

Alessia Platania

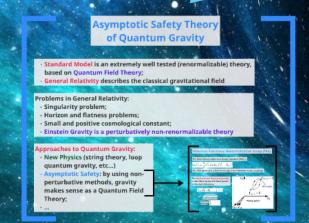
In collaboration with A. Bonanno and B. Koch

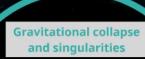
University of Catania - Department of Physics and Astronomy

INFN - Catania Section

INAF - Catania Section

Radboud University (HEP Department) - Nijmegen

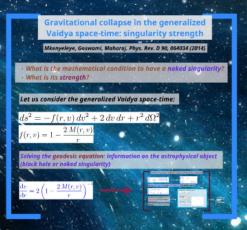


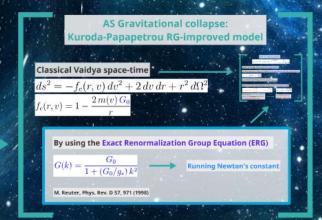


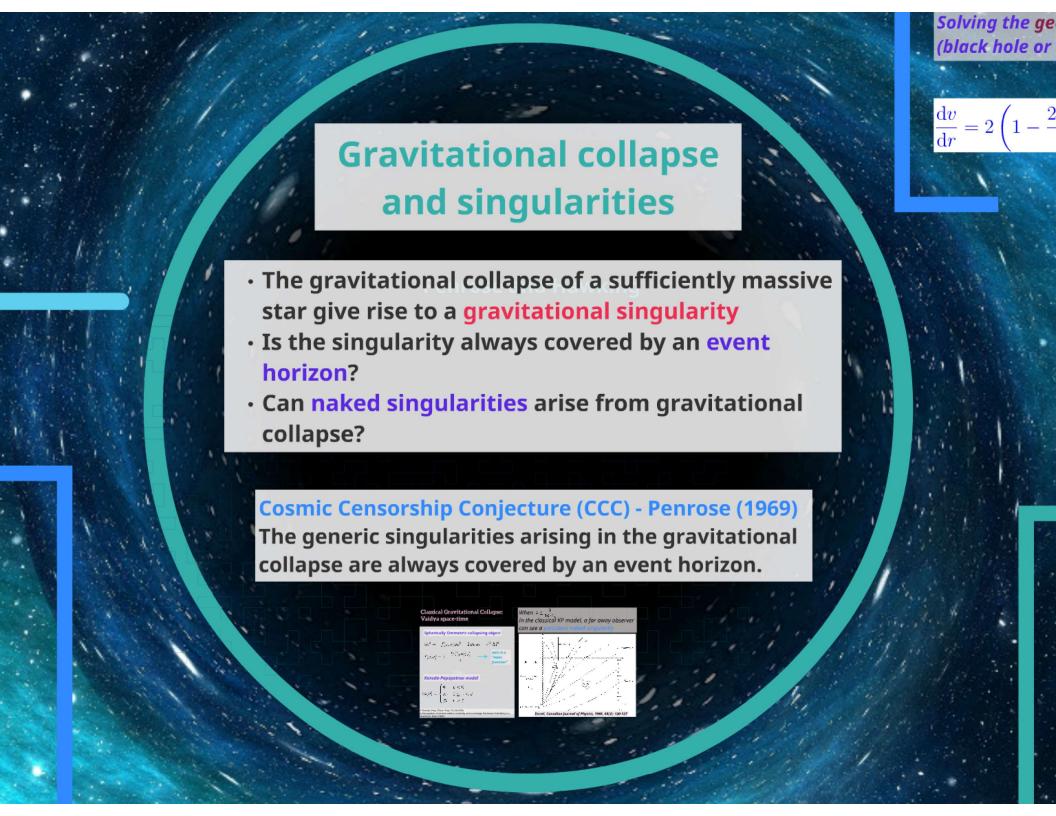
- The gravitational collapse of a sufficiently massive star give rise to a gravitational singularity
 Is the singularity always covered by an event
- horizon?
 Can naked singularities arise from gravitational
- collapse?

Cosmic Censorship Conjecture (CCC) - Penrose (1969) The generic singularities arising in the gravitational collapse are always covered by an event horizon.









Classical Gravitational Collapse: Vaidya space-time

Spherically Simmetric collapsing object

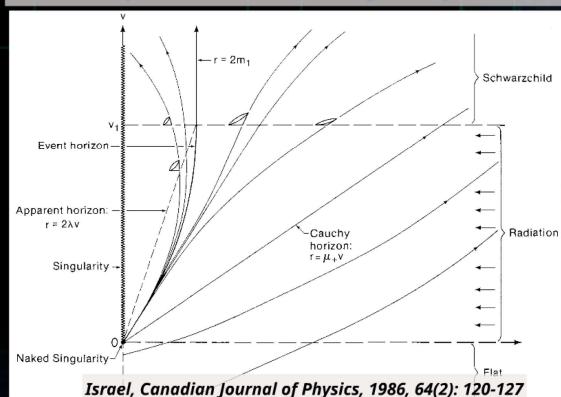
$$ds^{2} = -f(r, v) dv^{2} + 2 dv dr + r^{2} d\Omega^{2}$$

Kuroda-Papapetrou model

$$m(v) = \begin{cases} 0 & v < 0 \\ \lambda v & 0 \le v < \bar{v} \\ \bar{m} & v \ge \bar{v} \end{cases}$$

Y. Kuroda, Prog. Theor. Phys. 72, 63 (1974)

A. Papapetrou, A random walk in relativity and cosmology. Hindustan Publishing Co., New Delhi, India (1985) When $\lambda \leq \frac{1}{16\,G_0}$ In the classical KP model, a far away observer can see a persistent naked singularity



Gravitational collapse in the generalized Vaidya space-time: singularity strength

Mkenyeleye, Goswami, Maharaj. Phys. Rev. D 90, 064034 (2014)

- What is the mathematical condition to have a naked singularity?
- What is its strength?

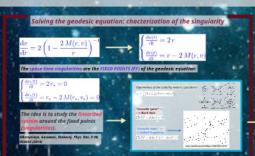
Let us consider the generalized Vaidya space-time:

$$ds^{2} = -f(r, v) dv^{2} + 2 dv dr + r^{2} d\Omega^{2}$$

$$f(r,v) = 1 - \frac{2M(r,v)}{r}$$

Solving the geodesic equation: information on the astrophysical object (black hole or naked singularity)

$$\frac{\mathrm{d}v}{\mathrm{d}r} = 2\left(1 - \frac{2M(r,v)}{r}\right)^{-1}$$



Solving the geodesic equation: chacterization of the singularity

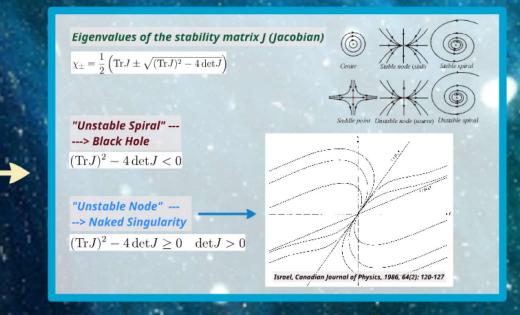
$$\frac{\mathrm{d}v}{\mathrm{d}r} = 2\left(1 - \frac{2M(r,v)}{r}\right)^{-1} \longrightarrow \begin{cases} \frac{\mathrm{d}v(t)}{\mathrm{d}t} = 2r\\ \frac{\mathrm{d}r(t)}{\mathrm{d}t} = r - 2M(r,v) \end{cases}$$

The space-time singularities are the FIXED POINTS (FP) of the geodesic equation:

$$\begin{cases} \frac{\mathrm{d}v_*(t)}{\mathrm{d}t} = 2 \, r_* = 0 \\ \frac{\mathrm{d}r_*(t)}{\mathrm{d}t} = r_* - 2 \, M(r_*, v_*) = 0 \end{cases}$$

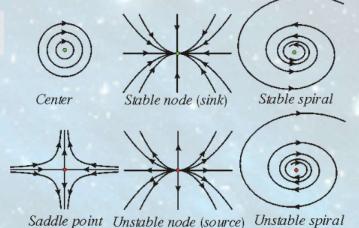
The idea is to study the linearized system around the fixed points (singularities).

Mkenyeleye, Goswami, Maharaj. Phys. Rev. D 90, 064034 (2014)



Eigenvalues of the stability matrix J (Jacobian)

$$\chi_{\pm} = \frac{1}{2} \left(\text{Tr} J \pm \sqrt{(\text{Tr} J)^2 - 4 \det J} \right)$$

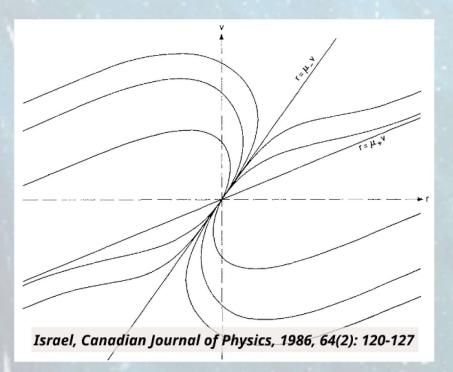


"Unstable Spiral" -----> Black Hole

$$(\mathrm{Tr}J)^2 - 4\det J < 0$$

"Unstable Node" ----> Naked Singularity

$$(\operatorname{Tr} J)^2 - 4 \det J \ge 0 \quad \det J > 0$$



Singularity strength

A singularity is said to be strong if an object falling into the singularity is destroyed by the gravitational tidal forces. Otherwise it is called weak or integrable (the space-time is extendable).

Mathematical characterization: singularity strength parameter

$$S = \frac{\dot{M}_{FP} X_{FP}^2}{2} \qquad X_{FP} \equiv \lim_{(r,v)\to FP} \frac{v(r)}{r}$$

S>0 ----> Strong Singularity
Otherwise ----> Integrable Singularity

Mkenyeleye, Goswami, Maharaj. Phys. Rev. D 90, 064034 (2014) Strokov, Lukash, Mikheeva. Int. J. Mod. Phys. A 31, 1641018 (2016)

In all the classical models, the gravitational collapse can always give rise to strong naked singularities.

Asymptotic Safety Theory of Quantum Gravity

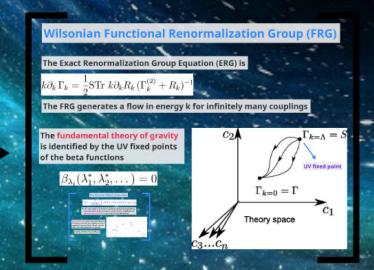
- Standard Model is an extremely well tested (renormalizable) theory, based on Quantum Field Theory;
- General Relativity describes the classical gravitational field

Problems in General Relativity:

- · Singularity problem;
- Horizon and flatness problems;
- · Small and positive cosmological constant;
- Einstein Gravity is a perturbatively non-renormalizable theory

Approaches to Quantum Gravity:

- New Physics (string theory, loop quantum gravity, etc...)
- Asymptotic Safety: by using nonperturbative methods, gravity makes sense as a Quantum Field Theory;



Wilsonian Functional Renormalization Group (FRG)

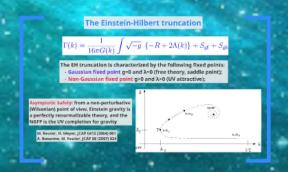
The Exact Renormalization Group Equation (ERG) is

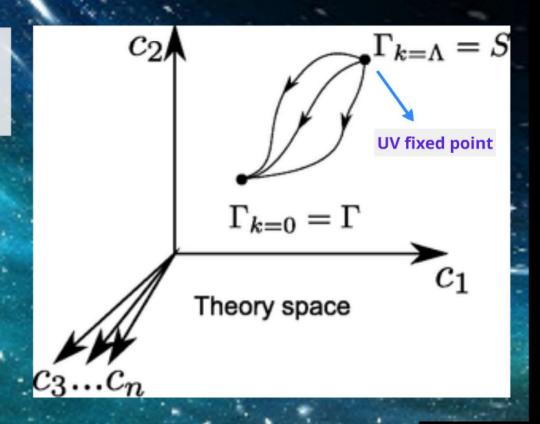
$$k\partial_k \Gamma_k = \frac{1}{2} \text{STr } k\partial_k R_k (\Gamma_k^{(2)} + R_k)^{-1}$$

The FRG generates a flow in energy k for infinitely many couplings

The fundamental theory of gravity is identified by the UV fixed points of the beta functions

$$\beta_{\lambda_i}(\lambda_1^*, \lambda_2^*, \dots) = 0$$





The Einstein-Hilbert truncation

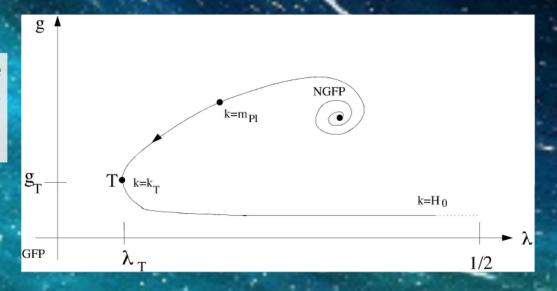
$$\Gamma(k) = \frac{1}{16\pi G(k)} \int \sqrt{-g} \left\{ -R + 2\Lambda(k) \right\} + S_{\rm gf} + S_{\rm gh}$$

The EH truncation is characterized by the following fixed points:

- Gaussian fixed point g=0 and λ =0 (free theory, saddle point);
- Non-Gaussian fixed point g>0 and $\lambda>0$ (UV attractive);

Asymptotic Safety: from a non-perturbative (Wilsonian) point of view, Einstein gravity is a perfectly renormalizable theory, and the NGFP is the UV completion for gravity

M. Reuter, H. Weyer, JCAP 0412 (2004) 001 A. Bonanno, M. Reuter, JCAP 08 (2007) 024



AS Gravitational collapse: Kuroda-Papapetrou RG-improved model

Classical Vaidya space-time

$$ds^{2} = -f_{c}(r, v) dv^{2} + 2 dv dr + r^{2} d\Omega^{2}$$

$$f_c(r, v) = 1 - \frac{2 m(v) G_0}{r}$$

By using the Exact Renormalization Group Equation (ERG)

$$G(k) = \frac{G_0}{1 + (G_0/g_*) k^2}$$

Running Newton's constant

M. Reuter, Phys. Rev. D 57, 971 (1998)

Metric improvement

$$f_{\rm c}(r,v) \longrightarrow f_{\rm q}(r,v) = 1 - \frac{2 m(v)}{r} \frac{G_0}{1 + \omega G_0 [k(r)]^2}$$

What is, in this case, the correct cutoff identification?

The best choice is to relate k(r) with the energy density of a null free falling observer

$$k(r) \equiv \xi \sqrt[4]{\rho(r,v)} = \xi \sqrt[4]{\frac{\dot{m}(v)}{4\pi r^2}}$$

Babic, Guberina, Horvat, Stefancic. Phys.Rev. D71 (2005) 124041 Bonanno, Esposito, Rubano, Scudellaro. Class. Quant. Grav. 23 (2006) 3103

By using this cutoff identification, and assuming $m(v)=\lambda v$ (KP model)

$$f_{\rm q}(r,v) = 1 - \frac{2\lambda G_0 v}{r + \alpha \sqrt{\lambda}}$$

$$\alpha = \frac{\xi^2 G_0}{\sqrt{4\pi} g_*}$$

$$f_{\rm c}(r,v) = 1 - \frac{2\lambda G_0 v}{r}$$

The effect of a running Newton's constant is to produce a shift in the radial coordinate r(v)

The critical value λc is greater than 1/16G

On the nature of the singularity

Classical Kuroda-Papapetrou model:

$$\operatorname{Tr} J = 1 \quad \det J = 4 \lambda G_0 \quad \Rightarrow \quad \chi_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1 - 16 \lambda G_0} \right)$$

The origin (0,0) is a **naked singularity** if $\lambda \leq \frac{1}{16 G_0}$, and S > 0

Improved Kuroda-Papapetrou model:

$$\operatorname{Tr} J = 1 - \frac{2\lambda v_0 G_0}{\alpha \sqrt{\lambda}} \quad \det J \propto G(r)]_{r \to 0} = 0$$
 Fixed Points line

Strength: $S \propto G(0) = 0$ Integrable!

There is no dependence on the critical value λ_c

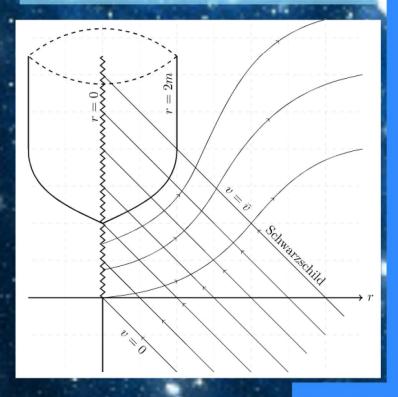
Reminder

· Eigenvalues of the stability matrix

$$\chi_{\pm} = \frac{1}{2} \left(\text{Tr} J \pm \sqrt{(\text{Tr} J)^2 - 4 \det J} \right)$$

Strength of the singularity

$$S = \frac{\dot{M}_{FP} X_{FP}^2}{2}$$
 $X_{FP} \equiv \lim_{(r,v)\to FP} \frac{v(r)}{r}$



Non-linearity effects

Look again at the full improved geodesic equation, written as:

$$\begin{cases} \frac{\mathrm{d}v(t)}{\mathrm{d}t} = 2 r(t) \\ \frac{\mathrm{d}r(t)}{\mathrm{d}t} = r(t) - 2 \lambda G_0 v(t) \frac{r(t)}{r(t) + \alpha \sqrt{\lambda}} \end{cases}$$

$$\alpha = \frac{\xi^2 G_0}{\sqrt{4\pi} g_*} \propto M_{\rm pl}^{-2}$$

Region far from the singularity (r=0)

$$r\gg \alpha\sqrt{\lambda}$$
 \Leftrightarrow $[k(r)]^2\ll M_{
m pl}^2$ classical region

We found that the NL effects (near classical region) restore the dependence on the critical value of λ .

Conclusions

- We studied the RG-improved Kuroda-Papapetrou model
- We found that the only effect of a running Newton constant is to turn a strong naked singularity into a line of integrable singularities
- The space-time is then extandable beyond the singularity r = 0
- The presence of the limiting value λc is a purely classical effect: the formation of naked singularities in the KP model is due to the gravitational collapse dynamics in the classical region.