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General Motivations

When does a theory have a local symmetry?
cf. Weinstein's math/9602220 for the math viewpoint

Strings in quotient spaces beyond group actions
cf. G/H WZW models (Gawedzki, Kupiainen)

Target space dualities without global symmetry

cf. Poisson-Lie (Klimcik, Severa; Sfetsos), but w/o group action; Hull 06

“Non-geometric” string backgrounds from a worldsheet/worldvolume perspective
Hull '04; Halmagyi '09; Mylonas, Schupp, Szabo '12; 1311.4878 and 1505.05457 with L. Jonke and O. Lechtenfeld; ...



In this talk

« Focus on 2D bosonic o-models (LO, no dilaton)

Determine the conditions for existence of some gauge extension

+ In other words, couple gauge fields A to the theory, valued in some “gauge” bundle
+ For appropriate gauge transformations, determine the rhs of the Lie derivatives

L,g=... and L,B=... or L,H=...

such that the theory is gauge invariant.
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Prospectus of results

The rhs of the invariance conditions need not be zero

The gauging is controlled by two (curved, in general) connections V+
There exists a universal gauge theory with target TM & T*M

In the “maximal” case it generalizes G/G WZW and WZ Poisson o-models

V= are determined in closed form for the “maximal” case



Good old standard gauging of group actions - Global symmetry

Usual procedure: rigid symmetry —  (minimal coupling) — local symmetry
Strings propagating in a target spacetime M~ o-model of maps X = (X'): ¥ - M
SolX] = /z 1gi(X)dX A xdX + /z IBi(X)dX' AdX .

Consider Lie algebra g with elements £, mapped to vector fields p, = ph(X)d; of M:

Mx g2 TM, suchthat p(&)=pa,

In general, non-Abelian vector fields satisfying the algebra: [pa, pb]ie = Coppe-

Then the action Sy is invariant under the rigid symmetry 8.X’ = pf(X)e? provided that:

[’Pag =0 ’ LPaB = dﬁa 0



Good old standard gauging of group actions - Gauging/Minimal Coupling

Gauging the symmetry requires coupling of g-valued 1-forms (gauge fields) A = A%,
dX' — DX' = dX' — pL(X)A? .
The candidate gauged action is simply

Smc[X, Al = /z 195(X)DX" A DX/ +- /Z 1B;(X)DX' A DX .

The action is invariant under the (standard) infinitesimal gauge transformations:
5 X' = pa(X)e?,
S AT = deé? + CLA

with a X-dependent gauge parameter ¢? (and 8, = 0).

Note: For 35 # 0 minimal coupling is not sufficient. cf. Hull, Spence ‘89, ...



Beyond the Standard Gauging

Default: no requirement for a rigid symmetry/no initial assumptions for g(X) and B(X).
In other words, considering again the candidate (minimally-coupled) gauged action:

Smc[X, Al = / 1gi(X)DX' A DX’ + / 1Bi(X)DX' A DX,
X >

Question

Under which conditions does Sm.c. have a gauge symmetry 6. X' = ph(X)e??

Also, replace Lie algebra g by some vector bundle L = M with an almost Lie bracket
cf. Strobl ‘04
L5 TM, [,
In a local basis of sections e, of L:
[€a, €0]L = Cp(X)ec 2 [pa, ppliie = Cop(X)pc

pa = p(€a): involutive vector fields generating a (possibly singular) foliation F on M.



Invariance Conditions
Let us now make a general Ansatz for the gauge transformation of A = A%e, € I'(L):

6 A% = deé + CEL(X)APE+AAY .
The worldsheet covariant derivative transforms as
5.DX" = @ph DX — ph(X)AA%.
Transformation of the action:
0eSme. = /z ea(;(cpag),-,ox” A DX+ 1(£,,B);DX' A Dxf')
- /z 9ipsDAR A xDX! + Bjph AA® A DX .

Considering AA® = w§(X)e?DX' + ¢3(X)e® « DX’ | invariance of Sm.c. requires:
(Z =71

b b
L@ wa Vip,d— ¢z Vip B,

LpB = wiA tppB £ B2 A Lppd -




Geometric Interpretation

What happens under a change of basis e; — A(X)’;el7 in L? J

wh = (NGNS — NSO
¢ — (NGNS .
~  wg; are the coefficients of a connection 1-form on the vector bundle L:
Ve =ws® ey,
and ¢§; are the coefficients of an endomorphism-valued 1-form: ¢ € [(T*M @ L* ® L).

Since the difference of two vector bundle connections is an endomorphism 1-form,

~~ the gauging is controlled by two connections V* = V¥ 4 ¢ on L J




Mixing of g and B - Generalized Geometry

Consider the following two maps, defined via the interior product:
Et.=B+g:TM - T'M
Additionally, define the following linear combinations of wi and ¢3:
()5 == (w+ ¢)}
Then the invariance conditions for Lorentzian world sheets are re-expressed as
Lo EX = (0F)3® 1, EF — 1, ET ® (25)5.

The graphs of E* are identified with n-dimensional sub-bundles C+ of TM & T*M.

Gualtieri '04
~ reduction of structure group O(n, n) — O(n) x O(n)/generalized Riemannian metric

~ametric H: TM® T*M — TM & T*M on the generalized tangent bundle of M

cf. Gualtieri "14 for this perspective
H _ _g—1 B g—1
g-Bg'B Bg



Beyond Minimal Coupling - WZ terms

In the presence of a Wess-Zumino term in the action, minimal coupling is not enough.
So.wz[X] = / 1g5(X)dX A xdX + [ LHydX ndX A dX*.
b >

The candidate gauged action functional, at least for minimally coupled kinetic sector, is
Swz[X, Al = / 19i(X)DX" A xDX’ + / H+ / A% A B2+ Fva(X)AT A A,
X b P

where 6; = Ga/(X)dX’ are 1-forms and ~4,(X) are functions, pulled back from M via X.

Such an action was first studied in Hul-Spence '89 and more recently also in Plauschinn14;
Kotov, Salnikov, Strobl 14; Bakas, List, Plauschinn '15



Conditions for gauge invariance

As in the minimally coupled case, we examine the gauge invariance of Sy under
S X' = ph(X)e,
6 A = dé? + CE(X)APEC + wii(X)e® DX + ¢ (X)e® «DX' .

Invariance Conditions

L9 = Wg\/bpbg+¢gvea7
tpaH = d@a—wg/\abzl:qﬁg/\Lpag.

Obstructing Constaints

Vab) = tpalo + tpp0a =0, tpytoH = Cipba + dip,0e) — 2L, 00 -




Addendum to the Geometric Interpretation
There is a map 6 from the vector bundle L to the cotangent bundle of M:
L % TM
€a — 0(ea) =0s=0ydx" .
Combining this with the map p, we obtain a map to the generalized tangent bundle:
L & TMaeTM
ea — (p@0O)ea) =patba= p;(‘?,- + Ohdx’ .
~+ H-twisted Courant algebroid structure on the TM & T*M, with bracket and bilinear:
[537 fb] = [pa7 Pb] + Lp0p — Ly, 02 — %d (Lpa'gb - Lpbga) - LpaLpr s
<€37 €b> = Lpaeb + Lﬂbea o

Meaning of the two Constraints
e Vanishing of the bilinear form e Closure of the bracket

~ (Small) Dirac Structures



So, when can we really find V*/wg and ¢2?

Suppose L = D and (p @ 0)(D) = D, with full Dirac structures D, D C (TMe& T*M)y:
tk D= 1rk TM® T*M, [[(D),r(D)] cr(D), (r(D),N(D))=0.

« First, we proved the invertibility of the operators: 0" +p: D — TM (6> =g~ '09)
+ Note: this holds regardless of the invertibility or not of p and 6.

Then we showed that the following coefficients solve the invariance conditions:
wh = Th—¢bi+Ts,
o = 10" =) (Virb—ETS) |

where T = [(0" + p) ™13 (V0" + )l — 3pbHE) -

Here V is the LC connection on TM and I'§; are the coefficients of V- on D.



Dirac o-models as Universal Gauge Theory

In intrinsic geometric terms, defining T(p) = T2 ® € ® pp € [(T*M @ D* © TM):

vVt = V4T,

— LC * —1
VT = VU T -2y 1ypy(0" —p) .

Returning to the gauged action functional, defining the field v @ n € Q'(Z, X*D) as:
v=p(A) =0 = pi(X)A% and 7 =0(A) = n = 0.(X)A?,

the Swz[X, A] becomes identical to the action for the topological Dirac Sigma Model
Kotov, Schaller, Strobl ‘04

SDSM[X,U@n]:/%g,]-(X)DX'A*DXjJr/ (n,Ade;n,Av") +/H
r > >

A non-topological analog may be obtained for small Dirac structures.



Application: the H-twisted Poisson Sigma Model - Motivation

Suppose (M, 7) is a Poisson manifold with Poisson structure = (x'l'97* = 0)
Ikeda '93; Schaller, Strobl ‘94

SesulX, A = / (A AdX + 1nI(X)A A A)
>

« Equivalent (for a bivector linear in x) to 2D YM in the 1st order formalism
# lts path integral quantization yields Kontsevich x product cattaneo-Felder ‘01

« From a different viewpoint, it can be related to Q flux string backgrounds



Application: the H-twisted Poisson Sigma Model - Initial data

Suppose (M, ) is a Poisson manifold with Poisson structure 7, and we choose:
L=TM, p=x' and 6=id = 6" =g ".
The almost Lie bracket on T*M is the Koszul-Schouten bracket of 1-forms a, a:
[, Glks = Lot (o) — trtyda — H(mH(@), 7*(e), ) ,
which in a basis €' of local sections of T*M satisfies
€, €/ks = Cl(X)e" .

with structure functions i ) -
CZ = Ohr’ + Hipnr ™™ .



Application: the H-twisted Poisson Sigma Model - Action and Symmetry

The gauge field A = (A;) € I'(T*M) is now encoded in the identifications
ni = A; and Ui = ﬂﬁAj .
The corresponding gauged action functional, with DX’ = d X' + ©7A;, is
Sowzesm[X, A] = / (A,- AdX + 17T A A A,-) + / 195(X)DX' A DX + / H(X) .
x > >
The general gauge symmetries of the model are controlled by the coefficients
e = [+ gn  + %ﬂﬂHlik )
qu’:k = —[(1 — grgn) " lgm(Vir™ + %Hknpnnmﬂpj) .

~+ this gauging of the (g, H) model led to the H-PSM with extended local symmetries



Integration of gauge fields and reduction

In the (g, B) case, recalling that E := E* = g + B and in light-cone coordinates,
S[X, Al = /z E;(X)D: X'D_X'do" Ado™
where D X' = a. X" — ph(X)AL.
In adapted coordinates (X') = (X', X%), integration of the gauge fields leads to
Sl = /Z Ef%0. X'0_X'dot Ado ™,
where E%° = E;; — Ej, E®®E,. Moreover, Ei¢® = E?9(X') ~» X°-independent.

This is a reduced action with target space the quotient Q = M/F.



Strict vs. non-strict gauging

When such a reduced action exists for a (locally) smooth Q, the gauging is called strict.
Thus, the gauging of (g, B) with minimal coupling is always strict.

However, e.g. the G/G WZW models correspond to a non-strict gauging.

The usefulness of this distinction lies in capturing cases where kerp # 0

FLLEATM, with pot=0
Then the gauging is strict whenever the action functional has a A\-symmetry:
A =X, Ael(T'ZT®X'F).

This is automatic for minimal coupling, but not for the general (g, H) case.



Concluding remarks

Take-home messages from this talk

v Universal 2D Gauge Theory for general background fields g(X) and B(X)/H(X)
v The gauging is controlled by 2 (curved) connections on an almost Lie algebroid

v The connections are fully determined for the case of H-twisted Dirac structures
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Other results
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Current and future work

<

<

<

(BV) Quantization - CFT viewpoint? Does the procedure survive quantization?
Applications to true string solutions, e.g. S® with H flux?
Our procedure as solution generating technique?



