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General Motivations

_ When does a theory have a local symmetry?
cf. Weinstein’s math/9602220 for the math viewpoint

_ Strings in quotient spaces beyond group actions
cf. G/H WZW models (Gawedzki, Kupiainen)

_ Target space dualities without global symmetry
cf. Poisson-Lie (Klimcik, Severa; Sfetsos), but w/o group action; Hull ’06

_ “Non-geometric” string backgrounds from a worldsheet/worldvolume perspective
Hull ’04; Halmagyi ’09; Mylonas, Schupp, Szabo ’12; 1311.4878 and 1505.05457 with L. Jonke and O. Lechtenfeld; ...



In this talk

_ Focus on 2D bosonic σ-models (LO, no dilaton)

Determine the conditions for existence of some gauge extension

D In other words, couple gauge fields A to the theory, valued in some “gauge” bundle

D For appropriate gauge transformations, determine the rhs of the Lie derivatives

Lρg = . . . and LρB = . . . or LρH = . . .

such that the theory is gauge invariant.



Prospectus of results

_ The rhs of the invariance conditions need not be zero

_ The gauging is controlled by two (curved, in general) connections ∇±

_ There exists a universal gauge theory with target TM ⊕ T ∗M

_ In the “maximal” case it generalizes G/G WZW and WZ Poisson σ-models

_ ∇± are determined in closed form for the “maximal” case



Good old standard gauging of group actions - Global symmetry

Usual procedure: rigid symmetry −→ (minimal coupling) −→ local symmetry

Strings propagating in a target spacetime M  σ-model of maps X = (X i ) : Σ→ M

S0[X ] =

∫
Σ

1
2 gij (X )dX i ∧ ∗dX j +

∫
Σ

1
2 Bij (X )dX i ∧ dX j .

Consider Lie algebra g with elements ξa mapped to vector fields ρa = ρi
a(X )∂i of M:

M × g
ρ→ TM , such that ρ(ξa) = ρa ,

In general, non-Abelian vector fields satisfying the algebra: [ρa, ρb]Lie = Cc
abρc .

Then the action S0 is invariant under the rigid symmetry δεX i = ρi
a(X )εa provided that:

Lρa g = 0 , Lρa B = dβa .



Good old standard gauging of group actions - Gauging/Minimal Coupling

Gauging the symmetry requires coupling of g-valued 1-forms (gauge fields) A = Aaξa

dX i → DX i = dX i − ρi
a(X )Aa .

The candidate gauged action is simply

Sm.c.[X ,A] =

∫
Σ

1
2 gij (X )DX i ∧ ∗DX j +

∫
Σ

1
2 Bij (X )DX i ∧ DX j .

The action is invariant under the (standard) infinitesimal gauge transformations:

δεX i = ρi
a(X )εa ,

δεAa = dεa + Ca
bcAbεc ,

with a Σ-dependent gauge parameter εa (and βa = 0).

Note: For βa 6= 0 minimal coupling is not sufficient. cf. Hull, Spence ’89, . . .



Beyond the Standard Gauging

Default: no requirement for a rigid symmetry/no initial assumptions for g(X ) and B(X ).

In other words, considering again the candidate (minimally-coupled) gauged action:

Sm.c.[X ,A] =

∫
Σ

1
2 gij (X )DX i ∧ ∗DX j +

∫
Σ

1
2 Bij (X )DX i ∧ DX j ,

Question

Under which conditions does Sm.c. have a gauge symmetry δεX i = ρi
a(X )εa?

Also, replace Lie algebra g by some vector bundle L π→ M with an almost Lie bracket
cf. Strobl ’04

L ρ→ TM , [·, ·]L

In a local basis of sections ea of L:

[ea, eb]L = Cc
ab(X )ec

ρ→ [ρa, ρb]Lie = Cc
ab(X )ρc

ρa = ρ(ea): involutive vector fields generating a (possibly singular) foliation F on M.



Invariance Conditions
Let us now make a general Ansatz for the gauge transformation of A = Aaea ∈ Γ(L):

δεAa = dεa + Ca
bc(X )Abεc+∆Aa .

The worldsheet covariant derivative transforms as

δεDX i = εaρi
a,jDX j − ρi

a(X )∆Aa .

Transformation of the action:

δεSm.c. =

∫
Σ

εa
(

1
2 (Lρa g)ijDX i ∧ ∗DX j + 1

2 (Lρa B)ijDX i ∧ DX j
)

−
∫

Σ

gijρ
i
a∆Aa ∧ ∗DX j + Bijρ

i
a∆Aa ∧ DX j .

Considering ∆Aa = ωa
bi (X )εbDX i + φa

bi (X )εb ∗ DX i , invariance of Sm.c. requires:
(∗2 = ∓1)

Lρa g = ωb
a ∨ ιρb g − φb

a ∨ ιρb B ,

Lρa B = ωb
a ∧ ιρb B ± φb

a ∧ ιρb g .



Geometric Interpretation

What happens under a change of basis ea → Λ(X )b
aeb in L?

ωa
bi → (Λ−1)a

cω
c
di Λ

d
b − Λc

b∂i (Λ−1)a
c ,

φa
bi → (Λ−1)a

cφ
c
di Λ

d
b .

 ωa
bi are the coefficients of a connection 1-form on the vector bundle L:

∇ωea = ωb
a ⊗ eb ,

and φa
bi are the coefficients of an endomorphism-valued 1-form: φ ∈ Γ(T ∗M ⊗ L∗ ⊗ L).

Since the difference of two vector bundle connections is an endomorphism 1-form,

 the gauging is controlled by two connections ∇± = ∇ω ± φ on L



Mixing of g and B - Generalized Geometry

Consider the following two maps, defined via the interior product:

E± := B ± g : TM → T ∗M

Additionally, define the following linear combinations of ωa
b and φa

b:

(Ω±)a
b := (ω ± φ)a

b

Then the invariance conditions for Lorentzian world sheets are re-expressed as

Lρa E± = (Ω∓)b
a ⊗ ιρb E± − ιρb E∓ ⊗ (Ω±)b

a .

The graphs of E± are identified with n-dimensional sub-bundles C± of TM ⊕ T ∗M.
Gualtieri ’04

 reduction of structure group O(n, n)→ O(n)×O(n)/generalized Riemannian metric

 a metric H : TM ⊕ T ∗M → TM ⊕ T ∗M on the generalized tangent bundle of M
cf. Gualtieri ’14 for this perspective

H =

(
−g−1B g−1

g − Bg−1B Bg−1

)



Beyond Minimal Coupling - WZ terms

In the presence of a Wess-Zumino term in the action, minimal coupling is not enough.

S0,WZ [X ] =

∫
Σ

1
2 gij (X )dX i ∧ ∗dX j +

∫
Σ̂

1
3!

Hijk dX i ∧ dX j ∧ dX k .

The candidate gauged action functional, at least for minimally coupled kinetic sector, is

SWZ [X ,A] =

∫
Σ

1
2 gij (X )DX i ∧ ∗DX j +

∫
Σ̂

H +

∫
Σ

Aa ∧ θa + 1
2γab(X )Aa ∧ Ab ,

where θa = θai (X )dX i are 1-forms and γab(X ) are functions, pulled back from M via X .

Such an action was first studied in Hull-Spence ’89 and more recently also in Plauschinn ’14;

Kotov, Salnikov, Strobl ’14; Bakas, Lüst, Plauschinn ’15



Conditions for gauge invariance

As in the minimally coupled case, we examine the gauge invariance of SWZ under

δεX i = ρi
a(X )εa ,

δεAa = dεa + Ca
bc(X )Abεc + ωa

bi (X )εb DX i + φa
bi (X )εb ∗DX i .

Invariance Conditions

Lρa g = ωb
a ∨ ιρb g + φb

a ∨ θa ,

ιρa H = dθa − ωb
a ∧ θb ± φb

a ∧ ιρa g .

Obstructing Constaints

γ(ab) = ιρaθb + ιρbθa = 0 , ιρb ιρa H = Cd
abθd + dιρ[aθb] − 2Lρ[aθb] .



Addendum to the Geometric Interpretation

There is a map θ from the vector bundle L to the cotangent bundle of M:

L θ→ T ∗M

ea 7→ θ(ea) := θa = θai dx i .

Combining this with the map ρ, we obtain a map to the generalized tangent bundle:

L ρ⊕θ→ TM ⊕ T ∗M

ea 7→ (ρ⊕ θ)(ea) := ρa + θa = ρi
a∂i + θai dx i .

 H-twisted Courant algebroid structure on the TM ⊕ T ∗M, with bracket and bilinear:

[ξa, ξb] = [ρa, ρb] + Lρaθb − Lρbθa − 1
2 d (ιρaθb − ιρbθa)− ιρa ιρb H ,

〈ξa, ξb〉 = ιρaθb + ιρbθa .

Meaning of the two Constraints
• Vanishing of the bilinear form • Closure of the bracket

 (Small) Dirac Structures



So, when can we really find ∇±/ωa
b and φa

b?

Suppose L = D and (ρ⊕ θ)(D) = D̃, with full Dirac structures D, D̃ ⊂ (TM ⊕ T ∗M)H :

rk D = 1
2 rk TM ⊕ T ∗M , [Γ(D), Γ(D)] ⊂ Γ(D) , 〈Γ(D), Γ(D)〉 = 0 .

_ First, we proved the invertibility of the operators: θ∗ ± ρ : D → TM (θ∗ = g−1 ◦ θ)

D Note: this holds regardless of the invertibility or not of ρ and θ.

Then we showed that the following coefficients solve the invariance conditions:

ωa
bi = Γa

bi − φa
bi + T a

bi ,

φa
bi = [(θ∗ − ρ)−1]a

k

(
∇̊iρ

k
b − ρk

c T c
bi

)
,

where T a
bi = [(θ∗ + ρ)−1]a

k

(
∇̊i (θ

∗ + ρ)k
b − 1

2ρ
l
bHk

li

)
.

Here ∇̊ is the LC connection on TM and Γa
bi are the coefficients of ∇LC on D.



Dirac σ-models as Universal Gauge Theory

In intrinsic geometric terms, defining T (ρ) = T b
a ⊗ ea ⊗ ρb ∈ Γ(T ∗M ⊗ D∗ ⊗ TM):

∇+ = ∇LC + T ,

∇− = ∇LC + T − 2ι(∇̊−T )(ρ)(θ
∗ − ρ)−1 .

Returning to the gauged action functional, defining the field υ ⊕ η ∈ Ω1(Σ,X∗D) as:

υ = ρ(A)⇒ υi = ρi
a(X )Aa and η = θ(A)⇒ ηi = θai (X )Aa ,

the SWZ[X ,A] becomes identical to the action for the topological Dirac Sigma Model
Kotov, Schaller, Strobl ’04

SDSM[X , υ ⊕ η] =

∫
Σ

1
2 gij (X )DX i ∧ ∗DX j +

∫
Σ

(
ηi ∧ dX i − 1

2ηi ∧ υi
)

+

∫
Σ̂

H

A non-topological analog may be obtained for small Dirac structures.



Application: the H-twisted Poisson Sigma Model - Motivation

Suppose (M, π) is a Poisson manifold with Poisson structure π (πl[i∂lπ
jk ] = 0)

Ikeda ’93; Schaller, Strobl ’94

SPSM[X ,A] =

∫
Σ

(
Ai ∧ dX i + 1

2π
ij (X )Ai ∧ Aj

)
.

_ Equivalent (for a bivector linear in x) to 2D YM in the 1st order formalism

_ Its path integral quantization yields Kontsevich ? product Cattaneo-Felder ’01

_ From a different viewpoint, it can be related to Q flux string backgrounds



Application: the H-twisted Poisson Sigma Model - Initial data

Suppose (M, π) is a Poisson manifold with Poisson structure π, and we choose:

L = T ∗M , ρ = π] and θ = id ⇒ θ∗ = g−1 .

The almost Lie bracket on T ∗M is the Koszul-Schouten bracket of 1-forms α, α̃:

[α, α̃]KS := Lπ](α)α̃− ιπ](α̃)dα− H(π](α̃), π](α), ·) ,

which in a basis ei of local sections of T ∗M satisfies

[ei , ej ]KS = C ij
k (X )ek ,

with structure functions
C ij

k = ∂kπ
ij + Hkmnπ

miπnj .



Application: the H-twisted Poisson Sigma Model - Action and Symmetry

The gauge field A = (Ai ) ∈ Γ(T ∗M) is now encoded in the identifications

ηi = Ai and υi = πjiAj .

The corresponding gauged action functional, with DX i = dX i + πijAj , is

SgWZPSM[X ,A] =

∫
Σ

(
Ai ∧ dX i + 1

2π
ijAi ∧ Aj

)
+

∫
Σ

1
2 gij (X )DX i ∧ ∗DX j +

∫
Σ̂

H(X ) .

The general gauge symmetries of the model are controlled by the coefficients

ωj
ik = Γj

ik + gilπ
lmφj

mk + 1
2π

jlHlik ,

φj
ik = −[(1− gπgπ)−1]l

iglm(∇̊kπ
mj + 1

2 Hknpπ
nmπpj ) .

 this gauging of the (g,H) model led to the H-PSM with extended local symmetries



Integration of gauge fields and reduction

In the (g,B) case, recalling that E := E+ = g + B and in light-cone coordinates,

S[X ,A] =

∫
Σ

Eij (X )D+X iD−X j dσ+ ∧ dσ− ,

where D±X i = ∂±X i − ρi
a(X )Aa

±.

In adapted coordinates (X i ) = (X I ,Xα), integration of the gauge fields leads to

Sred =

∫
Σ

E red
IJ ∂+X I∂−X J dσ+ ∧ dσ− ,

where E red
IJ = EIJ − EIαEαβEβJ . Moreover, E red

IJ = E red
IJ (X I) Xα-independent.

This is a reduced action with target space the quotient Q = M/F .



Strict vs. non-strict gauging

When such a reduced action exists for a (locally) smooth Q, the gauging is called strict.

Thus, the gauging of (g,B) with minimal coupling is always strict.

However, e.g. the G/G WZW models correspond to a non-strict gauging.

The usefulness of this distinction lies in capturing cases where kerρ 6= ∅

F t→ L ρ→ TM , with ρ ◦ t = 0

Then the gauging is strict whenever the action functional has a λ-symmetry:

δλAa = ta
M (X )λM , λ ∈ Γ(T ∗Σ⊗ X∗F ) .

This is automatic for minimal coupling, but not for the general (g,H) case.



Concluding remarks

Take-home messages from this talk

3 Universal 2D Gauge Theory for general background fields g(X ) and B(X )/H(X )

3 The gauging is controlled by 2 (curved) connections on an almost Lie algebroid

3 The connections are fully determined for the case of H-twisted Dirac structures

Other results

_ A framework for non-Abelian T-duality without isometry and beyond group actions

_ A framework for string theories in quotient spaces M/F by a general foliation F

Current and future work

D (BV) Quantization - CFT viewpoint? Does the procedure survive quantization?

D Applications to true string solutions, e.g. S3 with H flux?

D Our procedure as solution generating technique?
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