space has d-torus fibration
- G,B on fibres
- T-Duality O(d,d;Z), mixes G,B
- Mixes Momentum and Winding
- Changes geometry and topology $E \rightarrow (aE+b)(cE+d)^{-1}$ $h = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O(d,d;Z)$ $E_{ij} = G_{ij} + B_{ij}$



G(Y), B(Y)

T-Duality

- Space has d-torus fibration
- G,B on fibres
- T-Duality O(d,d;Z), mixes G,B
- Mixes Momentum and Winding
- Changes geometry and topology $E \rightarrow (aE+b)(cE+d)^{-1}$ $h = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O(d,d;Z)$ $E_{ij} = G_{ij} + B_{ij}$

 $\mathcal{H} \to h^t \mathcal{H} h$

 X^i

 Y^m

G(Y), B(Y)

Dilaton

Careful 1-loop calculation gives shift in dilaton

$$\Phi \to \tilde{\Phi} = \Phi + \frac{1}{2} \log \frac{\det \tilde{G}}{\det G}$$

Conundrum

- a) Dilaton shifts under T-duality
- b) Dilaton expectation gives string coupling constantc) T-duality is claimed to be a perturbative symmetry

$$g = \exp\langle \Phi \rangle$$

Conundrum

a) Dilaton shifts under T-duality

b) Dilaton expectation gives string coupling constantc) T-duality is claimed to be a perturbative symmetry

$$g = \exp\langle\Phi\rangle$$

Resolution

 $e^{-2d} = e^{-2\Phi}\sqrt{g}$ is invariant under T-duality

Use $g = \exp\langle d \rangle$ as string coupling, invariant under T-duality

T-Duality & Cocycles

Suppose $R = \sqrt{\alpha'}$

 $p_L \equiv n - w, \quad p_R \equiv n + w$ n,w integers

Naive T-duality T_0 $X_L \to -X_L, \quad X_R \to X_R$ $n \leftrightarrow w \qquad (-1)^{\hat{N}_L}$

Quantum T-duality T

$$|n, w, \tilde{N}_i, N_i\rangle \to \Omega_{n, w} (-1)^{N_L} |w, n, \tilde{N}_i, N_i\rangle$$

 $\Omega_{n,w}\Omega_{w,n} = 1$ T_0 up to phase

Are Interactions Invariant Under T-Duality?

Vertex Operators

Not mutually local

$$V_{(n,w)}^0 = \exp\left(ip_L X_L + ip_R X_R\right)$$

$$V_{(n,w)}^{0}(\sigma_{1},\tau) V_{(n',w')}^{0}(\sigma_{2},\tau)$$

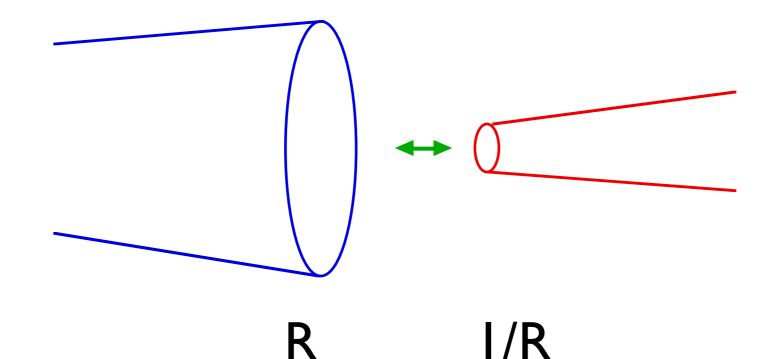
= exp $\pi i (nw' + wn') V_{(n',w')}^{0}(\sigma_{2},\tau) V_{(n,w)}^{0}(\sigma_{1},\tau)$

$$V_{(n,w)} = \hat{C}_{(n,w)} \cdot V^{(0)}_{(n,w)} \text{ are mutually loca}$$

$$\hat{C}_{(n,w)} \equiv \exp\left(\pi i w \hat{n} - \frac{\pi i}{2} n w\right)$$

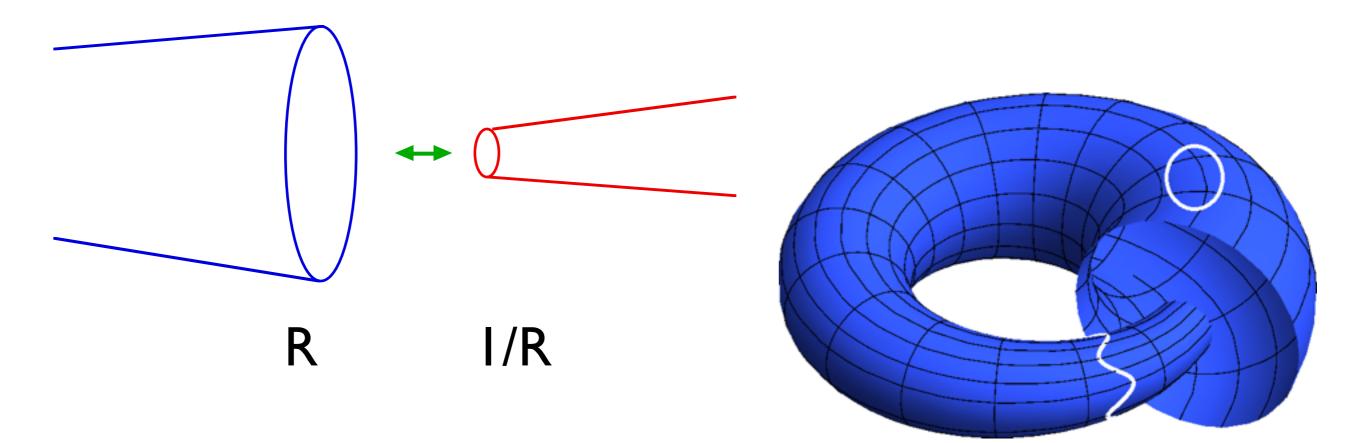
Naive T-duality T_0 does not preserve OPE's Proper T-duality T does preserve OPE's $T \equiv T_0 \cdot (-1)^{\hat{n}\hat{w}}$

T-fold patching

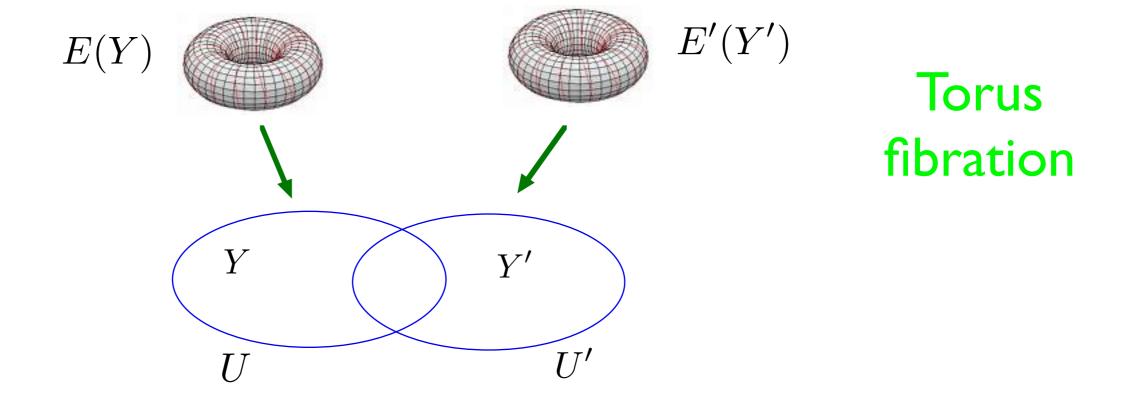


Glue big circle (R) to small (I/R) Glue momentum modes to winding modes (or linear combination of momentum and winding) Not conventional smooth geometry

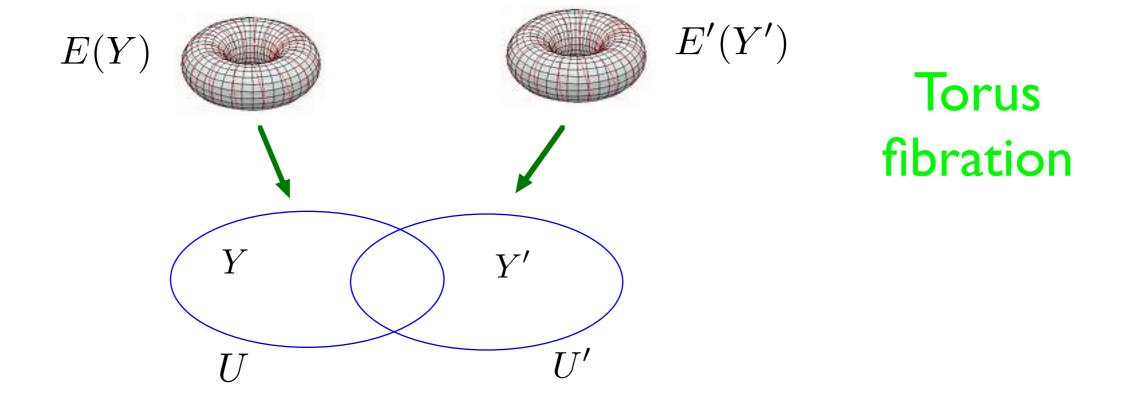
T-fold patching



Glue big circle (R) to small (I/R) Glue momentum modes to winding modes (or linear combination of momentum and winding) Not conventional smooth geometry



T-fold: Transition functions involve T-dualities E=G+B Non-tensorial $O(d,d;\mathbb{Z}) \qquad E' = (aE+b)(cE+d)^{-1} \text{ in } U \cap U'$ Glue using T-dualities also \rightarrow T-fold Physics smooth, as T-duality a symmetry



T-fold: Transition functions involve T-dualities E=G+B Non-tensorial $O(d,d;\mathbb{Z}) \qquad E' = (aE+b)(cE+d)^{-1} \text{ in } U \cap U'$ Glue using T-dualities also \rightarrow T-fold Physics smooth, as T-duality a symmetry

Exotic Branes can be T-folds de Boer, Shigemori E.g. T-dual of NS5-brane in transverse directions

Doubled Geometry for T-fold

- T^d torus fibres have
doubled coords $\mathbb{X}^I = \begin{pmatrix} X^i \\ \widetilde{X}_i \end{pmatrix}$ I = 1, ..., 2d
- Transforms linearly under $O(d, d; \mathbb{Z})$ T-fold transition: mixes X, \tilde{X} No global way of separating "real" space coordinate X from "auxiliary" \tilde{X}
- Duality covariant formulation in terms of XTransition functions $O(d, d; Z) \subset GL(2d; Z)$ can be used to construct bundle with fibres T^{2d}

Doubled space can be a smooth manifold! Sigma Model on doubled space.T-duality manifest.

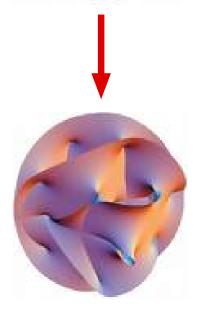
Doubled Bundle

T^{2d} bundle: doubled fibre Construct duality-covariant sigma model on doubled space (X^I, Y^m) Constraint to halve degrees of freedom on fibre:

$$dX = *d\widetilde{X}$$
 for free case

 $D\mathbb{X} = S(Y) * D\mathbb{X}$ for general case

$$S(Y) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + O(Y) \qquad \qquad S^2 = 1$$



 \mathbb{X}^{I}

 Y^m

Double Sigma Model

<u>Target space</u>: doubled space For torus bundle, double torus fibres Formally, can "double everything" by introducing formal duals for non-toroidal dimensions.

<u>Geometry</u>: Use generalised metric, gives O(d,d) covariant formalism.

<u>Constraint/gauging</u>: halves the doubled degrees of freedom

<u>Rocek-Verlinde sigma model</u>: doubled space, different geometry, only some of O(d,d) manifest.

$$\mathcal{L}_{k} = \frac{1}{4} \mathcal{H}_{IJ} \left(d\mathbb{X}^{I} + \mathcal{A}^{I} \right) \wedge * \left(d\mathbb{X}^{J} + \mathcal{A}^{J} \right) + \mathcal{L}(Y)$$
 CH

$$\mathcal{L}_{WZ} = -\frac{1}{2} L_{IJ} d\mathbb{X}^I \wedge \mathcal{A}^J \qquad \qquad \mathcal{L}_{top} = \frac{1}{2} \Omega_{IJ} d\mathbb{X}^I \wedge d\mathbb{X}^J$$

Generalised metric

2d connections

O(d,d) Covariant

Product structure

$$\mathcal{H} = \begin{pmatrix} G - BG^{-1}B & BG^{-1} \\ -G^{-1}B & G^{-1} \end{pmatrix}$$
$$L = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\mathcal{A}^{I} = \begin{pmatrix} A^{i} \\ \tilde{A}_{i} \end{pmatrix} \qquad \begin{array}{c} A^{i} \sim G_{mi}dY^{m} \\ \tilde{A}^{i} \sim B_{mi}dY^{m} \end{array}$$

$$\mathcal{H} \to h^t \mathcal{H} h \ \mathbb{X} \to h^{-1} \mathbb{X} \ \mathcal{A} \to h^{-1} \mathcal{A}$$

$$S^I{}_J = L^{IK} \mathcal{H}_{KJ} \quad S^2 = 1$$

Doubled Everything

Torus Bundle: Fibre doubled, base not. (y, x, \tilde{x}) Formally, can "double" base. Introduce "dual" coordinate \tilde{y} for base $X^M = (y, \tilde{y}, x, \tilde{x})$

All fields independent of \tilde{y} , no freedom of polarisation Rewrite in terms of full generalised metric

$$\mathcal{H}_{MN} = \begin{pmatrix} g^{ij} & -g^{ik}b_{kj} \\ b_{ik}g^{kj} & g_{ij} - b_{ik}g^{kl}b_{lj} \end{pmatrix}$$
$$S = \frac{1}{4} \int \mathcal{H}_{MN} \, dX^M \wedge *dX^N$$

$$\mathcal{S}dX = *dX, \qquad \mathcal{S} = \eta^{-1}\mathcal{H}$$

Quantisation

How should we impose constraint?

 $d\mathbb{X} + \mathcal{A} = S(Y) * (d\mathbb{X} + \mathcal{A})$

X: d left-movers and d right-movers: chiral bosons
 I) Floreanini-Jackiw action for chiral bosons gives
 Tseytlin doubled sigma model.

- 2) Absence of conformal and Lorentz anomalies gives field equations Berman, Copland, Thompson,...
- 3) Gives DFT field equations at one-loop Copland
- 4) PST approach gives this on gauge fixing
- 5) Issues with SUSY, higher genus?
- 6) Canonical Hackett-Jones & Moutsopolos

More Quantisation

How should we impose constraint?

$$d\mathbb{X} + \mathcal{A} = S(Y) * (d\mathbb{X} + \mathcal{A})$$

CH

 Chose polarisation locally X → {Xⁱ, X_i}
 Constraint generates shifts in X
 Gauge these shifts: sigma-model L(Y, X)
 (i ∫ ∫ ∫) = ovp(πin p) = +1

$$\exp(i\int \mathcal{L}_{top}) = \exp(\pi i n \tilde{n}) = \pm 1$$

Gives equivalence on arbitrary Riemann surface
4) Extends proof of T-duality to fibrewise case, with
Killing vectors only locally defined
5) SUSY straightforward

Circle and Dual Circle

$$g = R^2 dX^2$$

$$\tilde{g} = \frac{1}{R^2} d\tilde{X}^2$$

 $\mathcal{H} = R^2 dX^2 + \frac{1}{R^2} d\tilde{X}^2$

Circle

Dual Circle

Doubled Geometry

 $X \to \tilde{X}, \ \tilde{X} \to X, \ R \to 1/R$ Invariance

Polarisation: Choose which coordinate is "spacetime" T-duality: keep doubled space fixed and change polarisation

OR: keep polarisation fixed and change $X \leftrightarrow \tilde{X}$

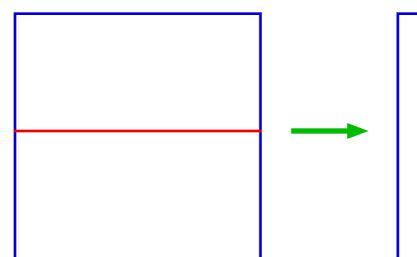
Polarisation

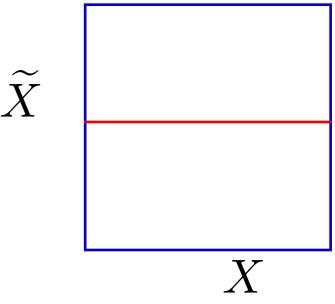
To recover conventional formulation, split into "fundamental" and "auxiliary":

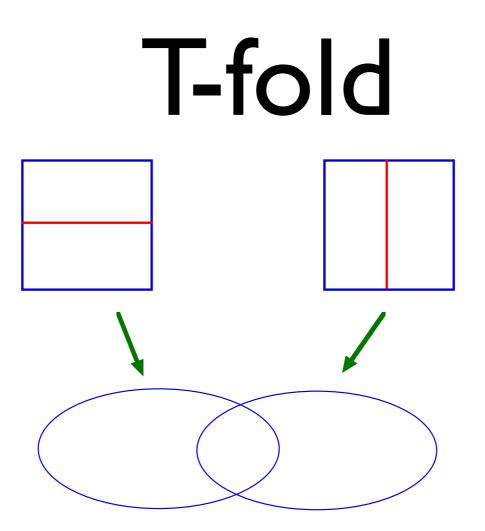
 $\mathbb{X} \to \{X^i, \tilde{X}_i\}$

Pick "real spacetime", $T^d \subset T^{2d}$

T-duality rotates polarisation. T-duality symmetry: physics independent of polarisation.







Pick polarisation over each patch in base. T-duality transitions: polarisation changes from patch to patch.

Geometric: there is global spacetime submanifold Non-geometric if there is no global polarisation.

D-Branes & Open Strings

- If X Neumann, T-dual \widetilde{X} is Dirichlet If \widetilde{X} Dirichlet, T-dual X is Neumann
- e.g. d=9, $R_{time} \times T^9$ $\mathbb{X}^I = (X^i_D, X^i_N)$
- 9 D coordinates, 9 N ones. Universal 9-brane, lagrangian cycle

Polarisation chooses some number p of the Neumann directions as physical. Interpret as p-brane

$X_{N}^{1}, X_{N}^{2}, X_{N}^{3}, ..., X_{N}^{9}, X_{D}^{1}, X_{D}^{2}, X_{D}^{3}, ..., X_{D}^{9}$

Polarisation chooses 9 of 18 coords as "physical"

$X_{N}^{1}, X_{N}^{2}, X_{N}^{3}, ..., X_{N}^{9}, X_{D}^{1}, X_{D}^{2}, X_{D}^{3}, X_{D}^{9}$

- Polarisation chooses 9 of 18 coords as "physical"
- $X_{D}^{1}, X_{D}^{2}, X_{D}^{3}, ..., X_{D}^{9}$ All 9 coords Dirichlet, 0-brane
- $X_N^1, X_D^2, X_D^3, X_D^9$ I-brane
- $X_N^1, X_N^2, X_D^3, X_D^9$ 2-brane
- $X_{N}^{1}, X_{N}^{2}, X_{N}^{3}, ..., X_{N}^{9}$ 9
- 2-brane 9-brane

$X_{N}^{1}, X_{N}^{2}, X_{N}^{3}, ..., X_{N}^{9}, X_{D}^{1}, X_{D}^{2}, X_{D}^{3}, X_{D}^{9}$

- Polarisation chooses 9 of 18 coords as "physical"
- $X^{1}_{D}, X^{2}_{D}, X^{3}_{D}...X^{9}_{D}$ All 9 coords Dirichlet, 0-brane
- $X_N^1, X_D^2, X_D^3, X_D^9$ I-brane
- $X_N^1, X_N^2, X_D^3, X_D^3$ 2-brane
- $X_N^1, X_N^2, X_N^3, \dots, X_N^9$ 9-brane

T-fold transition: Glue Dp-brane to Dq-brane Doubled picture: glue universal 9-branes together smoothly,but polarisation jumps