

Latest Higgs Physics results from the **ATLAS** experiment

Nicolo de Groot

Radboud University and Nikhef

Overview

- Higgs at the LHC
- Run 1 highlights
- Higgs to bosons
- ttH
- Higgs to bb
- Rare decays
- Outlook and conclusions

Higgs production at the LHC

Higgs decays @ 125 GeV

Run 1 - Higgs mass

3ND2015

Run 1 - Higgs discovery and couplings

Run 1 - Spin and parity measurement

SM Higgs is spin 0 and positive parity

Decay angles are sensitive to the spin and parity of the Higgs boson

These are input to a multivariate analysis (BDT or NN)

Test SM hypothesis 0⁺ against alternative

Clear preference for $0^+ \rightarrow It$'s a Higgs

HIGGS TO BOSONS

μ_{tt⊦}

 μ_{VH}

 μ_{VBF}

 μ_{ggP}

 $\mu_{_{Run-2}}$

 $\mu_{\text{Run-1}}$

-2

9

Precision run 2 already better than run 1 **Fiducial Cross section:** σ = 43.2 ± 14.9 ± 4.9 fb

ATLAS-CONF-2016-067

- Signature: 2 isolated photons, narrow peak, falling background
- Main BG: $\gamma\gamma$ and γ -jet
- All production modes included
- Fit to myy spectrum

ATLAS Preliminary

Hei

2

3

 $\sqrt{s} = 13 \text{ TeV}, 13.3 \text{ fb}^{-1}$

Dominant systematic: γ energy scale/resolution bg model

Total

 $= -0.25 ^{+1.26}_{-0.99}$

= 0.23 + 1.27 - 1.05

= 2.24 + 0.80 - 0.71

 $\mu_{ggH} = 0.59 \ _{-0.28}^{+0.29}$

 $\mu_{Run-2} = 0.85 \begin{array}{c} +0.22 \\ -0.20 \end{array}$

 $\mu_{\text{Run-1}} = 1.17 \begin{array}{c} + 0.28 \\ - 0.26 \end{array}$

Signal Strength

 μ_{VH}

 μ_{VBF}

$H \rightarrow \gamma \gamma$

Η→γγ

- Signature: 2 isolated photons, narrow peak, falling background
- Main BG: γγ and γ-jet
- All production modes included
- Fit to mγγ spectrum
- Dominant systematic: γ energy scale/resolution bg model

ATLAS Preliminary ⊢ Total $\sqrt{s} = 13 \text{ TeV}, 13.3 \text{ fb}^{-1}$ $\mu_{\text{tr}H}$ = -0.25 $^{+1.26}_{-0.99}$ μ_{#⊢} $\mu_{VH}^{} = 0.23 \ ^{+\,1.27}_{-\,1.05}$ μ_{VH} $\mu_{VBF}^{~~=~2.24~^{+~0.80}_{-~0.71}}$ $\mu_{_{\text{VBF}}}$ μ_{ggH} $\mu_{ggH} = 0.59 \ _{-0.28}^{+0.29}$ $\mu_{Run-2} = 0.85 \begin{array}{c} +0.22 \\ -0.20 \end{array}$ μ_{Bun-2} Hei $\mu_{\mathsf{Run-1}}$ $\mu_{Run-1}^{}=1.17^{+0.28}_{-0.26}$ -2 2 3 Signal Strength

Differential distributions: p_t , η , #jets Precision run 2 already better than run 1 Fiducial Cross section: $\sigma = 43.2 \pm 14.9 \pm 4.9$ fb

Signature: 4 isolated leptons, narrow peak, flat background

 $H \rightarrow ZZ^*$

- Main BG: ZZ
- All production modes included
- Fit to m₄₁ spectrum

Fiducial Cross section: σ = 4.54^{+1.02}_{-0.90} fb

$H \rightarrow \gamma \gamma$ and ZZ^* combination

- Combine the inclusive samples
- 10 σ observation (8.6 σ exp)
- $\mu = 1.13^{+0.18}_{-0.17}$

Similar precision as run 1

ttH (H \rightarrow bb)

Motivation: direct probe of ttH Yukawa coupling

Strategy:

- Benefits from 13 TeV
- High BR $H \rightarrow bb$, 58%
- 4b jet final state, 1 lepton + 2 or 2 leptons
- Catagorize events in #jets, #b's #leptons
- Use multivariate techniques to boost S/B
- Dominant backgrounds tt + HF
- Dominant error tt+HF modeling

VS

ttH (H \rightarrow bb)

--- Н

VS

g, ATLAS Simulation Preliminary $t\bar{t} + light$ $t\bar{t} + \ge 1c$ $t\bar{t} + \ge 1b$ vs = 13 TeV tt + V Non-tt Single Lepton 4 j, 2 b 4 j, 3 b 4 j , ≥ 4 b 5 j, 2 b 5 j, 3 b 5 j, ≥ 4 b ≥6 j, 2 b ≥6 j, 3 b \geq 6 j, \geq 4 b

t. b

Motivation: direct probe of ttH Yukawa coupling

Strategy:

- Benefits from 13 TeV
- High BR $H \rightarrow bb$, 58%
- 4b jet final state, 1 lepton + 2 or 2 leptons
- Catagorize events in #jets, #b's #leptons
- Use multivariate techniques to boost S/B
- Dominant backgrounds tt + HF
- Dominant error tt+HF modeling

ttH (H \rightarrow bb)

Motivation: direct probe of ttH Yukawa coupling

Strategy:

- Benefits from 13 TeV
- High BR $H \rightarrow bb$, 58%
- 4b jet final state, 1 lepton + 2 or 2 leptons
- Catagorize events in #jets, #b's #leptons
- Use multivariate techniques to boost S/B
- Dominant backgrounds tt + HF
- Dominant error tt+HF modeling

ttH multilepton

Strategy:

- Benefits from 13 TeV
- Clean signature, low BG
- 2 jet final state, 1-2b, 2-4 leptons, 0-1 τ
- Upper limit 95% C:L μ < 4.9 (2.3 exp)

ttH combination

9/9/16

HIGGS TO BB

VH (H \rightarrow bb)

Strategy:

- High BR $H \rightarrow bb$
- Use lepton(s) from Z, W (or missing E_t for $Z \rightarrow vv$)
- Use multivariate techniques for good S/B
- Dominant backgrounds tt and Z+b
- Best discrimination from m_{bb} and ΔR_{bb}

VH (H \rightarrow bb)

Strategy:

- High BR $H \rightarrow bb$
- Use lepton(s) from Z, W (or missing E_t for $Z \rightarrow vv$)
- Use multivariate techniques for good S/B
- Dominant backgrounds tt and Z+b
- Best discrimination from m_{bb} and ΔR_{bb}

VBF (H \rightarrow bb)

Strategy:

- High BR $H \rightarrow bb$
- Use forward tagging jets and rapidity gap
- Use BDT to improve S/B (still poor)
- Dominant backgrounds QCD, $Z \rightarrow bb$
- Fit to m_{bb}

Result:

 μ = -0.8 ± 1.3 ± 1.8 Limit: μ = 4.4 @95%CL

arXiv:1606.02181

VBF (H \rightarrow bb) + γ

 $\sqrt{\gamma}$

Η

W

Strategy:

- High BR $H \rightarrow bb$,
- Use forward tagging jets and rapidity gap
- Clean-up with photon
- Use BDT to improve S/B
- Fit to m_{bb} in BDT bins

Result:

Limit: μ = 4.0 @95%CL (fit Cross check with Z \rightarrow bb + γ

RARE AND FORBIDDEN DECAYS

Higgs $\rightarrow \mu^+ \mu^-$

 Separate VBF (S/√B ~ 0.28) from rest (S/√B 0.09-0.23)

Very rare decay in SM, BR ~ 2×10^{-4}

• Look for peak in $m_{\mu\mu}$ spectrum

Higgs $\rightarrow \mu^+ \mu^-$

ATLAS-CONF-2016-041

- Very rare decay in SM, BR ~ 2 x 10⁻⁴
- First probe of Higgs coupling to 2nd generation fermions
- Very clean signature with 2 muons
- Large background from Z/γ*

Strategy:

- Separate VBF (S/√B ~ 0.28) from rest (S/√B 0.09-0.23)
- Look for peak in m_{uu} spectrum

Limits

	95% CL limit x SM (expected)
Run 1	7.1 (7.2)
Run 2	4.4 (5.5)
Combined	3.5 (4.5)

Lepton Flavor Violating Higgs

JHEP 1511 (2015) arXiv:1604.07730

- Look for $H \rightarrow \mu \tau$ and $H \rightarrow e \tau$
- Small excess seen by CMS in run 1
- Calculate invariant mass with MMC
- Main BG $Z \rightarrow \tau \tau$
- 95 % CL Limits:
 - $H \rightarrow e\tau : 1\%$
 - $H \rightarrow \mu \tau$:1.4%

Outlook and conclusions

- Run 2 made an impressive start
- Higgs sample matching or exceeding run 1 already
- Many results, many more to come
 - Look for WW and $\tau\tau$ updates
 - Differential distributions
 - Higgs as a probe
 - CP studies
 - End 2016 2-6 x Run 1 Higgs sample, end 2018 8-20x

Higgs physics is becoming precision Standard Model physics