FCC Future Circular Colliders

Albert De Roeck CERN 3 September 2016

Corfu Summer Institute

16th Hellenic School and Warkshops on Elementary Earlicle Physics and Gravit Corfu. Greece 201

Future HEP: The Three Frontiers

After the Higgs discovery

2012-2014

Evaluation in all regions: Europe Asia, the Americas

European strategy groupSnowmass study and IP5Japan strategy group

CERN

Will concentrate here on the Energy Frontier

Europe Strategy Group

European Strategy for Particle Physics

- Update formally adopted by CERN council at the European Commission in Brussels on 30 May 2013
- The discovery of the Higgs boson is the start of a major programme of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this programme.
- Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030. This upgrade programme will also provide further exciting opportunities for the study of flavour physics and the quark-gluon plasma.

European Strategy

Europe Strategy Group

...."to propose an ambitious **post-LHC accelerator project at CERN** by the time of the next Strategy update":

- d) CERN should undertake design studies for accelerator projects in a global context,
 - with emphasis on proton-proton and electron-positron high-energy frontier machines.
 - These design studies should be coupled to a vigorous accelerator **R&D** programme, including high-field magnets and high-gradient accelerating structures,
 - in collaboration with national institutes, laboratories and universities worldwide.
 - http://cds.cern.ch/record/1567258/files/esc-e-106.pdf

Similar recommendation from the Snowmass studies in the US

=> The CERN Roadmap

F. Bodry , March 2015

The CERN Medium Term Plan approved by June'14 Council, implements the European Strategy including a long-term outlook.

The scientific programme is concentrated around four priorities:

- 1.Full LHC exploitation the highest priority including the construction of the High Luminosity Upgrade until 2025
- 2.High Energy Frontier CERN's role and preparation for the next large scale facility
- 3.Neutrino Platform allow for to contribute to a future long baseline facility in the US and for detector R&D for neutrino experiments
- 4.Fixed-target programme maintain the diversity of the field and honour ongoing obligations by exploiting the unique facilities at CERN

LHC experiments are back in business at a new record energy 13 TeV 3rd June 2015 Total Integrated Luminosity [fb⁻¹] 5⊢ 3⊢ 30

The LHC Upgrade

The LHC Approved LHC Roadmap

Approved program at CERN to collect 3000 fb⁻¹ with the LHC (HL-LHC) Maximize the reach for searches and for precision measurements (eg Higgs)

High-Energy LHC

Beyond the LHC

•Proton-proton machines at higher energy...

- •Electron-positron machines for high precision...
- •Both? And allowing for electron-proton collisions..?

New projects will take 10-20 years before they turn into operation, hence need a vision & studies now!

Future Colliders?

Hadron colliders main themes:

The study of the Higgs Boson(s)

The search for massive new physics

Precision measurements

FCC-hh: THE machine for direct search at the higher energy scale.

High Energy Hadron Hadron Colliders

Thanks to M. Benedikt, M. Mangano, W. Riegler Y. Wang, F.Zimmerman,

FCC General Yearly Meeting April 2016

Science

China unveils plans for super-giant particle collider – the biggest and most powerful on Earth

By Hannah Osborne October 29, 2015 10:06 GMT

China / Innovation

Hot Issues Government Society Innovation Education Co Photos

China plans world's most powerful particle collider

By Cheng Yingqi (China Daily)

Updated: 2015-10-29 07:49

Comments BPrint @Mail QB Large Medium Small

The first phase of the project's construction is scheduled to begin between 2020 and 2025

Media is media Chinese media is also media Don't get too excited, nor panic CEPC will not be easy and quick R&D will come gradually

Y. Wang

China is set to build the biggest and most powerful particle collider on Earth, dwarfing the Large Hadron Collider at Cern. The super-giant particle collider will measure between 50 and 100km in circumference – double or quadruple that of the

The CEPC/SppC Design (China)

Parameter choice for SPPC (Potential) (F. Su et al)

Table 4. Parameter lists for LHC HL-LHC HE-LHC FCC-hh and SPPC.

	LHC	HL- LHC	HE- LHC	FCC-hh	SPPC- Pre- CDR	SPPC- 54.7Km	SPPC- 100Km	SPPC- 100Km	SPPC- 78Km	
	Value									Unit
Main parameters and geome	trical asp	oects								
Beam energy $[E_0]$	7	7	16.5	50	35.6	35.0	50.0	68.0	50.0	TeV
$Circumference[C_0]$	26.7	26.7	26.7	100(83)	54.7	54.7	100	100	78	km
Lorentz gamma[γ]	7463	7463	14392	53305	37942	37313	53305	72495	53305	
Dipole field[B]	8.33	8.33	20	16(20)	20	19.69	14.73	20.03	19.49	Т
Dipole curvature radius[ρ]	2801	2801	2250	10416 (8333.3)	5928	5922.6	11315.9	11315.9	8549.8	m
Bunch filling factor $[f_2]$	0.78	0.78	0.63	0.79	0.8	0.8	0.8	0.8	0.8	1
Arc filling factor $[f_1]$	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	
Total dipole magnet length $[L_{Dipole}]$	17599	17599	14062	65412 (52333)	37246	37213	71100	71100	53720	m
Arc length $[L_{ARC}]$	22476	22476	22476	83200 (66200)	47146	47105	90000	90000	68000	m
Total straight section $length[L_{ss}]$	4224	4224	4224	16800	7554	7595	10000	10000	10000	m
Energy gain factor in collider rings	15.6	15.6	13.5	15.2	17.0	16.67	17.5	17.5	17.5	
Injection energy [E _{inj}]	0.45	0.45	>1.0	3.3	2.1	2.1	2.9	3.9	2.9	Te
Number of IPs[N _{IP}]	4	2	2	2	2	2	2	2	2	

Pre-CDR numbers

Physics and Detectors for Hadron Hadron Colliders

Searches for New Physics

Searches for pair produced SUSY particles

FCC-hh

-Reach sparticle masses search up to about 20 TeV for gluinos and 10 TeV for stops for 30 ab⁻¹ -Excited quarks probe the structure of quarks down to 4x10⁻²¹ m -Discovery of resonances up to masses of about 40-50 TeV - Break through the neutrinowall in dark matter searches

A very huge discovery potential

Plenty of Higgs Bosons at the FCC-hh

 \mathcal{P}

Di-Higgs Production: Prospects

H b	′Н → Бүү	Barr,Dolan,Englert,Lima, Spannowsky JHEP 1502 (2015) 016	Contino, Azatov, Panico, Son arXiv:1502.00539	He, Ren Yao arXiv:1506.03302
F(3/	CC _{@100TeV} /ab	30~40%	30%	15%
F(30	CC _{@100TeV})/ab	10%	10%	5%
	S/\sqrt{B}	8.4	15.2	16.5
D	etails	$\begin{array}{l}\checkmark \lambda_{HHH} \text{ modification only} \\ \checkmark c \rightarrow b \ \& \ j \rightarrow \gamma \text{ included} \\ \checkmark \text{Background systematics} \\ \circ b \overline{b} \gamma \gamma \text{ not matched} \\ \checkmark m_{\gamma\gamma} = 125 \pm 1 \text{ GeV} \end{array}$	✓ Full EFT approach ○ No $c \rightarrow b \& j \rightarrow \gamma$ ✓ Marginalized ✓ $b\bar{b}\gamma\gamma$ matched ✓ $m_{\gamma\gamma} = 125 \pm 5 \text{ GeV}$ ✓ Jet /Whad veto	 ↓ λ_{HHH} modification only ↓ c → b & j → γ included ○ No marginalization ↓ b b γ γ matched ↓ m_{γγ} = 125 ± 3 GeV

Work in progress to compare studies, harmonize performance assumptions, optimize, etc ⇒ ideal benchmarking framework

Dark Matter Studies at the FCC-hh

Dark Matter Searches within SUSY Scenarios

100 TeV pp collider will probe TeV WIMP very well.

FCC-hh: More Topics Under Study

- Precision measurements in EWK, top, Higgs, QCD...
- EWK radiation of W's and opportunities
- New high mass scalar resonance sensitivity
- Production of exotic coloured states
- Flavor physics opportunities
- Quadruple Higgs production and quartic couplings
- EW interactions at multi-TeV (eg WW scattering)
- Coloured and neutral naturalness
- Composite Higgs, twin-Higgs... models
- Heavy Leptons and Leptoquarks
- Heavy Ion program

Lots of opportunities for studies

Future e+e- Colliders

Thanks to E. Perez, F.Zimmerman

Precision Measurements @ FCC

Precision Measurements Top Sector

Indirect Searches for New Physics

Direct Searches for New Physics

- Clean e+e- environment : explore the holes that LHC will leave (e.g. difficult decay modes leading to soft final states, etc)
 - well motivated models : e.g. in SUSY, compressed spectra often needed to avoid a too large relic density of DM
- Large statistics allows to search for NP in rare decay modes
 - e.g. Z \rightarrow Dark Matter via e+ e- \rightarrow γ + Emiss, Higgs \rightarrow inv, LFV decays
 - Tera-Z : light right-handed neutrinos in Z $\rightarrow vN$

 If √s large enough for new particles to be produced: very precise measurements of their mass, spin and couplings (threshold scans and/or endpoints)
 e.g. sleptons of O(1 TeV)

```
In general : precision on masses 0.1 - 1\%.
```

Long. polarisation can be very useful to pin down the chiral properties of the new particles.

Future electron-hadron Colliders

FCC-eh: The Electron-Hadron Option

Future possible hadron-lepton colliders will be excellent QCD explorers
 High luminosity (10³⁴-10³⁵) and/or energy lepton-hadron colliders
 >Dedicated facilities studies include the LHeC (Europe) and EIC (US) projects and now FCC-he

Part 3 Alter LHeC area SPS Altas CNSS Point 6 Point 6 Point 7

ep: 60 GeV x 7 TeV

ep: 60-175 GeV x 50 TeV

Using an Energy Recovery Linac

Super Conducting Recirculating Linac with Energy Recovery

Choose $\frac{1}{3}$ of LHC circumference \rightarrow

tune-up dump 10-GeV linac 0.12 km 0.12 km 0.1	mp. RF injector	20, 40, 60 GeV	Fwo 1 km long, 10 GeV SC LINACs with Accelerating and
10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS	decelerating passes in
Beam Energy [GeV]	7000	60	We an arration
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16	w operation
Normalized emittance $\gamma \epsilon_{x,y}$ [µm]	2.5	20	SRF sees 6*current
Beta Funtion $\beta^*_{x,y}$ [m]	0.05	0.10	at the IP (\approx 4ns spacing)
rms Beam size $\sigma^*_{x,y}$ [μ m]	4	4	\rightarrow O ₀ = 10 ¹⁰ requires
rms Beam divergence σ□* _{x,y} [µrad]	80	40	cryogenic system
Beam Current @ IP[mA]	1112	25	comparable to L HC
Bunch Spacing [ns]	25	25	$\frac{1010}{100}$
Bunch Population	2.2*10 ¹¹	4*10 ⁹	system: $Q_0 > 10^{10}$
Bunch charge [nC]	35	0.64	
			55

FCC-eh

Always a useful complement to a hadron collider eg via measurement parton distribution functions

Access to specific Higgs couplingsReach for new physics eg Leptoquarks, Cls...

FCC-hh + Energy Recovery Linac for the electrons

Higgs at the LHeC and FCC-eh

- FCC-ep can deliver PDFs for FCC-pp (Higgs) program
- Higgs studies in relatively clean environment
- → Higgs precision κ_b measurement, < 1%
- ➡ Investigation potential of κ_c measurement using charm tagging

Higgs in e^-p	CC - LHeC	NC - LHeC	CC - FHeC
Polarisation	-0.8	-0.8	-0.8
Luminosity [ab ⁻¹]	1	1	5
Cross Section [fb]	196	25	850
Decay BrFraction	N ^H _{CC}	N _{NC}	N ^H _{CC}
$H \rightarrow b\overline{b}$ 0.577	113 100	13 900	2 450 000
$H \rightarrow c\overline{c}$ 0.029	5 700	700	123 000
$H \rightarrow \tau^+ \tau^- = 0.063$	12 350	1 600	270 000
$H \rightarrow \mu\mu$ 0.00022	50	5	1 000
$H \rightarrow 4l$ 0.00013	30	3	550
$H \rightarrow 2l2\nu$ 0.0106	2 080	250	45 000
$H \rightarrow gg = 0.086$	16 850	2 050	365 000
$H \rightarrow WW = 0.215$	42 100	5 150	915 000
$H \rightarrow ZZ = 0.0264$	5 200	600	110 000
$H \rightarrow \gamma \gamma = 0.00228$	450	60	10 000
$H \rightarrow Z\gamma = 0.00154$	300	40	6 500

IC low Q' bbi

180

M_{sh} [GeV]

200

160

A Muon Collider?

A Muon Collider?

- First ideas and studies back in the '80, also CERN involved
- Solid and longstanding US effort (FNAL), a lot of simulation and experimental work (MICE, MuCool, etc.)
 - Recently revived by Rubbia's proposal
- Discussion at CERN last fall:
 - <u>Workshop</u> and summary <u>document</u> edited by Bertolucci

A Muon Collider?

(Once you manage to get two muon beams)

- Mild sych. rad., allows high energy & compact collider layout
- Λ Very limited beam-strahlung, allows 1/γ scaling of luminosity and optimal luminosity spectrum
- Short lifetime, everything needs to be fast
- Deal with muon decay products, need shielding for experiments and countermeasures for environmental contamination

Muon Collider: Traditional Design

- Muons as tertiary from high intensity proton beam on target
 - Issue with target to sustain required intensity
- Large momentum transverse to the beam direction => huge emittance => need cooling
 - Major issue to be solved

Muon Collider: the new idea

Don't use a proton beam but create muon pair "at rest" in e+e-

- Asymmetric $e^+e^- \rightarrow \mu^+\mu^-$ with \sqrt{s} at threshold
- Muons at rest in CoM frame, boosted by large (p_{e+}- p_{e-}) => automatically getting low emittance

e+e- Driven Muon Collider

Pros:

- Low emittance: can be very small close to the μ + μ threshold (2xm_{μ}~0.21 GeV)
- Low background: smaller number of muons → reduced background/radiation from decay products
- More time to accelerate: large boost from asymmetric e⁺e⁻ collisions
- Energy spread: muon energy spread also small at threshold gets (further reduced with shorter bunches)

Cons:

- Rate: much smaller cross section wrt protons: σ(e⁺e→μ⁺μ⁻) ~ 1 μb at most:
 - Need L=10⁴⁰ cm⁻² s⁻¹ for 10¹⁰ Hz μ rate..

Use a fixed target with an 45 GeV e+ beam (from FCC-ee?)

Layout for the Muon Source

Initial ideas: much work needed to work to a full design

To follow FCC-hh physics activities

- Register with the FCC-hh mailing list for announcements:
 - <u>http://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=fcc-experiments-hadron</u>
- Check agendas and contents of previous events at the following indico categories:
 - Informal meetings of all physics subgroups (SM, Higgs, BSM):
 - https://indico.cern.ch/category/6067/
 - <u>Workshops</u>
 - https://indico.cern.ch/category/6071/
 - <u>Physics with injectors:</u>
 - https://indico.cern.ch/category/6070/
 - <u>Heavy ion physics:</u>
 - https://indico.cern.ch/category/6068/
 - Detector subgroup:
 - https://indico.cern.ch/category/6069/
 - <u>Detector magnets subgroup:</u>
 - https://indico.cern.ch/category/6244/
 - Software group (common with FCC-ee and FCC-eh):
 - https://indico.cern.ch/category/5666/