Coupling Topological Theories to the Standard Model

# Costas Bachas (Ecole Normale, Paris)





Département de Physique École Normal Supérieure



Corfu Workshop:

Recent Developments in Strings & Gravity 12-17 September 2016 Scientist Holger Bech Nielsen turns 75



# Happy birthday Holger !



Well-known `problem' of perturbation theory:

Hard to compute reliably processes with 
$$2 
ightarrow n \sim rac{1}{g^2}$$
 particles

.... even at very very weak coupling.

For ex. the tree-level cross-section behaves as

$$\sigma_n \sim g^{2n} n! f_n(E/M) \sim e^{n \log(g^2 n/a)}$$

reflecting the asymptotic behavior of large-order pert. theory.



Borel summability  $\implies \sigma_n$  stays exponentially small Froissard bound  $\implies \sigma_n < (\log E)^2$  much weaker

### <u>Related issue:</u>

since solitons are made out of  $\sim 1/g^2$  quanta, their production in High-E collisions should be exponentially small.

The only (unstable) soliton of the Standard Model is the **sphaleron** whose production leads to (B+L) violation.

<u>Question</u>: is instanton-induced B+L violation unsuppressed at LHC ?

$$\partial_{\mu} j^{\mu}_{B_i} = \partial_{\mu} j^{\mu}_{L_i} = {}^*(F \wedge F)$$

$$\implies \Delta B = \Delta L = 3 \, \Delta n_{\rm CS}$$
 't Hooft '76   
instanton number

There is a characteristic scale in the problem because  $m_W$  puts an IR cutoff on the instanton size:



The C.M. energy at LHC is sufficient, but does tunneling occur?

The question was debated in the early 90's, starting with a semiclassical calculation showing fast initial growth of the rate with collision energy.

Ringwald '89 Espinosa '89



#### **Consensus** : rate stays exponentially small

<u>reviews</u>: Mattis '92; Guida, Konishi, Magnoli '94; Ringwald '02 Bezrukov, Levkov, Rebbi, Rubakov, Tinyakov '03; ...

A nice (analog) <u>exercise</u> for your QM class:

Excite ground state of unharmonic oscillator with very

energetic linear source (one `hard' quantum):



#### Relevant matrix element



CB, Lazaridis, Shaffi, Tiktopoulos '91 CB '92 most probably YES, but:

- Amazing that such a basic SM question has not been unambiguously settled.
amplitudes ?

- Analogy with Black-Hole creation in HE collision ?

launch a bet ?

- New recent challenge to consensus by Tye and Wong

Bloch Wave Function for the Periodic Sphaleron Potential and Unsuppressed Baryon and Lepton Number Violating Processes, arXiv: 1505.03690 [hep-th] ; & arXiv: 1601.00418 [hep-th] Tye + Wong :

- problem can be reduced to an effective QM in periodic potential

- fine tuning the energy can lead to resonant tunneling



$$\mathcal{A} \sim e^{-2S_0} (1 + e^{2i\phi(E)} + e^{4i\phi(E)} + \cdots)$$

In QM: double barrier totally transparent at selected energies

# Diode

Could such a mechanism work in **Quantum Field Theory**?

- Superfluid Helium-3  $A \longrightarrow B$  phase decay time

minutes

| WKB estimate : | $10^{20,000}$ | years |
|----------------|---------------|-------|
|----------------|---------------|-------|

Tye + Wohns '11

laboratory :

- Cosmological bubble formation in multiverse

M. Sasaki et al '12

### New chance for unsuppressed (B+L) violation ?

- scrutinize all possibilities, since theory not sealed
- timely since LHC operates at sphaleron energies !

Partial (negative) answer already from LHC2 :



<u>Rest of talk</u>: few theoretical remarks motivated by proposal of Tye and Wong

- Reduction of dynamics in interaction region to single
   degree of freedom: Chern-Simons number of gauge field.
- QM in periodic potential: band structure & resonant tunneling



### Does Yang-Mills theory have energy bands ?

or

# How to `ungauge' large gauge transformations ?

CB, T. Tomaras 1603.08749

Simple QM with periodic potential:



Bands arise for **periodic** potential in **non-compact** dimension,

$$S = \int dt \mathcal{L} = \int dt \left[\frac{M}{2}\dot{q}^2 - V(q) - \theta \dot{q}\right] \qquad V(q) = V(q+n), \, n \in \mathbb{Z}$$

$$p \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}} = M \dot{q} - \theta , \qquad \mathcal{H}(\theta) \equiv p \dot{q} - \mathcal{L} = \frac{1}{2M} (p + \theta)^2 + V(q)$$

Diagonalize generator of discrete translations organizes spectrum in **continuous bands:** 

$$e^{ip}|k,\lambda\rangle = e^{ik}|k,\lambda\rangle$$
 band index  $\lambda = 0, 1, \cdots$   
$$quasi-momentum \quad k \in [-\pi,\pi]$$

Unitary equivalence:

$$p + \theta = e^{-i\theta q} p e^{i\theta q} \implies \mathcal{H}(\theta) = e^{-i\theta q} \mathcal{H}(0) e^{i\theta q}$$

 $\implies \psi_{k,\lambda}(q,\theta) = e^{-i\theta q} \psi_{k+\theta,\lambda}(q,0) \quad \text{and} \quad E_{k,\lambda}(\theta) = E_{k+\theta,\lambda}(0)$ 

# So theta angle irrelevant, just reshuffles eigenstates by quasi-momentum shift.

The story is different when the discrete symmetry is gauged, i.e. the coordinate q is compact

In this case wavefunctions must be periodic, so we project onto the states  $\psi_{0,\lambda}(q,\theta)$  with energy  $E_{\theta,\lambda}(0)$ 



Simple trick to **ungauge** the symmetry:

$$\Delta S = \int dt \, a(\dot{q} - \xi^{-1}\dot{b})$$

topological 'BF theory'

 $\Delta b = \xi \, \Delta q$ a = constant

This converts the circle into a helix with thread  $\,\xi\,$ 



If  $b\equiv b+1$  and  $\xi=1/N$  the helix has finite length N

### Apply to YM theory ?

Impose an IR cutoff by putting the theory on  $S^3 imes \mathbb{R}$ 

radius  $\sim m_W^{-1} \sim 1$ 

The role of q is played by the <u>Chern-Simons number</u>

$$n_{\rm CS} = -\frac{1}{8\pi^2} \int d^3x \ \epsilon^{ijk} \operatorname{tr}(A_i \partial_j A_k + \frac{2}{3} A_i A_j A_k) := \int_{\mathrm{S}^3} \mathcal{C}(A)$$

$$F_{\mu\nu} = 0 \implies n_{\rm CS} = \text{winding } \# \in \mathbb{Z}$$

Large gauge transformations change  $n_{\rm CS} o n_{\rm CS} + 1$ so the variable  $n_{\rm CS}$  is compact.

Can we `ungauge' large gauge transformations ?

First, derive an action for the QM degree of freedom  $n_{
m CS}(t)$ O(4)-invariant reduction on  $S^3$  of SU(2) YM :



also Gibbons & Steif '93

To compute the action use that  $y = \tau - \tau_0$  is the Belavin et al instanton solution

so the Euclidean action is 
$$\ \ \mathcal{L} = V(y)(\dot{y}^2+1)$$

Canonical KE: 
$$q = \frac{1}{2}(1 + \tanh y)$$

so finally

 $S(q, \dot{q})$  is <u>not</u> an effective action, so its details do not matter. Only two gross features are relevant:

- periodicity in  $~~q \rightarrow q+1$
- potential barrier  $\sim 1/g^2$

Since  $q \rightarrow q + 1$  is a large gauge transformation, q is a compact variable and there are **no bands**. Can we make this symmetry **global** by converting **circle into helix**?

#### **YES:** Couple YM to a **Topological 3-form Theory:**

$$\Delta \mathcal{L}_{\rm YM} = a \left[ d\mathcal{C}(A) - \xi^{-1} dB \right]$$

$$\uparrow$$
axion
3-form

`Notes on gauging noneffective group actions`

Pantev+Sharpe hep-th/0502027

`Modifying the Sum Over Topological Sectors and Constraints on Supergravity`'

Seiberg arXiv:1005.0002

In reduced QM this adds  $\Delta S = \int dt \ a \left[ \dot{n}_{\rm CS} - \xi^{-1} \dot{b} \right]$ so circle was converted to helix  $b := \int_{S^3} B$ Compact b and  $\xi = 1/N \iff$  helix closes after N turns.

We succeeded to `ungauge' the non-connected component of the gauge group, with a local renormalizable Lagrangian !

# Is this a different Standard Model ?

Yes, but dont get (overly) excited ....

The 3-form can couple to external membrane sources

`Wilson-volume' operators:  $\mathcal{W}_q = e^{2\pi i q \int_{S^3} B}$ 



 $\mathcal{W}_m$  are interface operators that change the ~ heta~ angle

4

Different theta sectors `coexist', but are only mixed by non-local operators — usual superselection rule still holds

... unless we make the **membranes dynamical**.

This is the case if the axion acquires dynamics. Indeed the <u>topological theory</u> is an **axion theory in the limit** 

 $f_a \to \infty$  ( $\gg$  all other masses)

### Longish argument

TFT + QFT may look contrived, so let's look at a more realistic theory:

$$\Delta S = \int dt \left[ \frac{f_a^2}{2} \dot{a}^2 - a \, \dot{n}_{\rm CS} \right]$$
Peccei-Quinn
scale

Target space parametrized by torus

$$(a/2\pi, n_{\rm CS}) := (x, y) \equiv (x+1, y) \equiv (x, y+1)$$

and axion coupling is one (or more) units of background magnetic flux

cf Hofstadter's problem

$$A = -2\pi x \, dy \ \sim \ A = 2\pi y \, dx$$
Quantization does not depend on gauge

The new Hamiltonian reads

$$\mathcal{H} = \frac{1}{2f_a^2} \begin{bmatrix} p_a - n_{\rm CS} \end{bmatrix}^2 + \mathcal{H}_0(\theta)$$
axion momentum
pure YM Hamiltonian

Diagonalize  $p_a = n_a \in \mathbb{Z}$  so particle moving in a 1D potential

$$V(q, n_a) = \frac{1}{2f_a^2} [n_a - n_{CS}(q)]^2 + V_0(q)$$

$$f$$
small perturbation for
$$f_a \gg 1$$

If we neglect the perturbation and the compactness of  $q \sim n_{
m CS}$  we find the same spectrum of continuous bands for each  $n_a$ 

Perturbation puts particle in box of size  $\ \sim f_a$  which discretizes the bands.

The perturbation lifts the discrete symmetry  $n_{\rm CS} \rightarrow n_{\rm CS} + 1$ so to **restaure compactness** we must identify

$$(n_{\rm CS}, n_a) \sim (n_{\rm CS} + 1, n_a + 1)$$

Familiar from the study of Landau states on the torus:

$$\mathcal{H} = \frac{1}{2}(p_x - By)^2 + \frac{1}{2}p_y^2$$

commutes with torus translations:

$$U = e^{ip_x}$$
 and  $V = e^{ip_y}e^{-iBx}$   $\leftarrow$  gauge transfo that  
patches  $y \& y+1$   
 $[\mathcal{H}, U] = [\mathcal{H}, V] = [U, V] = 0$   
if B quantized  
So translation of  $y$  coupled with translation of  $p_x$ 

conclude that 
$$(n_{\rm CS}+1,n_a)\sim(n_{\rm CS},n_a-1)$$

so the **axion momentum is the (almost) zero mode** that acts as flag and converts the circle in config. space into a helix.

When  $f_a o \infty$  the potential for  $p_a$  vanishes, and the zero mode is exact ged

### Short argument



# Step back and think



#### Coupling YM to Topological Theory forces coexistence of theta sectors

Can be obtained as decoupling limit of axion theory

Interesting extended operators (observables) - say few words if time in end

#### Can this make any difference in the (B+L) – violation problem ?

Hard to find bands & resonant tunneling at E  $\ll$  Peccei-Quinn scale in the QM problem for  $n_{
m CS}$ 

But if all collision energy could be streamlined into a single QM variable, no need for resonant tunneling for E exceeding  $E_{\rm sph}$ 

So my conclusion here is not optimistic ...

### Hide problems of hierarchy under the rug?

(no new light particles coupling observably to SM)

cf talk of Gia Dvali



= Planck-era cosmology ?

#### ` 87

<u>Precedent</u>: **Brown + Teitelboim's** mechanism for relaxing the cosmo. constant (non-dynamical 3-form, nucleation of membranes) Any SM parameter can be made into decoupling field

$$S_0 + S_{\text{top}} = \lambda_0 \int \mathcal{O} + \int a(\mathcal{O} - \partial_\mu B^\mu) + f^2 B_\mu B^\mu + V(a)$$

so that it may relax to given value by membrane nucleation and choice of V(a). The decoupling limit is a topological theory.

- String theory embedding ? quantization of charge?

- `naturalness' without anthropic arguments ?

# More on Volume Operators



Example of extended operators that play a role in checks of dualities

<u>Close cousins of</u> **Superconformal Interface** operators in

- N=4 d=4 SYM

 $g_{
m YM}$  and (in general)  $N_c$  also jump

DeWolfe, Freedman, Ooguri hep-th/0111135 Erdmenger, Guralnik, Kirsch hep-th/0203020 .... Gaiotto+Witten arXiv:0804.2902, 2907; 0807.3720

Lunin; ; D'Hoker, Estes, Gutperle `07

Dual exact Supergravity Solutions (NS5-D5-D3)

(relevant for gravity non-localization)

... ; Assel, CB, Estes, Gomis '11, '12



Berman; Niarchos; ...?

(First ?) solns with localized branes in compact space



#### Questions of interest





Nice formula: When two theories differ only in complex structure or only in Kähler structure, one finds

$$-2\log g = K(\lambda_1, \bar{\lambda}_1) + K(\lambda_2, \bar{\lambda}_2) - K(\lambda_1, \bar{\lambda}_2) - K(\lambda_2, \bar{\lambda}_1)$$

CB, Brunner, Douglas, Rastelli arXiv: 1311.2202

Holographic proof: D'Hoker, Gutperle arXiv:1406.5124

Quantity known in complex geometry as Calabi's Diastasis

$$\mathcal{D}(\lambda_1, \bar{\lambda}_1, \lambda_2, \bar{\lambda}_2) = K(\lambda_1, \bar{\lambda}_1) + K(\lambda_2, \bar{\lambda}_2) - K(\lambda_1, \bar{\lambda}_2) - K(\lambda_2, \bar{\lambda}_1)$$

E. Calabi, "Isometric Imbedding of Complex Manifolds," Ann. Math. 58, 1 (1953).

(Had to show that analytic extension makes sense)



# Thanks for your attention