Universal Gauge Theory in Two Dimensions

Athanasios Chatzistavrakidis

Based on:

 1608.03250
 with A. Deser - L. Jonke - T. Strobl

 1607.00342 (JHEP) with A. Deser - L. Jonke - T. Strobl
 ← mainly this one

 1604.03739 (PoS)
 1509.01829 (JHEP) with A. Deser - L. Jonke

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Corfu 2016

General Motivations

- When does a theory have a local symmetry?
 - cf. Weinstein's math/9602220 for the math viewpoint
- Strings in quotient spaces beyond group actions
 cf. G/H WZW models (Gawedzki, Kupiainen)
- Target space dualities without global symmetry cf. Poisson-Lie (Klimcik, Severa; Sfetsos), but w/o group action; Hull '06
- "Non-geometric" string backgrounds from a worldsheet/worldvolume perspective Hull '04; Halmagyi '09; Mylonas, Schupp, Szabo '12; 1311.4878 and 1505.05457 with L. Jonke and O. Lechtenfeld; ...

In this talk

Focus on 2D bosonic σ-models (LO, no dilaton)

Determine the conditions for existence of some gauge extension

- In other words, couple gauge fields A to the theory, valued in some "gauge" bundle
- For appropriate gauge transformations, determine the rhs of the Lie derivatives

$$\mathcal{L}_{\rho}g = \dots$$
 and $\mathcal{L}_{\rho}B = \dots$ or $\mathcal{L}_{\rho}H = \dots$

<ロト < 同ト < 目ト < 目 > 、 目 、 の へ つ >

such that the theory is gauge invariant.

Prospectus of results

- The rhs of the invariance conditions need not be zero
- ${\scriptstyle \bullet}\,$ The gauging is controlled by two (curved, in general) connections ∇^{\pm}
- There exists a universal gauge theory with target $TM \oplus T^*M$
- In the "maximal" case it generalizes G/G WZW and WZ Poisson σ -models

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\ensuremath{\, \bullet \, } \nabla^{\pm}$ are determined in closed form for the "maximal" case

Good old standard gauging of group actions - Global symmetry

Usual procedure: rigid symmetry \longrightarrow (minimal coupling) \longrightarrow local symmetry Strings propagating in a target spacetime $M \rightsquigarrow \sigma$ -model of maps $X = (X^i) : \Sigma \rightarrow M$

$$S_0[X] = \int_{\Sigma} rac{1}{2} g_{ij}(X) \mathrm{d} X^i \wedge * \mathrm{d} X^j + \int_{\Sigma} rac{1}{2} B_{ij}(X) \mathrm{d} X^i \wedge \mathrm{d} X^j \; .$$

Consider Lie algebra \mathfrak{g} with elements ξ_a mapped to vector fields $\rho_a = \rho_a^i(X)\partial_i$ of *M*:

$$M imes \mathfrak{g} \stackrel{
ho}{
ightarrow} TM$$
, such that $ho(\xi_a) =
ho_a$,

In general, non-Abelian vector fields satisfying the algebra: $[\rho_a, \rho_b]_{\text{Lie}} = C_{ab}^c \rho_c$.

Then the action S_0 is invariant under the rigid symmetry $\delta_{\epsilon} X^i = \rho_a^i(X) \epsilon^a$ provided that:

$$\mathcal{L}_{
ho_a}g=0\;,\quad \mathcal{L}_{
ho_a}B=\mathrm{d}eta_a\;.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Good old standard gauging of group actions - Gauging/Minimal Coupling

Gauging the symmetry requires coupling of g-valued 1-forms (gauge fields) $A = A^a \xi_a$

$$\mathrm{d} X^i
ightarrow D X^i = \mathrm{d} X^i -
ho^i_a(X) A^a$$
 .

The candidate gauged action is simply

$$S_{ ext{m.c.}}[X,A] = \int_{\Sigma} rac{1}{2} g_{ij}(X) DX^i \wedge * DX^j + \int_{\Sigma} rac{1}{2} B_{ij}(X) DX^i \wedge DX^j \; .$$

The action is invariant under the (standard) infinitesimal gauge transformations:

$$\begin{aligned} \delta_{\epsilon} X' &= \rho'_{a}(X) \epsilon^{a} , \\ \delta_{\epsilon} A^{a} &= \mathrm{d} \epsilon^{a} + C^{a}_{bc} A^{b} \epsilon^{c} \end{aligned}$$

(日) (日) (日) (日) (日) (日) (日)

with a Σ -dependent gauge parameter ϵ^a (and $\beta_a = 0$).

Note: For $\beta_a \neq 0$ minimal coupling is not sufficient. cf. Hull, Spence '89,...

Beyond the Standard Gauging

Default: no requirement for a rigid symmetry/no initial assumptions for g(X) and B(X).

In other words, considering again the candidate (minimally-coupled) gauged action:

$$S_{ ext{m.c.}}[X,A] = \int_{\Sigma} rac{1}{2} g_{ij}(X) DX^i \wedge * DX^j + \int_{\Sigma} rac{1}{2} B_{ij}(X) DX^i \wedge DX^j \; ,$$

Question

Under which conditions does $S_{m.c.}$ have a gauge symmetry $\delta_{\epsilon} X^{i} = \rho_{a}^{i}(X) \epsilon^{a}$?

Also, replace Lie algebra \mathfrak{g} by *some* vector bundle $L \xrightarrow{\pi} M$ with an *almost Lie* bracket cf. Strobl '04

$$L \stackrel{\rho}{
ightarrow} TM \ , \quad [\cdot, \cdot]_L$$

In a local basis of sections e_a of L:

$$[e_a, e_b]_L = C^c_{ab}(X)e_c \quad \stackrel{
ho}{
ightarrow} \quad [
ho_a,
ho_b]_{\mathsf{Lie}} = C^c_{ab}(X)
ho_c$$

 $\rho_a = \rho(e_a)$: involutive vector fields generating a (possibly singular) foliation \mathcal{F} on M.

Invariance Conditions

Let us now make a general Ansatz for the gauge transformation of $A = A^a e_a \in \Gamma(L)$:

$$\delta_{\epsilon} A^{a} = d\epsilon^{a} + C^{a}_{bc}(X) A^{b} \epsilon^{c} + \Delta A^{a}$$

The worldsheet covariant derivative transforms as

$$\delta_{\epsilon} D X^{i} = \epsilon^{a} \rho^{i}_{a,j} D X^{j} - \rho^{i}_{a}(X) \Delta A^{a}.$$

Transformation of the action:

$$\delta_{\epsilon} S_{\text{m.c.}} = \int_{\Sigma} \epsilon^{a} \left(\frac{1}{2} (\mathcal{L}_{\rho_{a}} g)_{ij} DX^{i} \wedge *DX^{j} + \frac{1}{2} (\mathcal{L}_{\rho_{a}} B)_{ij} DX^{i} \wedge DX^{j} \right) \\ - \int_{\Sigma} g_{ij} \rho_{a}^{i} \Delta A^{a} \wedge *DX^{j} + B_{ij} \rho_{a}^{i} \Delta A^{a} \wedge DX^{j} .$$

Considering $\Delta A^a = \omega_{bi}^a(X)\epsilon^b DX^i + \phi_{bi}^a(X)\epsilon^b * DX^i$, invariance of $S_{m.c.}$ requires: (*² = \mp 1)

$$\begin{array}{lll} \mathcal{L}_{\rho_a}g & = & \omega_a^b \lor \iota_{\rho_b}g - \phi_a^b \lor \iota_{\rho_b}B \ , \\ \mathcal{L}_{\rho_a}B & = & \omega_a^b \land \iota_{\rho_b}B \pm \phi_a^b \land \iota_{\rho_b}g \ . \end{array}$$

Geometric Interpretation

What happens under a change of basis $e_a \rightarrow \Lambda(X)_a^b e_b$ in *L*?

$$\begin{split} & \omega_{bi}^{a} \quad \to \quad (\Lambda^{-1})^{a}_{c} \omega_{di}^{c} \Lambda_{b}^{d} - \Lambda_{b}^{c} \partial_{i} (\Lambda^{-1})^{a}_{c} , \\ & \phi_{bi}^{a} \quad \to \quad (\Lambda^{-1})^{a}_{c} \phi_{di}^{c} \Lambda_{b}^{d} . \end{split}$$

 $\rightarrow \omega_{bi}^{a}$ are the coefficients of a connection 1-form on the vector bundle L:

$$\nabla^{\omega} \boldsymbol{e}_{\boldsymbol{a}} = \omega_{\boldsymbol{a}}^{\boldsymbol{b}} \otimes \boldsymbol{e}_{\boldsymbol{b}} \; ,$$

and ϕ_{bi}^a are the coefficients of an endomorphism-valued 1-form: $\phi \in \Gamma(T^*M \otimes L^* \otimes L)$.

Since the difference of two vector bundle connections is an endomorphism 1-form,

 \rightsquigarrow the gauging is controlled by two connections $abla^{\pm} =
abla^{\omega} \pm \phi$ on L

Mixing of g and B - Generalized Geometry

Consider the following two maps, defined via the interior product:

 $E^{\pm} := B \pm g : TM \rightarrow T^*M$

Additionally, define the following linear combinations of ω_b^a and ϕ_b^a :

$$(\Omega^{\pm})^a_b := (\omega \pm \phi)^a_b$$

Then the invariance conditions for Lorentzian world sheets are re-expressed as

$$\mathcal{L}_{
ho_{a}}E^{\pm} = (\Omega^{\mp})^{b}_{a} \otimes \iota_{
ho_{b}}E^{\pm} - \iota_{
ho_{b}}E^{\mp} \otimes (\Omega^{\pm})^{b}_{a}$$

The graphs of E^{\pm} are identified with *n*-dimensional sub-bundles C_{\pm} of $TM \oplus T^*M$. Gualtieri '04

 \rightsquigarrow reduction of structure group $O(n, n) \rightarrow O(n) \times O(n)$ /generalized Riemannian metric

 \rightsquigarrow a metric $\mathcal{H} : TM \oplus T^*M \rightarrow TM \oplus T^*M$ on the generalized tangent bundle of M cf. Gualtieri '14 for this perspective

$$\mathcal{H}=egin{pmatrix} -g^{-1}B & g^{-1}\ g-Bg^{-1}B & Bg^{-1} \end{pmatrix}$$

Beyond Minimal Coupling - WZ terms

In the presence of a Wess-Zumino term in the action, minimal coupling is not enough.

$$\mathcal{S}_{0,WZ}[X] = \int_{\Sigma} rac{1}{2} g_{ij}(X) \mathrm{d} X^i \wedge * \mathrm{d} X^j + \int_{\hat{\Sigma}} rac{1}{3!} \mathcal{H}_{ijk} \mathrm{d} X^i \wedge \mathrm{d} X^j \wedge \mathrm{d} X^k \,.$$

The candidate gauged action functional, at least for minimally coupled kinetic sector, is

$$S_{WZ}[X,A] = \int_{\Sigma} rac{1}{2} g_{ij}(X) DX^i \wedge * DX^j + \int_{\hat{\Sigma}} H + \int_{\Sigma} A^a \wedge heta_a + rac{1}{2} \gamma_{ab}(X) A^a \wedge A^b \ ,$$

where $\theta_a = \theta_{ai}(X) dX^i$ are 1-forms and $\gamma_{ab}(X)$ are functions, pulled back from *M* via *X*.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Such an action was first studied in Hull-Spence '89 and more recently also in Plauschinn '14; Kotov, Salnikov, Strobl '14; Bakas, Lüst, Plauschinn '15

Conditions for gauge invariance

As in the minimally coupled case, we examine the gauge invariance of S_{WZ} under

$$\begin{array}{lll} \delta_{\epsilon} X^{i} & = & \rho_{a}^{i}(X) \epsilon^{a} \; , \\ \delta_{\epsilon} A^{a} & = & \mathrm{d} \epsilon^{a} + C_{bc}^{a}(X) A^{b} \epsilon^{c} + \omega_{bi}^{a}(X) \epsilon^{b} \, DX^{i} + \phi_{bi}^{a}(X) \epsilon^{b} * DX^{i} \; . \end{array}$$

Invariance Conditions

$$\begin{array}{lll} \mathcal{L}_{\rho_a}g & = & \omega_a^b \lor \iota_{\rho_b}g + \phi_a^b \lor \theta_a \,, \\ \iota_{\rho_a}H & = & \mathrm{d}\theta_a - \omega_a^b \land \theta_b \pm \phi_a^b \land \iota_{\rho_a}g \,. \end{array}$$

Obstructing Constaints

$$\gamma_{(ab)} = \iota_{\rho_a}\theta_b + \iota_{\rho_b}\theta_a = 0 , \quad \iota_{\rho_b}\iota_{\rho_a}H = C^d_{ab}\theta_d + d\iota_{\rho_{[a}}\theta_{b]} - 2\mathcal{L}_{\rho_{[a}}\theta_{b]} .$$

▲ロト▲聞を▲目を▲目を 目 ろん⊙

Addendum to the Geometric Interpretation

There is a map θ from the vector bundle *L* to the cotangent bundle of *M*:

$$\begin{array}{rcl} L & \stackrel{\theta}{\to} & T^*M \\ e_a & \mapsto & \theta(e_a) := \theta_a = \theta_{ai} \mathrm{d} x^i \ . \end{array}$$

Combining this with the map ρ , we obtain a map to the generalized tangent bundle:

$$\begin{array}{ccc} L & \stackrel{\rho \oplus \theta}{\longrightarrow} & TM \oplus T^*M \\ e_a & \mapsto & (\rho \oplus \theta)(e_a) := \rho_a + \theta_a = \rho_a^i \partial_i + \theta_{ai} \mathrm{d} x^i \ . \end{array}$$

 \rightarrow *H*-twisted Courant algebroid structure on the $TM \oplus T^*M$, with bracket and bilinear:

$$\begin{split} & [\xi_a, \xi_b] &= \quad [\rho_a, \rho_b] + \mathcal{L}_{\rho_a} \theta_b - \mathcal{L}_{\rho_b} \theta_a - \frac{1}{2} d \left(\iota_{\rho_a} \theta_b - \iota_{\rho_b} \theta_a \right) - \iota_{\rho_a} \iota_{\rho_b} H , \\ & \xi_a, \xi_b \rangle &= \quad \iota_{\rho_a} \theta_b + \iota_{\rho_b} \theta_a . \end{split}$$

Meaning of the two Constraints

Vanishing of the bilinear form
 Closure of the bracket

→ (Small) Dirac Structures

So, when can we really find $\nabla^{\pm}/\omega_{b}^{a}$ and ϕ_{b}^{a} ?

Suppose L = D and $(\rho \oplus \theta)(D) = \widetilde{D}$, with full Dirac structures $D, \widetilde{D} \subset (TM \oplus T^*M)_H$: $\operatorname{rk} D = \frac{1}{2}\operatorname{rk} TM \oplus T^*M$, $[\Gamma(D), \Gamma(D)] \subset \Gamma(D)$, $\langle \Gamma(D), \Gamma(D) \rangle = 0$.

- First, we proved the invertibility of the operators: $\theta^* \pm \rho : D \to TM$ $(\theta^* = g^{-1} \circ \theta)$
- Note: this holds regardless of the invertibility or not of ρ and θ.

Then we showed that the following coefficients solve the invariance conditions:

$$\begin{array}{lll} \omega^{a}_{bi} & = & \Gamma^{a}_{bi} - \phi^{a}_{bi} + T^{a}_{bi} \ , \\ \phi^{a}_{bi} & = & [(\theta^{*} - \rho)^{-1}]^{a}_{k} \left(\mathring{\nabla}_{i} \rho^{k}_{b} - \rho^{k}_{c} T^{c}_{bi} \right) \ , \end{array}$$

くしゃ (四)・(日)・(日)・(日)・

where $T_{bi}^{a} = [(\theta^{*} + \rho)^{-1}]_{k}^{a} \left(\mathring{\nabla}_{i} (\theta^{*} + \rho)_{b}^{k} - \frac{1}{2} \rho_{b}^{l} H_{li}^{k} \right)$.

Here $\mathring{\nabla}$ is the LC connection on *TM* and Γ_{bi}^{a} are the coefficients of ∇^{LC} on *D*.

Dirac σ -models as Universal Gauge Theory

In intrinsic geometric terms, defining $T(\rho) = T_a^b \otimes e^a \otimes \rho_b \in \Gamma(T^*M \otimes D^* \otimes TM)$:

$$\begin{aligned} \nabla^+ &= \nabla^{LC} + T , \\ \nabla^- &= \nabla^{LC} + T - 2\iota_{(\mathring{\nabla} - T)(\rho)}(\theta^* - \rho)^{-1} . \end{aligned}$$

Returning to the gauged action functional, defining the field $v \oplus \eta \in \Omega^1(\Sigma, X^*D)$ as:

$$v = \rho(A) \Rightarrow v^i = \rho_a^i(X)A^a$$
 and $\eta = \theta(A) \Rightarrow \eta_i = \theta_{ai}(X)A^a$,

the $S_{WZ}[X, A]$ becomes identical to the action for the topological Dirac Sigma Model Kotov, Schaller, Strobl '04

$$\mathcal{S}_{\mathsf{DSM}}[X, \upsilon \oplus \eta] = \int_{\Sigma} \frac{1}{2} g_{ij}(X) \mathcal{D}X^i \wedge * \mathcal{D}X^j + \int_{\Sigma} \left(\eta_i \wedge \mathrm{d}X^i - \frac{1}{2} \eta_i \wedge \upsilon^i
ight) + \int_{\hat{\Sigma}} \mathcal{H}_{\hat{\Sigma}}$$

A non-topological analog may be obtained for small Dirac structures.

Application: the *H*-twisted Poisson Sigma Model - Motivation

Suppose (M, π) is a Poisson manifold with Poisson structure π $(\pi^{[i}\partial_{l}\pi^{jk]} = 0)$ Ikeda '93; Schaller, Strobl '94

$$\mathcal{S}_{\mathsf{PSM}}[X, \mathcal{A}] = \int_{\Sigma} \left(\mathcal{A}_i \wedge \mathrm{d} X^i + rac{1}{2} \pi^{ij}(X) \mathcal{A}_i \wedge \mathcal{A}_j
ight) \, .$$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

- Equivalent (for a bivector linear in x) to 2D YM in the 1st order formalism
- Its path integral quantization yields Kontsevich * product Cattaneo-Felder '01
- From a different viewpoint, it can be related to Q flux string backgrounds

Application: the H-twisted Poisson Sigma Model - Initial data

Suppose (M, π) is a Poisson manifold with Poisson structure π , and we choose:

$$L = T^*M$$
, $\rho = \pi^{\sharp}$ and $\theta = \operatorname{id} \Rightarrow \theta^* = g^{-1}$

The almost Lie bracket on T^*M is the Koszul-Schouten bracket of 1-forms $\alpha, \tilde{\alpha}$:

$$[\alpha,\widetilde{\alpha}]_{\mathsf{KS}} := \mathcal{L}_{\pi^{\sharp}(\alpha)}\widetilde{\alpha} - \iota_{\pi^{\sharp}(\widetilde{\alpha})} \mathrm{d}\alpha - \mathcal{H}(\pi^{\sharp}(\widetilde{\alpha}),\pi^{\sharp}(\alpha),\cdot) ,$$

which in a basis e^i of local sections of T^*M satisfies

$$[e^i, e^j]_{\mathrm{KS}} = C_k^{ij}(X)e^k$$

with structure functions

$$C_k^{ij} = \partial_k \pi^{ij} + H_{kmn} \pi^{mi} \pi^{nj} .$$

Application: the H-twisted Poisson Sigma Model - Action and Symmetry

The gauge field $A = (A_i) \in \Gamma(T^*M)$ is now encoded in the identifications

$$\eta_i = A_i$$
 and $\upsilon^i = \pi^{ji} A_j$.

The corresponding gauged action functional, with $DX^{i} = dX^{i} + \pi^{ij}A_{j}$, is

$$\mathcal{S}_{g ext{WZPSM}}[X, \mathcal{A}] = \int_{\Sigma} \left(\mathcal{A}_i \wedge \mathrm{d} X^i + rac{1}{2} \pi^{ij} \mathcal{A}_i \wedge \mathcal{A}_j
ight) + \ \int_{\Sigma} \ rac{1}{2} g_{ij}(X) \mathcal{D} X^i \wedge * \mathcal{D} X^j + \int_{\hat{\Sigma}} \mathcal{H}(X) \ .$$

The general gauge symmetries of the model are controlled by the coefficients

$$\begin{split} \omega^{j}_{ik} &= \Gamma^{j}_{ik} + g_{il} \pi^{lm} \phi^{j}_{mk} + \frac{1}{2} \pi^{jl} H_{lik} , \\ \phi^{j}_{ik} &= -[(1 - g \pi g \pi)^{-1}]^{i}_{l} g_{lm} (\mathring{\nabla}_{k} \pi^{mj} + \frac{1}{2} H_{knp} \pi^{nm} \pi^{pj}) . \end{split}$$

 \rightarrow this gauging of the (g, H) model led to the H-PSM with extended local symmetries

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Integration of gauge fields and reduction

In the (g, B) case, recalling that $E := E^+ = g + B$ and in light-cone coordinates,

$$S[X,A] = \int_{\Sigma} E_{ij}(X) D_+ X^i D_- X^j \mathrm{d}\sigma^+ \wedge \mathrm{d}\sigma^-$$

where $D_{\pm}X^{i} = \partial_{\pm}X^{i} - \rho_{a}^{i}(X)A_{\pm}^{a}$.

In adapted coordinates $(X^i) = (X^i, X^{\alpha})$, integration of the gauge fields leads to

$${\cal S}^{\sf red} = \int_{\Sigma} {\cal E}^{\sf red}_{IJ} \partial_+ {\cal X}^I \partial_- {\cal X}^J {
m d} \sigma^+ \wedge {
m d} \sigma^- \; ,$$

where $E_{IJ}^{\text{red}} = E_{IJ} - E_{I\alpha} E^{\alpha\beta} E_{\beta J}$. Moreover, $E_{IJ}^{\text{red}} = E_{IJ}^{\text{red}}(X') \rightsquigarrow X^{\alpha}$ -independent.

This is a reduced action with target space the quotient $Q = M/\mathcal{F}$.

Strict vs. non-strict gauging

When such a reduced action exists for a (locally) smooth Q, the gauging is called strict.

Thus, the gauging of (g, B) with minimal coupling is always strict.

However, e.g. the G/G WZW models correspond to a *non-strict* gauging.

The usefulness of this distinction lies in capturing cases where ker $ho \neq \emptyset$

$$F \stackrel{\tau}{\to} L \stackrel{\rho}{\to} TM$$
, with $\rho \circ t = 0$

Then the gauging is strict whenever the action functional has a λ -symmetry:

$$\delta_{\lambda}A^{a} = t^{a}_{M}(X)\lambda^{M}, \qquad \lambda \in \Gamma(T^{*}\Sigma \otimes X^{*}F).$$

This is automatic for minimal coupling, but not for the general (g, H) case.

Take-home messages from this talk

- ✓ Universal 2D Gauge Theory for general background fields g(X) and B(X)/H(X)
- ✓ The gauging is controlled by 2 (curved) connections on an almost Lie algebroid
- ✓ The connections are fully determined for the case of *H*-twisted Dirac structures

<ロト < 同ト < 目ト < 目 > 、 目 、 の へ つ >

Take-home messages from this talk

- ✓ Universal 2D Gauge Theory for general background fields g(X) and B(X)/H(X)
- ✓ The gauging is controlled by 2 (curved) connections on an almost Lie algebroid
- ✓ The connections are fully determined for the case of *H*-twisted Dirac structures

Other results

A framework for non-Abelian T-duality without isometry and beyond group actions

<ロト < 同ト < 目ト < 目 > 、 目 、 の へ つ >

• A framework for string theories in quotient spaces M/\mathcal{F} by a general foliation \mathcal{F}

Take-home messages from this talk

- ✓ Universal 2D Gauge Theory for general background fields g(X) and B(X)/H(X)
- The gauging is controlled by 2 (curved) connections on an almost Lie algebroid
- ✓ The connections are fully determined for the case of *H*-twisted Dirac structures

Other results

- A framework for non-Abelian T-duality without isometry and beyond group actions
- A framework for string theories in quotient spaces M/\mathcal{F} by a general foliation \mathcal{F}

Current and future work

(BV) Quantization - CFT viewpoint? Does the procedure survive quantization?

<ロト < 同ト < 目ト < 目 > 、 目 、 の へ つ >

- ✤ Applications to true string solutions, e.g. S³ with H flux?
- Our procedure as solution generating technique?