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Solving the geodesic equation: informati
(Black hole or naked singularity)

- The gravitational collapse of a sufficiently massive
star give rise to a gravitational singularity

- Is the singularity always covered by an event
horizon?

« Can naked singularities arise from gravitational
collapse?

Cosmic Censorshi 1) e C( PENrose 969)
The generic singularities arising in the gravitational
collapse are always covered by an event horizon.
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- The gravitational collapse of a sufficiently massive |
star give rise to a gravitational singularity

- Is the singularity always covered by an event
horizon?

- Can naked singularities arise from gravitational
collapse?

The generic singularities arising in the gravitational
collapse are always covered by an event horizon.



Classical Gravitational Collapse: When X < _161G
0

Vaidya space-time In the classical KP model, a far away observer
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Naked Singularity—' I
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- What is the mathematical condition to have a naked singularity .
- What is its strength?
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Solving the geodesic equation: information on the astrophysical object | 4
(black hole or naked singularity) :




The space-time singularities are the FIXED POINTS (FP) of the geodesic equation: FES «

dv«(t)

dt ' Eigenvalues of the stability matrix J (Jacobian)

L en T T TS,
d'r,_,, (f) = ¢ AT/ - \ = . Xt =3 ‘ Ir.J & /(TrJ)? — J.:lu:'x,)'“}

dt
"Unstable Spiral" ---
The idea is to study the linearized (‘:If f’_f'fk I":ff/ :
| 1r.J )" — ddet) < U
system around the fixed points
(SingUIaritiES). “Unstable Node" ---

--> Naked Singularity




Eigenvalues of the stability matrix J (Jacobian)

1
Xt =5 (TrJ +/(TrJ)? — 4det,J)

"Unstable Spiral” ---
---> Black Hole

(TrJ)? — 4detJ < 0

"Unstable Node" ---
--> Naked Singularity

(TrJ)? —4detJ >0 detJ >0
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Center Stable node (sink) Stable spiral
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Saddle point Unstable node (sowrce) Unstable spiral
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A singularity is said to be strong if an object falling into the singularity is destroyed by
M the gravitational tidal forces. Otherwise it is called weak or integrable (the space-time
is extendable).

Mathematical characterization:

lim
(r,v)—FP

o(r) f |

Mkenyeleye, Goswami, Maharaj. Phys. Rev. D 90, 064034 (2014) .
Strokov, Lukash, Mikheeva. Int. . Mod. Phys. A 31, 1641018 (2016)

In all the classical models, the gravitational collapse can always
give rise to strong naked singularities.




g Asymptotic Safety Theory

of Quantum Gravity
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- Standard Model is an extremely well tested (renormalizable) theory,
based on Quantum Field Theory;
- General Relativity describes the classical gravitational field

8 Problems in General Relativity:

S Singularity problem;

8 . Horizon and flatness problems;
- Small and positive cosmological constant;
A .

- Einstein Gravity is a perturbatively non-renormalizable theory
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Wilsonian Functional Renormalization Group (FRG)
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" The fundamental theory of gravity Ir=A =

is identified by the UV fixed points \
1 of the beta functions

UV fixed point

Lp=o =1
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The EH truncation is characterized by the following fixed points:
- Gaussian fixed point g=0 and A=0 (free theory, saddle point);

- Non-Gaussian fixed point g>0 and A>0 (UV attractive);
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(Wilsonian) point of view, Einstein gravity is
a perfectly renormalizable theory, and the
NGFP is the UV completion for gravit
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By using the Exact Renormalization Group Equation (ERG)

i g T(] i »
Gk)=——— Running Newton's constant

+(Go/gs) K2

M. Reuter, Phys. Rev. D 57, 971 (1998)
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The effect of a running Newton's Gt e : 3
| . e B The critical value Ac -
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On the nature of the singularity ™= e
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~ : : s - Eigenvalues of the stability matrix
Classical Kuroda-Papapetrou model:

1 —
e =5 (Tr.] +/(TrJ)? —4 deu)

1
TtJ=1 detJ=4AGy = &=~ (1 £ AT = 16)\6‘0) )
< | - Strength of the singularity
The origin (0,0) is a naked singularity if \ < -, and S >0
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Improved Kuroda-Papapetrou model:
2 vy G
(L\/X
Strength: S o« G(0) =0 Integrable!

TrJ =1-— detJ o< G(r)],—0 =0 Fixed Points line

There is no dependence on the critical value A,




' Region far from the singularity (r=0)

r>> ava k(r)]* < M, classical region g

lWe found that the NL effects (near classical region) restore the
dependence on the critical value of A.




- We studied the RG-improved Kuroda-
Papapetrou model

- We found that the only effect of a running
Newton constant is to turn a strong naked
singularity into a line of integrable
singularities

- The space-time is then extandable beyond
the singularityr=0

- The presence of the limiting value Acis a

purely classical effect: the formation of

naked singularities in the KP model is due

to the gravitational collapse dynamics in

the classical region.




