SUSY Searches with Jets and Missing Transverse Momentum: Lost Lepton Background and Results with 12.9/fb Data CORFU2016: Summer School and Workshop on the Standard Model and Beyond

Simon Kurz

Institut für Experimentalphysik, Universität Hamburg

Sept, 2016

RA2/b in 2015

- RA2/b: Search for Supersymmetry
 - First CMS SUSY analysis to get approved for Moriond 2016
 - Published paper this year (again first...): doi:10.1016/j.physletb.2016.05.002
 - Search in 72 search bins (we'll get there)
 - No sign of SUSY :(

SUSY Propaganda

Nice features of Supersymmetry:

- Solving hierarchy problem without 'fine tuning'
- Provides Dark Matter candidate
- Unification of gauge couplings

• ...

 $\rightarrow\,$ Some arguments most convincing for SUSY at TeV scale

Natural SUSY:

- Require no large cancellations:
 - Tree level: light higgsinos
 - 1-loop: light stops and winos
 - 2-loop: light gluinos
- SUSY mass scales motivated by electroweak naturalness
 - $\rightarrow\,$ 'allowed' level of fine tuning is a matter of taste

RA2/b: Event Selection I

- Search for supersymmetry in the all-hadronic final state targeting gluino and stop pair production
 - Motivated by naturalness and high cross section

Event selection I

• Transverse momentum:

$$H_T = \sum |p_T| > 300 \,\mathrm{GeV}$$
 (H_T -jets: $p_T > 30 \,\mathrm{GeV}, |\eta| < 2.5$)

• Jet multiplicity:

$$N_{\text{Jets}} = \# (H_T \text{-Jets}) \ge 3$$

Missing transverse momentum:

 $H_T^{\text{miss}} = |-\sum \vec{p_T}| > 300 \, \text{GeV}$ (H_T^{miss} -jets: $p_T > 30 \, \text{GeV}, |\eta| < 5$)

• Veto on e, μ

 \Rightarrow Search in 160 exclusive search bins defined by $H_T, H_T^{\text{miss}}, N_{\text{Jets}}, N_{\text{BTags}}$

RA2/b: Event Selection II

• Introduce additional selection cuts in order to suppress Standard Model background events

Event selection II

- QCD: heavily mismeasured jet
 - $\Delta\Phi(H_T^{\text{miss}}, Jet_{\{1,2,3,4\}}) > \{0.5, 0.5, 0.3, 0.3\}$
- $W + jets, t\bar{t}$: lost electron, muon (+neutrino)
 - Lepton veto: e, μ ($p_T > 10 \, {
 m GeV}, |\eta| < 2.4/2.5$)
 - Isolated tracks veto: e, $\mu~(p_T>5\,{
 m GeV})$
- W + jets, tt̄: hadronically decaying tau (+neutrino)
 - Isolated tracks veto: π ($p_T > 10 \, {
 m GeV}$)
- $Z \rightarrow \nu \nu + \text{jets}$
 - Irreducible

Extreme region of phasespace requires data-driven prediction

RA2/b: Background Composition

Figure: J. Bradmiller-Feld, UCSB

Lost-Lepton: important background in most sensitive search bins

Lost-Lepton Background

Origin of Lost-Lepton Background

- Events are vetoed if an isolated lepton is found...
- ...but the lepton might also be 'lost' [equivalent for electrons]

Prediction of Lost-Lepton Background I

- Idea: Start from the end of the chain (single lepton control sample) and retrace in which step how many leptons have passed/failed each of the criteria
- Example: We observed 18 isolated muons. We know that about 90% of the reconstructed muons are isolated.

$$\rightarrow N_{\mu}^{\text{non-isolated}} = N_{\mu}^{\text{isolated}} \cdot \frac{1 - \epsilon_{\text{lso}}}{\epsilon_{\text{lso}}} = 18 \cdot \frac{1 - 0.9}{0.9} = 2$$

• In fact, it's not that simple:

Prediction of Lost-Lepton Background II

- Each of the (in-) efficiencies is a complicated function of various parameters
- Goal: Find a set of 2-3 suited observables to parametrize each efficiency
 - Should reflect event kinematics...
 - ...but also don't vary too much (problematic for low stat. search bins)

Prediction of Lost-Lepton Background IV

• Closure test for all 160 search bins: overall very good agreement

 \bullet Average prediction from e and μ CS

Successful data-driven prediction of lost-lepton background!

Results

Results

- Approved results for all 160 search bins using $12.9\,{\rm fb}^{-1}$ of data
 - Observed data in good agreement with the SM background prediction

No sign of SUSY!

- 2D projection (H_T , $H_T^{\text{miss}} > 500 \,\text{GeV}$), overlain with signal (T1bbbb)
 - Small excess of data in tightest bin
 - Still consistent with background prediction within uncertainties

Exclusion Limits

- SUSY models with light gluinos/stops decaying to (heavy) quarks highly motivated
 - We expect high values of $N_{\text{Jets}}, H_T^{\text{miss}}$
- Extreme phase space requires data-driven estimates of backgrounds
 - Prediction of lost-lepton background shows great performance
- \bullet Results of search in $12.9\,{\rm fb}^{-1}$ of data presented at ICHEP
 - No sign of SUSY observed
 - Set exclusion limits for 7 different SMS topologies
- It was a great pleasure to carry out the analysis with the RA2/b group once again!
 - Turned the crank within $\mathcal{O}(\text{week})$

Let's hope SUSY is still hiding!

Backup

Signal Sensitivity

900 1000 H^{miss} [GeV]

QCD