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I. THE STANDARD MODEL

To date the LHC has not revealed any new states beyond the Standard Model (BSM) even

though the searches are sensitive to new states of mass of O(1TeV ) with production cross sections

comparable to that of the Standard Model states. A wide variety of possible new physics has been

probed as may be seen from Figs 1 and 2 1
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FIG. 1: Summary of CMS limits on Exotica Beyond the Standard Model [23]

∗Electronic address: g.ross1@physics.ox.ac.uk
1 Of course the CMS and ATLAS experiments both put limits on BSM states - here I have chosen to show only a

subset of their results.
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MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q̃)=m(g̃) 1405.78751.7 TeVq̃, g̃

q̃q̃, q̃→qχ̃0
1 0 2-6 jets Yes 20.3 m(χ̃0

1)=0 GeV, m(1st gen. q̃)=m(2nd gen. q̃) 1405.7875850 GeVq̃

q̃q̃γ, q̃→qχ̃0
1 (compressed) 1 γ 0-1 jet Yes 20.3 m(q̃)-m(χ̃0

1 ) = m(c) 1411.1559250 GeVq̃

g̃g̃, g̃→qq̄χ̃0
1 0 2-6 jets Yes 20.3 m(χ̃0

1)=0 GeV 1405.78751.33 TeVg̃

g̃g̃, g̃→qqχ̃±1→qqW±χ̃0
1 1 e, µ 3-6 jets Yes 20 m(χ̃0

1)<300 GeV, m(χ̃±)=0.5(m(χ̃0
1)+m(g̃)) 1501.035551.2 TeVg̃

g̃g̃, g̃→qq(ℓℓ/ℓν/νν)χ̃0
1 2 e, µ 0-3 jets - 20 m(χ̃0

1)=0 GeV 1501.035551.32 TeVg̃

GMSB (ℓ̃ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 20.3 tanβ >20 1407.06031.6 TeVg̃
GGM (bino NLSP) 2 γ - Yes 20.3 m(χ̃0

1)>50 GeV ATLAS-CONF-2014-0011.28 TeVg̃
GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ̃0

1)>50 GeV ATLAS-CONF-2012-144619 GeVg̃
GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ̃0

1)>220 GeV 1211.1167900 GeVg̃
GGM (higgsino NLSP) 2 e, µ (Z) 0-3 jets Yes 5.8 m(NLSP)>200 GeV ATLAS-CONF-2012-152690 GeVg̃

Gravitino LSP 0 mono-jet Yes 20.3 m(G̃)>1.8 × 10−4 eV, m(g̃)=m(q̃)=1.5 TeV 1502.01518865 GeVF1/2 scale

g̃→bb̄χ̃0
1 0 3 b Yes 20.1 m(χ̃0

1)<400 GeV 1407.06001.25 TeVg̃

g̃→tt̄χ̃0
1 0 7-10 jets Yes 20.3 m(χ̃0

1) <350 GeV 1308.18411.1 TeVg̃

g̃→tt̄χ̃0
1 0-1 e, µ 3 b Yes 20.1 m(χ̃0

1)<400 GeV 1407.06001.34 TeVg̃

g̃→bt̄χ̃+1 0-1 e, µ 3 b Yes 20.1 m(χ̃0
1)<300 GeV 1407.06001.3 TeVg̃

b̃1b̃1, b̃1→bχ̃0
1 0 2 b Yes 20.1 m(χ̃0

1)<90 GeV 1308.2631100-620 GeVb̃1

b̃1b̃1, b̃1→tχ̃±1 2 e, µ (SS) 0-3 b Yes 20.3 m(χ̃±1 )=2 m(χ̃0
1) 1404.2500275-440 GeVb̃1

t̃1 t̃1, t̃1→bχ̃±1 1-2 e, µ 1-2 b Yes 4.7 m(χ̃±1 ) = 2m(χ̃0
1), m(χ̃0

1)=55 GeV 1209.2102, 1407.0583110-167 GeVt̃1 230-460 GeVt̃1

t̃1 t̃1, t̃1→Wbχ̃0
1 or tχ̃0

1 2 e, µ 0-2 jets Yes 20.3 m(χ̃0
1)=1 GeV 1403.4853, 1412.474290-191 GeVt̃1 215-530 GeVt̃1

t̃1 t̃1, t̃1→tχ̃0
1 0-1 e, µ 1-2 b Yes 20 m(χ̃0

1)=1 GeV 1407.0583,1406.1122210-640 GeVt̃1

t̃1 t̃1, t̃1→cχ̃0
1 0 mono-jet/c-tag Yes 20.3 m(t̃1)-m(χ̃0

1 )<85 GeV 1407.060890-240 GeVt̃1

t̃1 t̃1(natural GMSB) 2 e, µ (Z) 1 b Yes 20.3 m(χ̃0
1)>150 GeV 1403.5222150-580 GeVt̃1

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ (Z) 1 b Yes 20.3 m(χ̃0
1)<200 GeV 1403.5222290-600 GeVt̃2

ℓ̃L,R ℓ̃L,R, ℓ̃→ℓχ̃0
1 2 e, µ 0 Yes 20.3 m(χ̃0

1)=0 GeV 1403.529490-325 GeVℓ̃

χ̃+1 χ̃
−
1 , χ̃+1→ℓ̃ν(ℓν̃) 2 e, µ 0 Yes 20.3 m(χ̃0

1)=0 GeV, m(ℓ̃, ν̃)=0.5(m(χ̃±1 )+m(χ̃0
1)) 1403.5294140-465 GeVχ̃±

1
χ̃+1 χ̃

−
1 , χ̃+1→τ̃ν(τν̃) 2 τ - Yes 20.3 m(χ̃0

1)=0 GeV, m(τ̃, ν̃)=0.5(m(χ̃±1 )+m(χ̃0
1)) 1407.0350100-350 GeVχ̃±

1
χ̃±1 χ̃

0
2→ℓ̃Lνℓ̃Lℓ(ν̃ν), ℓν̃ℓ̃Lℓ(ν̃ν) 3 e, µ 0 Yes 20.3 m(χ̃±1 )=m(χ̃0

2), m(χ̃0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃±1 )+m(χ̃0

1)) 1402.7029700 GeVχ̃±
1 , χ̃

0
2

χ̃±1 χ̃
0
2→Wχ̃0

1Zχ̃0
1 2-3 e, µ 0-2 jets Yes 20.3 m(χ̃±1 )=m(χ̃0

2), m(χ̃0
1)=0, sleptons decoupled 1403.5294, 1402.7029420 GeVχ̃±

1 , χ̃
0
2

χ̃±1 χ̃
0
2→Wχ̃0

1h χ̃0
1, h→bb̄/WW/ττ/γγ e, µ, γ 0-2 b Yes 20.3 m(χ̃±1 )=m(χ̃0

2), m(χ̃0
1)=0, sleptons decoupled 1501.07110250 GeVχ̃±

1 , χ̃
0
2

χ̃0
2χ̃

0
3, χ̃0

2,3 →ℓ̃Rℓ 4 e, µ 0 Yes 20.3 m(χ̃0
2)=m(χ̃0

3), m(χ̃0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃0

2)+m(χ̃0
1)) 1405.5086620 GeVχ̃0

2,3

Direct χ̃+1 χ̃
−
1 prod., long-lived χ̃±1 Disapp. trk 1 jet Yes 20.3 m(χ̃±1 )-m(χ̃0

1)=160 MeV, τ(χ̃±1 )=0.2 ns 1310.3675270 GeVχ̃±
1

Stable, stopped g̃ R-hadron 0 1-5 jets Yes 27.9 m(χ̃0
1)=100 GeV, 10 µs<τ(g̃)<1000 s 1310.6584832 GeVg̃

Stable g̃ R-hadron trk - - 19.1 1411.67951.27 TeVg̃

GMSB, stable τ̃, χ̃0
1→τ̃(ẽ, µ̃)+τ(e, µ) 1-2 µ - - 19.1 10<tanβ<50 1411.6795537 GeVχ̃0

1

GMSB, χ̃0
1→γG̃, long-lived χ̃0

1 2 γ - Yes 20.3 2<τ(χ̃0
1)<3 ns, SPS8 model 1409.5542435 GeVχ̃0

1

q̃q̃, χ̃0
1→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ̃0

1)=108 GeV ATLAS-CONF-2013-0921.0 TeVq̃

LFV pp→ν̃τ + X, ν̃τ→e + µ 2 e, µ - - 4.6 λ′311=0.10, λ132=0.05 1212.12721.61 TeVν̃τ

LFV pp→ν̃τ + X, ν̃τ→e(µ) + τ 1 e, µ + τ - - 4.6 λ′311=0.10, λ1(2)33=0.05 1212.12721.1 TeVν̃τ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q̃)=m(g̃), cτLS P<1 mm 1404.25001.35 TeVq̃, g̃
χ̃+1 χ̃

−
1 , χ̃+1→Wχ̃0

1, χ̃
0
1→eeν̃µ, eµν̃e 4 e, µ - Yes 20.3 m(χ̃0

1)>0.2×m(χ̃±1 ), λ121,0 1405.5086750 GeVχ̃±
1

χ̃+1 χ̃
−
1 , χ̃+1→Wχ̃0

1, χ̃
0
1→ττν̃e, eτν̃τ 3 e, µ + τ - Yes 20.3 m(χ̃0

1)>0.2×m(χ̃±1 ), λ133,0 1405.5086450 GeVχ̃±
1

g̃→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg̃
g̃→t̃1t, t̃1→bs 2 e, µ (SS) 0-3 b Yes 20.3 1404.250850 GeVg̃

Scalar charm, c̃→cχ̃0
1 0 2 c Yes 20.3 m(χ̃0

1)<200 GeV 1501.01325490 GeVc̃
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FIG. 2: Mass reach of ATLAS searches for Supersymmetry [12].

In addition the properties of the newly discovered Higgs fits very well2 with those predicted

by the Standard Model as it shown in the “pull-plot“ of Figure 3a and the fit to the SM CKM

matrix shown in Figure 3b. In particular the coupling of the Higgs to the states of the Standard

Model is closely proportional to the mass as may be seen in Figure 3c.

The Higgs completes the Standard Model spectrum and its mass and now allows for a deter-

mination of the parameters of the Higgs potential

V (H) = −m2|H|2 + λ|H|4 (1)

giving m ∼ 89GeV and λ ∼ 0.13 with the quartic coupling in the perturbative domain.

The absence of any sign of BSM physics suggests the possibility that the SM is complete up

to high scales. Assuming this is the case it is instructive to determine the renormalisation group

running of the quartic coupling to high energy scales [16] and this is shown in Figure 4a. It

may be seen that the result is very sensitive to the top quark mass and, to a lesser extent, to the

strong coupling constant. For their central values the coupling goes negative at a scale of 1010GeV

corresponding, in the absence of and BSM physics, to a potential unbounded from below or, if

one cuts of at the Planck scale energy where gravity effects cannot be neglected, at least to the

appearance of a second much deeper minimum at O(1018GeV ) than the usual electroweak (EW)

breaking minimum at O(102GeV ).

2 There is a long-standing 3σ discrepancy with the measurement of g−2 of the muon [15]. This has an underlying

theoretical uncertainty due to the difficulty in calculating light by light scattering and for the moment the

discrepancy is not critical but could be a first indication of new physics.
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FIG. 3: a)The pull plot showing the goodness of the SM fit to data [13] b)The fit to the SM

CKM matrix [22] c)Mass dependence of the Higgs coupling [33].
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FIG. 4: a)The RGE running of the quartic Higgs coupling in the SM varying mt, αs(MZ) by

±3σ. b)SM phase diagram in terms of quartic Higgs coupling λ and top Yukawa coupling yt
renormalised at the Planck scale. The region where the instability scale ΛI is larger than

1018GeV is indicated as ‘Planck-scale dominated’.

However this does not necessarily imply BSM physics below 1010GeV because it may be that

the lifetime of the normal EW vacuum state is greater than the present lifetime of the universe so

that if initially the universe is in this state it will not yet have tunnelled out [16]. This possibility

is shown in Figure 4b. It may be seen that even with the quartic coupling negative at the Planck

scale the SM is in the acceptable meta-stability region. On the other hand if the top quark mass

is lower by 3σ than its central value the Higgs quartic coupling remains positive up to the Planck

scale and the SM is in the stability region. Could there be a reason that physics at the Planck

scale requires the quartic coupling to vanish at the Planck scale?

In summary all measurements to date support the validity of the Standard Model and no
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evidence for BSM physics has yet been found 3. Given this is there any reason to expect new

physics BSM?

II. WHY GO BEYOND THE STANDARD MODEL?

While the SM has been phenomenally successful as a theory of the strong, weak and electro-

magnetic interactions, it leaves many questions unanswered:

• Why the complicated multiplet structure of quarks and leptons?

• Why are quarks fractionally charged relative to the charged leptons?

• What is the origin of neutrino masses?

• Why are there so many parameters (28 including neutrino masses and mixings)?

• Why is there only partial unification of the forces?

• What solves the strong CP problem in the SM?

• Why is the electroweak breaking scale so much smaller than the Planck scale (the hierarchy

problem)?

• What is the origin of dark matter, dark energy, baryogenesis, inflation, the cosmological

constant?

These unanswered questions strongly suggest there must be physics BSM. The most immediate

questions relate to the complicated multiplet structure and the associated profusion of parameters

that suggests there may be further unification of the forces and matter.

The strong weak and electromagnetic forces are associated with the gauge bosons of the local

SU(3)×SU(2)×U(1) gauge symmetry yet only the neutral weak and electromagnetic interactions

are directly related in the SM with the photon field given by the mixture of the SU(2) and U(1)

gauge bosons:

Aγµ = sinθWW
3
µ + cosθWBµ (2)

The matter multiplets, c.f. Figure 5, similarly show indications of an underlying unification

with quarks and leptons both having their left-handed states in electroweak doublets while the

right-handed partners are singlets corresponding to a violation of parity and charge conjugation.

However there is no reason why C and P should be violated, why the quarks carry colour while the

leptons do not or why there should be three families both in the quark and the lepton sectors. To

address these questions we turn to the possibility of further unification called Grand Unification.

3 The observation of neutrino oscillations implies non-zero neutrino mass and a departure from the original SM.

However, if one adds right-handed neutrinos to restore the symmetry in the spectrum between quarks and

leptons, Dirac neutrino masses arise in the same way as for charged leptons and quarks. Here I refer to this

natural extension of the original model as the Standard Model.
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FIG. 5: The multiplet structure of the SM matter and Higgs states.

III. GRAND UNIFICATION

The first Grand Unified Theory (GUT) 4 to be studied was SU(5) [41], the group of 5 × 5

complex unitary matrices with determinant 1. It has the minimum possible rank 4 with just 4

diagonal generators and contains the SM as a subgroup

SU(5) ⊃ SU(3)× SU(2)× U(1). (3)

There are 24 independent matrices, Ui, making up the adjoint representation of SU(5) and these

can be expressed in terms of 24 hermitian matrices, the generators Li

U = e−iΣ
24
i=1βiLi , U †U = 1⇒ Li hermitian (4)

If SU(5) is a local gauge symmetry there are 24 gauge bosons, V a=1..24
µ which couple to matter

via the covariant derivative. Defining Vµ = 1√
2

∑24
a=1 V

a
µ L

a the action of the covariant derivative

on a 5 dimensional representation of fermions is given by

(Dµψ
5)i = [δji ∂µ −

ig√
2
V j
µ,i]ψ

j
5 (5)

4 For general reviews of GUTs see[59, 67]
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where

Vµ =



G1
1 − 2B√

30
G1

2 G1
2 X1 Y 1

G2
1 G2

2 − 2B√
30

G2
3 X2 Y 2

G3
1 G3

2 G3
3 − 2B√

30
X3 Y 3

X1 X2 X3
W 3
µ√
2

+ 3B√
30

W+

Y1 Y2 Y3 W− −W 3
µ√
2

+ 3B√
30


µ

, (6)

Here Gi
µ,j,W

i
µ,j, Bµ are the SU(3) × SU(2) × U(1) gauge boson fields; SU(3) (SU(2)) has been

embedded in the first 3 (last 2) rows and columns of Vµ. The 12 new gauge bosons in SU(5) but

not in the SM are Xi, X̄i, Yi, Ȳi.
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FIG. 6: The SU(5) multiplet structure of the first SM family.

The fermions of a single SM family fits nicely into a 5̄ + 10 representation of SU(5) as shown

in Figure 6 where all states are left-handed (i.e. the right-handed (RH) quark and lepton states

are rewritten as left-handed (LH) antiquark and anti lepton states). As one may see the 5̄ rep-

resentation transforms as (3̄, 1) + (1, 2) under SU(3) × SU(2) and so necessarily requires that

the right-handed quark states assigned to this representation must be singlets under SU(2). The

identification of these states follows from the observation that the charge operator corresponds to

one of the SU(5) generators and must be traceless. This means that 3Qdc +Q3 = 0, i.e. Qd = 1
3
Qe,

confirming that the coloured states in the 5̄ must be down antiquarks. Moreover the charge on

the down quark is a third of that on the electron because there are 3 colours! The remaining 10

states of the SM fit into the 10 dimensional representation of SU(5) as shown in Figure 6. We see

that again the postdiction is that the RH states are SU(2) singlets while the LH quark states are

singlets.

The second GUT explored was SO(10) [38, 40] which is a rank five group and contains SU(5)

as a subgroup, SO(10) ⊃ SU(5) × U(1). An alternative subgroup is the Pati-Salam group [62],

SO(10) ⊃ SU(4)×SU(2)L×SU(2)R in which lepton number is the fourth colour under the colour

group SU(4) and there is a L-R symmetry relating the two SU(2) groups. In the context of the

SU(5) subgroup, it seems probable that the group should indeed be enlarged to SO(10) because

a single 16 dimensional representation of SO(10) and explains the full structure of the 15 states

in a SM family shown in Figure 5. The 16th state is an SU(5) and hence SM singlet and neatly

accommodates the right-handed neutrino filed that restores the symmetry between quarks and

leptons both of which now have the same number of LH and RH states.
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Thus we see that a GUT can significantly simplify the multiplet structure needed to accommo-

date the gauge bosons and matter fields of the SM. In doing so it answers some of the questions

posed by the SM discussed above. There is still need to include three families of SU(5) or SO(10)

representations and attempts were made to further increase the size of the GUT group in the hope

that three families would be required to complete an irreducible representation of the GUT. How-

ever these attempts did not lead to convincing models and I will not pursue them here. Perhaps

the most promising origin for the family origin is in the context of compactified string theories

where the need to compactifiy leads to the need for family replication. Many three families models

have been constructed but there is still no understanding of why these should be chosen over the

many other models with different numbers of families.

A. The classic predictions of GUTs

Related to the simplification of multiplet structure is the prediction of relations between some

of the parameters of the SM. The most immediate of these is the fact that SU(5) has only a

single gauge coupling constant so the three SM gauge couplings are predicted to be equal5. The

evolution from this scale to the scale at which the couplings are measured is given by the RG

equations and determined by the SM beta functions

α−1
i (µ) = α−1 (MX) +

1

2π
bi ln

(
MX

µ

)
+ .. (7)

where

bSMi =

 0

−22
3

−11

+Ng

 4
3
4
3
4
3

+H

 1
10
1
6

0


Here Ng is the number of generations and H the number of Higgs doublets. The result of solving

the RG evolution is shown in Figure 7 One sees that, although the couplings do approach each

other at high scales they miss by more than 11 standard deviations. While encoraging there is

something missing - we will return to the question what this might be in Section VI.

GUTs also relate the fermion masses of states that belong to the same GUT representation.

For example in the case of SU(5) the group structure of the product of fermion representations

that correspond to mass terms is

5× 10 = 5 + 45

10× 10 = 5 + 45 + 50 (8)

For the case that the Higgs are in a 5 representation the mass term in the Lagrangian is given by

L5
Y ukawa =

(
ψ†Riα

)
mD
ijχ

αβ
LjH

†
β − 1

4
εαβγδε

(
χT
)αβ
Li
σ2mU

ijχ
γδ
LjH

ε + h.c. (9)

5 With the appropriate SU(5) normalsation of the U(1) factor
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FIG. 7: The evolution of the gauge couplings below the SU(5) unification scale

Since the down quarks and leptons belong to the same 5̄ + 10 representations the first term leads

to a relation between their masses given by

md = me, ms = mµ, mb = mτ . (10)

This equation applies at the GUT scale so needs to be corrected by RG running. Due to the colour

interactions the quarks get a relative enhancement by a factor of approximately 3 so the third

relation is a reasonable approximation but the first two relations are wildly wrong. If, however,

the Higgs belongs to the 45 representation of SU(5) one sees from eq 8 that it will also give masses

through the coupling

L45
Y =

(
ψ†Riα

)
md
ijχ

βγ
LjH

†α
βγ + εαβγρτ

(
χT
)αβ
Li
σ2mu

ijψ
γδ
LjH

ρτ
δ + h.c. (11)

giving the relation

− 3md = me, −3ms = mµ, −3mb = mτ . (12)

The sign can be absorbed in a redefinition go the fermion field so in this case, after including

the RG running, the second relation is acceptable. Georgi and Jarlskog [42] proposed combining

the two contributions with couplings restricted by a simple family symmetry, and obtained an

interesting structure with the down quark and charged leptons having the mass matrix in family

space given by

Md,l

m3

=

 0 ε3 0

ε3 aε2 0

0 0 1

 (13)

Here the “texture” zeros are due to Yukawa couplings being absent due to the imposeed family

symmetry; such zeros are common in attempts to explain fermion masses by an underlying family

symmetry. The parameter ε quantifes the spontaneous breaking of the family symmetry; in the

unbroken limit only the Yukawa couplings of third generation of down quarks and leptons to is
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allowed but after spontaneous breaking other couplings appear at O(εn) where n depends on the

charges assigned to a given family under the family symmetry. The (3,3), (12) and (2,1) entries

come from the Yukawa coupling of eq(9) to the 5 component of the Higgs and so have equal

coupling to down quarks and charged leptons. The (2,2) element comes from the Yukawa coupling

of eq(11) to the 45 component of the Higgs and so the coefficient a is 1 for the strange quark and

-3 for the τ lepton. The resulting mass matrix has eigenvalues given by

mb ≈ 3mτ , ms ≈ 3.
1

3
mµ, md ≈ 3.3.me. (14)

where I have included a factor of 3 to take approximate account of the QCD running to low

scales. The last relation follows because of the texture zeros which mean that DetMd = DetMl

at the GUT scale because the determinant is given entirely by the 5 component of the Higgs.

Solving the determinant equation for md then gives the relation shown. All three relations are in

qualitative agreement with the measured quark and lepton masses although to make a quantitative

comparison it is necessary to perform a detailed RG analysis including the other gauge interactions

and threshold effects [66]. The Georgi Jarlskog model illustrates how acceptable relations between

quark and lepton masses can result from a stage of Grand Unification. Their texture zero structure

also illustrates how such zeros can lead to relations between masses and mixing angles. In addition

to the determinant prediction the texture zero in the (1,1) position and the hermitian symmetry of

the mass matrix leads to a prediction for the down quark contribution to the Cabbibo angle given

by sin θCabbibo =
√

md
ms

. This relation is remarkably good and if the top quark sector is included

the relation for the Cabibbo angle has the form

sin θCabbibo =

√
md

ms

− eiδ
√
mu

mc

(15)

where δ is the CKM matrix CP violating phase. This gives an excellent fit to the Cabbibo angle

with near maximal CP violation, also in agreement with the experimental value.

Neutrino masses can also be well described via the see-saw mechanism[39, 58, 72] (see Section

V A), the smallness of the neutrino mass following because the singlet neutrinos entering the

see-saw mechanism are expected to have GUT scale masses.

One very important aspect of GUTs that is obvious from the form of the covariant derivative in

eq(6) is that, when acting on the multiplets of figure 6, the X and Y gauge bosons couple quarks

to leptons. In fact they have both baryon- and lepton-number violating interactions and mediate

nucleon decay at a rate ∝M−4
X . Before discussing this, however, I turn to an underlying problem

that GUTs have that has a very significant effect on the expectation for the nucleon decay rate

and decay channels.

IV. THE HIERARCHY PROBLEM

As we have seen GUTs provide a very plausible extension of the SM. However they suffer from

a serious hierarchy problem, namely the difficulty in field theory of separating the electroweak
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scale from the GUT scale. As this problem applies to the SM on its own and as ideas for BSM

physics are always strongly constrained by the hierarchy problem the subject deserves a separate

discussion.

The SM is a renormalisable, spontaneously broken, local gauge quantum field theory. Much of

its structure is explained if it is an effective field theory descending from a more complete theory,

such as a GUT, relevant at a high scale, M . In this case at low scales the Lagrangian has the

form

Leff (φlight, ψheavy,M,E)→ Leff (φlight, E) +O

(
1

M

)
(16)

where one has integrated out the heavy degrees of freedom of mass M . Then it follows that the

leading terms in Leff have mass dimension ≤ 4 as in a renormalisable theory. The only states

in Leff are those that do not receive a mass of O(M). It is significant that the only vector and

fermonic states we observe have a symmetry that protects them from an O(M) mass, namely

local gauge symmetry for the vectors and chiral symmetry for the fermions (because LH and RH

states have different SU(2) quantum numbers). The looks very much a signal for an effective field

theory. However the problem arises that the light Higgs is not protected by a symmetry because

the SM symmetry does not forbid the Higgs mass term M2|H|2.

t,W ,

h hZ,h

FIG. 8: Radiative contributions to the Higgs mass.

Even if one supposes the term is absent at tree level it will reappear in radiative order because

in field theory virtual corrections contribute to the Higgs mass driving it to an unacceptably high

scale. The mass correction coming from the graph of Figure 8 is given by

δm2
h =

3GF

4
√

2π2

(
4m2

t − 2m2
W −m2

Z −m2
h

)
Λ2 ∼ m2

h

(
Λ

500GeV

)2

(17)

where mh is of order the Higgs mass and Λ is a cut-off of the quadratically divergent mass; in an

effective field theory it will be the scale, M , at which BSM physics alter the radiative corrections.

If the SM is all there is, the divergent contribution δm2
h is not measurable as only the renor-

malised mass m2 = m2
0 + δm2

h is physical where m2
0 is the mass counter term. In this case one may

argue that the case m = 0 is special, corresponding to “classical” scale invariance and in this case

the measurable effects of radiative corrections to the mass are proportional to m2
h where mh arises
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from spontaneous breaking of the classical scale invariance and can be chosen to be the required

EW breaking scale.

I will return to a discussion of this “Just the SM” case later but it is reasonable to doubt the

the SM can be all there is, c.f. our discussion of GUTs above. In the presence of heavy masses

such as the X and Y gauge bosons of SU(5) there is a measurable contribution6, δm2
h,X , to the

Higgs mass coming from the loop of Figure 8 with the heavy states, X, in the loop, given by

δm2
h,X(Q2) ∝M2

X ln

(
Q2 +M2

X

Λ2

)
(18)

This term cannot be eliminated by renormalisation - the “real” hierarchy problem.

A. Solutions to the hierarchy problem

Various solutions to the hierarchy problem have been explored in recent years. These include

• “Just” the Standard Model (JSM). By “Just” I mean that one appeals to the idea of “clas-

sical” scale invariance mentioned above to eliminate the hierarchy problem. To answer some

of the questions such as dark matter abundance it is necessary to add additional states but

these should not be very heavy ro avoid the “real’ hierarchy problem.’

• The Higgs and possibly other states are composite. In this case the Higgs coupling appearing

in Figure 8 involves a form factor that is exponentially suppressed above the composite

scale, Λcomposite and Λ ≈ Λcomposite in eq(17). For this to be acceptable we need Λcomposite ≤
O(1TeV ) and there will be new composite resonant states in this mass range providing a

smoking gun for compositeness.

• The fundamental scale in the theory is low M∗ ∼ 1TeV and high scales, such as the Planck

scale setting the gravitational strength coupling, are derived from it. In this case Λ ∼ M∗
in eq(17), avoiding a large hierarchy problem. For example, if space time is D dimensional

with d > 4 and the extra dimensions are curled up on a length scale R, the gravitational

potential has the form [10]

V (r) =
1

M2+d
∗ Rd

m1m2

r
, D = 4 + d, r � R (19)

implying

M2
Planck

= M2
∗ (M∗R)d. (20)

For M∗R very large the induced Planck scale is large and the gravitational strength is weak

because the flux lines spread into the additional dimensions and are diluted. An alternative

version of extra dimensions involves a warp factor that suppresses the fundamental mass

scale observed in our locality even though the theory has a fundamental large Planck scale

6 By measuring the mass at two different scales, Q2
1,2, one can establish the existence of this term.
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[64, 65]. In both cases there will be Kaluza Klein modes at the TeV scale that will signal a

departure from the SM.

• The Higgs is a (Pseudo) Goldstone boson [51]. The SM Higgs is associated with a spon-

taneously broken global symmetry factor of this group and, if it were an exact symmetry,

it would be massless. However the global symmetry is broken in the SM by gauge inter-

actions so the Higgs becomes a pseudo-Goldstone mode with a suppressed mass. Being

only slightly suppressed compared to the underlying scale of new physics, this addresses the

“little-hierarchy problem” explaining why we have not seen new physics below a TeV but

not the large hierarchy problem explaining how Planck or GUT scale masses are avoided.

• The Higgs is protected by supersymmetry (SUSY). In this case the SM Higgs doublet belongs

to a supermultiplet with a doublet fermion “Higgsino” partner. Supersymmetry requires the

mass of the Higgs is the same as the mass of the Higgsino and, if there is a chiral symmetry

forcing the fermion Higgsino to be massless, the Higgs will be massless too. This solution

requires all the states of the SM to have SUSY partners and the fact they have not been seen

requires that they acquire a mass of O(1TeV ) or greater. The graphs of Fig 8 with the heavy

SUSY states in the loop serve to eliminate the quadratically divergent contribution to the

Higgs mass7. However, being massive, these new states introduce a little “real” hierarchy

problem with, for example, the residual Higgs mass contribution coming from the top, stop

loop given by

δt+t̃M2
H =

h2
t

8π2

(
m2
t ln(

Λ2

m2
t

)−m2
t̃

ln(
Λ2

m2
t̃

)

)
(21)

This is already uncomfortably large for mt̃ = O(1TeV ). In Section 10 I will give a quanti-

tative estimate of the little hierarchy problem in SUSY.

V. “JUST” THE STANDARD MODEL

The discovery of the SM Higgs has immediate implications for the possibility the SM is com-

plete, as was illustrated in Figure 4. One may see that if the top quark mass is at the lower end of

its range the model could be complete to the Planck scale because the quartic coupling does not

become negative over the range. As we discussed the quadratic divergence in the Higgs mass is

not physical and the theory is defined by the renormalised mass. If the theory is classically scale

invariant this mass vanishes but then the question is how the EW breaking scale is generated.

An elegant answer was given by Coleman and Weinberg (CW) [25] who showed how radiative

corrections can lead to spontaneous symmetry breakdown.

They presented the simple example of classically scale invariant scalar electrodynamics and

determined the scalar potential arising from the graphs of the type shown in Figure 9:

7 For example, due to SUSY, the top squark has the same couplings as the top quark in the couplings of Fig 17

but, being a scalar, has a relative minus sign in the loop contribution relative to the top fermion loop and thus

cancels the quadratic divergence.



13

FIG. 9: Radiative contributions to the Higgs potential in scalar electrodynamics.

V =

{
λ

4!
φ4 +

3e4

64π2
φ4 ln

φ2

M2

}
=

3e4

64π2
φ4

(
ln

φ2

〈φ〉2
− 1

2

)
(22)

Here M is the scale at which the quartic coupling is defined. One may see that the radiative

corrections drive the potential negative at some lower scale and it has a minimum at a point

φ =< φ > very close to this crossing point. This generates dynamical spontaneous symmetry

breaking8 of the classical scale invariance and generates a mass for both the “photon” and the

scalar given by

m2
φ =

3e2
φ

8π2
m2
γ � m2

γ (23)

Unfortunately this cannot be immediately applied to the SM as the scalar is much lighter than the

gauge boson but many models have been constructed that do generate acceptable EW breaking

via dynamical transmutation. I will give an example of this below.

In building “Just the SM” (JSM) it is essential that there should be no very heavy particles

significantly coupled to the Higgs to avoid the “real” hierarchy problem. However there are several

shortcomings of the SM that require new physics and the question is whether these can be avoided

by extending the SM to include only light states. The most pressing questions to be answered are

• Neutrino masses?

• Baryogenesis?

• The strong CP problem?

• Dark matter?

• Gravity?

8 The generation of the symmetry breaking scale from the running of dimensionless couplings is often referred to

as “dynamical transmutation”.
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A. Neutrino masses

If we add RH neutrinos to the SM, neutrino masses can be generated via the Lagrangian

Lmass = halaνRaH +
Mab

2
νTRaC νRb (24)

The first term is a Dirac mass, the analogue of the mass term for quarks and charged leptons.

The second term is a Majorana mass term that violates lepton number but is allowed by the SM

symmetry as the RH neutrinos are SM singlets. In GUTs the Dirac mass, mD, can be comparable

to the charged lepton masses but the smallness of neutrino mass is due to the choice of the

Majorana mass, M , close to the GUT scale. In this case the couplings generate a Majorana mass

for the LH neutrino states that is suppressed relative to the Dirac mass by the factor mD
M

and is

very small - the “see-saw” mechanism [39, 58, 72].

In the JSM one cannot allow such heavy Majorana masses but it is still possible to use the

see-saw mechanism with light RH neutrinos if the Dirac couplings, ha are ultra weak. For example

for a 20GeV RH neutrino it is necessary to choose ha ∼ 10−14 to get viable LH neutrino masses

in the range 0.1− 0.01eV . Such small couplings are technically natural as the Dirac couplings are

protected by a chiral symmetry and so radiative corrections will not drive the masses larger.

B. Baryogenesis

There have been several suggestions for producing the observed baryon excess via only low mass

states. Here I give one possibility [5] that follows immediately from the terms in eq(24) generating

neutrino masses. In the early universe, at temperatures above the RH neutrino masses, the Yukawa

interactions of eq(24) produce a lepton number conserving thermal abundance of the right handed

neutrinos.

LA = LB = LC = 0 (25)

where A,B,C label the three families. These neutrinos oscillate in the usual way with family

changing interactions and, with CP violating terms in the RH neutrino sector, will cause asym-

metric abundances to develop while, of course, preserving overall lepton number.

LA,B,C 6= 0, LA + LB + LC = 0 (26)

Consider the case that the interactions are such that, say, only νR,C drops out of thermal equi-

librium at a temperature T1 above the electroweak scale at which the baryon- and lepton-number

violating sphaleron interactions 9 drop out of equilibrium. In this case in the period between T1

and the electroweak scale the sphalerons will only convert the non-zero lepton number in the A,B

channels to a non-zero baryon number

∆L AB = LA + LB → ∆B = ∆L AB/2. (27)

9 Sphalerons [52] in the SM non-perturbatively generate B + L violating, B − L conserving interactions [53] that

are in thermal equilibrium above the EW breaking scale
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For a range of choices of the couplings ha giving acceptable neutrino masses the mechanism is able

to generate the observed baryon asymmetry [5]. A bonus to the mechanism is the possibility that

the lightest of the RH neutrinos is the dark matter of the universe. It turns out that this is possible

but the parameter choice needed requires a resonant enhancement of baryogenesis through near

degeneracy of two of the RH neutrino states [18]. However if another state, such as the axion, is

the dark matter the original mechanism is perfectly viable.

C. The strong CP problem

One of the puzzles of the SM is the absence or near absence of a strong interaction term allowed

by the symmetries of the SM. This is the CP violating θ term formed from the gluon field strength

Ga
µν

Lθ =
θ

32π2
Ga
µνG̃

aµν , θ ≤ 10−10?? (28)

This term contributes to the neutron dipole electric moment and the bound on its coefficient

follows from the need to suppress its contribution below the observed experimental limit. The

question is why should this term be so suppressed? This is all the more difficult to understand

as there are unacceptably large contributions to θ coming from the fermion sector that arises via

the triangle anomaly contribution to eq(28).

The most promising solution to the strong CP problem is to make θ a dynamical variable that

is made small when minimising its potential [63]. This requires adding additional fields. The way

relevant to the construction of the JSM [6] is to have two Higgs complex scalar doublets H1,2

which give masses to the up and to the down quarks and leptons respectively together with a SM

singlet complex scalar field S [30]. The interaction amongst these fields is given by

V (H1, H2) =
λ1

2
|H1|4 +

λ2

2
|H2|4 + λ3|H1|2|H2|2 + λ4

∣∣∣H†1H2

∣∣∣2
+ζ1|S|2|H1|2 + ζ2|S|2|H2|2 + ζ3S

2H1H2 + ζ4|S|4 + h.c. (29)

Demanding that the theory be invariant under a PQ symmetry [63] that rotates the phase of

the up quarks relative to the down quarks requires that H1,2 have different phase rotations and

this phase is in turn communicated to the S field when demanding the potential in eq(29) also

be invariant under the PQ symmetry. As a result the singlet field S =
(
Ŝ + fa

)
ei

a
fa contains

the axion, a, that replaces θ in eq(28)10. Up to small weak interaction corrections the vacuum

expectation value (VEV) of a is set to zero when minimising the axion potential [71] thus solving

the strong CP problem.

The axion interacts with matter and has been intensely searched for; it also contributes to the

dark matter abundance which must not become too large. From the direct searches and cosmology

10 This is due to the triangle anomaly involving the quarks which couple to a. The bare θ term can be absorbed

into a by a field redefinition.
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one establishes a bound on its coupling strength determined by fa, the VEV of S, given by

1010GeV ≤ fa ≤ 1012GeV. (30)

Note that this large scale puts strong constraints on the couplings of the S field, requiring them

to be ultra weak

ζ1,2,3 ≤ 10−20

(
1012GeV

fa

)2

. (31)

However the ultra weak couplings are technically natural because the couplings can be forbidden

by the shift symmetry S → S + δ.

In the case of the JSM the origin of the high scale is problematic as there are no explicit

mass terms allowed by classical scale invariance. Luckily dimensional transmutation offers a scale

invariant origin to this.

Consider the S scalar potential including radiative corrections that follows from eq(29):

VDFSZ(H1, H2, S) ' λ1

2

(
|H1|2 +

ζ1

λ1

|S|2
)2

+
1

64π2

(
ζ2|S|2

)2
(
−1

2
+ ln

|S|2

f 2
a

)
+
λ2

2
|H2|4

+ζ3S
2H1H2 + h.c. (32)

where ζ2 > ζ1 > ζ3 is assumed. The second term is of the form of eq(22) and has a minimum

at < S >= fa where fa is determined by the initial value of the ζ2 coupling at the initial scale

M . Since these are not determined we may treat fa as a free parameter and choose it to satisfy

eq(30). The model has 7 additional Higgs scalar states beyond the SM, one of which is the axion.

The remaining fields have mass

m2
H = m2

H± = m2
A = − ζ2

2ζ1

m2
h (33)

where mh is the state identified with that found at the LHC, and an anomalously light state - the

pseudo dilaton |S| with mass

m2
|S| = −

(
ζ2

2

32π2ζ1

)2

m2
h ' 13

(
1012GeV

vS

)2(
mH2

mh

)4

eV 2 (34)

Thus we see that the solution to the strong CP problem requires new light Higgs states. Because

the couplings to the singlet S are ultra weak the collider phenomenology is independent of these

couplings and is that of the Type II 2 Higgs doublet models but with a restricted mass spectrum

as in eq(33). The light dilaton abundance turns out to be acceptable but it cannot be dark matter

[6]. It may be that axion-like searches may be sensitive to it too but this has not yet been studied.

The axion solves the strong CP problem and, depending on the value of fa, may be the dark

matter. There is a potential problem with axionic domain walls but it can be avoided through

additional ultra weak PQ breaking interactions that are expected if the PQ symmetry is discrete

rather than continuous [6].
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D. Gravity

There remains the question whether it is possible to avoid the hierarchy problem in the JSM

in the presence of gravity. Gravitational corrections to the Higgs mass are absent if one ignores

the Higgs interactions because then the theory has a shift symmetry H → H + δ that forbids the

mass. Thus gravitational corrections must involve Higgs couplings that break the shift symmetry

and thus appears first at two loop order δm2
h ≈ LGNΛ4

G where ΛG is the cut-off of the quadratic

divergence associated with the non-renormalisable gravitational interaction and L contains the

loop factors and the SM Higgs couplings.

In the case of a classically scale invariant theory GN is replaced by φ2 where φ acquires a Planck

mass VEV. The divergent radiative contributions to the Higgs mass proportional to powers of

ΛG are not measurable and combine with the counter term to make up the renormalised mass

that is zero due to the scale invariance. Of course the scale invariant coupling εφ2|H|2, that is

invariant under the symmetries of the theory, must be ultra-weak to keep the Higgs light but this is

technically natural if it is protected by the the shift symmetry φ→ φ+ δ. There are gravitational

radiative corrections to the coupling but they do not come from the graviton coupling to the

unsuppressed kinetic term of φ, which is invariant under the shift symmetry. However they are

only generated by the graviton coupling to λφ4 interaction that violates the shift symmetry. Thus

λ will also have to be ultra-weak but this is also technically natural being protected by the shift

symmetry. Thus if the couplings ε and λ are ultra-weak gravitational corrections to the Higgs

mass will not generate an unacceptable contribution to the Higgs mass.

VI. SUPERSYMMETRY

By now, there are many excellent introductions to SUSY and the MSSM. One I particularly

like is “A supersymmetry primer” by S. Martin [57] that is available on the web. For a recent

impressive review of the theory and phenomenology of SUSY and extensive references see the

book “Theory and Phenomenology of Sparticles” by M.Drees, R.Godbole and P. Roy [31].

The supersymmetric solution to the hierarchy problem is based on N = 1 SUSY with a single

SUSY generator, Q, acting on either chiral supermultiplets that contain a complex scalar, φ, and

a two component Weyl fermion, ψ or a vector supermultiplet containing a gauge field, Aµ and a

Weyl fermion, χ: (
ψ

φ

)
,

(
Aµ
χ

)
l Q

The resulting spectrum for the Minimal Supersymmetric Standard Model (MSSM) is shown in

Figure 10(I), the squarks and leptons partners of the quarks and leptons assigned to chiral super-

multiplets, and the gluinos, Winos, Zino and photino partners of the W, Z and photon assigned to

gauge supermultiplets. In order to generate fermion masses and to satisfy anomaly cancellation it

is necessary to extend the SM to include two Higgs doublet representations, Hu,d, which generate

the up and down masses respectively. These states are assigned to chiral supermultiplets with

the Higgsinos their SUSY partners. Note that, as the group structure is a simple direct product,
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Hu  H
! u

Hd  H
! d

(I)

Gauge	
  

Yukawa+F-­‐terms	
  

(II)

FIG. 10: (I) The MSSM spectrum (II)Interactions in the MSSM.

SU(3) × SU(2) × U(1) × N = 1 SUSY , the SM quantum numbers of the new SUSY states are

the same as their SM partners. The gauge and Yukawa interactions of the new SUSY states are

shown in Figure 10(II), with couplings the same as the related SM couplings.
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A. SUSY GUTs

The GUTs discussed in Section III have very heavy states that couple strongly to the Higgs.

As a result they suffer from the “real” hierarchy problem and cannot have the EW breaking scale

far below the GUT scale. For this reason they must be modified to include low-scale SUSY to

protect the Higgs mass from GUT scale corrections. This is readily achieved by assigning all

the GUT states to N=1 vector or chiral supermultiplets with SUSY partners carrying the same

GUT quantum numbers. These new SUSY states change the GUT phenomenology in significant

ways. For example the prediction for gauge coupling unification is changes because, to solve the

hierarchy problem, the SM partner states of Figure 10(I), must be light, ≤ O(1TeV ), and so

contribute to the running of the couplings up to the GUT scale. Since their gauge quantum

numbers are determined there is no freedom in this apart from the precise choice of the masses of

the new SUSY states. However the prediction is not very sensitive to this choice as the running is

over some 16 orders of magnitude while the uncertainty in the SUSY spectrum is only of a single

order. The result of including the SUSY states is shown in Figure 11 where it may be seen that
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FIG. 11: The SUSY GUT evolution of the gauge couplings below the SU(5) unification scale

the couplings unify very precisely, a dramatic improvement over the non-SUSY result shown in

Figure 7.

The prediction for fermion masses and mixings follows similar lines to that discussed In Section

III, modified by the changes in the radiative corrections due to the additional SUSY states,

although in this case the change is not dramatic [66].

Having constructed a SUSY GUT that addresses the real hierarchy problem we are now in

a position to discuss the new BSM processes that are due to the new X and Y bosons (and

their SUSY partners) predicted by SU(5). Figure 12a is given by X vector boson exchange and

generates a dimension 6, four fermion, interaction. The amplitude is suppressed by M−2
X and

for MX > 1016GeV the lifetime to the dominant decay mode is given by τp→π0+e+ > 1034years.



20

1
Λ
QQQL F

FIG. 12: Graphs generating nucleon decay in SUSY GUTs

Figure 12b only occurs in the SUSY version as it involves squarks and sleptons11. It is generated

by fermion exchange and generates a dimension 5, two fermion two scalar interaction that is only

suppressed by one power of the exchanged particle (the coloured Higgsino partner of the coloured

Higgs that is needed to complete the 5 dimensional representation of SU(5)). Writing Λ as the

combination of the Higgsino mass with the inverse of the the Higgsino couplings involved in the

diagram this operator is suppressed by a single power of Λ. The dominant Higgs cpupling is to

heavy states and so the leading proton decay channel is p → K+ + ν̄ and to satisfy the present

experimental lifetime bound τp→K++ν̄ > 3× 1033years one needs Λ > 1027GeV ! Even though Λ is

increased by small Yukawa couplings, it is difficult to reconcile this bound with a Higgsino mass of

order the GUT scale. If the underlying theory is a string theory the problem is even more severe

because one expects string scale mass (of O(MPlanck) ∼ 1018GeV ) coloured Higgs triplets to couple

unsuppressed to the SM states. However the amplitude requires coupling between the Higgsino

states coupling to the up and down sectors and it is possible that the underlying theory has a

symmetry that suppresses the amplitude. To study this we turn to a discussion of the additional

symmetries that SUSY models may have.

B. SUSY extensions of the Standard Model

The SM symmetries allow the following terms of dimension ≤ 4 terms in the superpotential

W = hELHdE + hDQHdD + hUQHuU + µHdHu

+λLLE + λ′LQD + κLHu + λ′′UDD

+
1

M

(
QQQL+QQQHd +QŪĒHd + LHuLHu

)
(35)

The terms of the first line are of dimension 4 in the Lagrangian and are needed to generate fermion

masses and the Higgsino mass. However the latter should be of order the electroweak scale but

11 This is the F-term of a QQQL operator, for details see [57].
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the symmetries allow an arbitrarily high scale, the “µ’ problem. The terms in the second line

are also dimension 4 and are baryon- or lepton-number violating. If both types are present they

generate nucleon decay suppressed in amplitude only by the square of a squark mass, completely

unacceptable. The last line lists dimension 5 operators. The first violates both baryon- and lepton-

number and generates proton decay and, as discussed in the last Section, required a suppression

scale so high that it is preferably to suppress it. The second and third term violate baryon

and lepton number respectively while the last term, which violates lepton number, is needed to

generate Majorana mass for the LH neutrinos by the see-saw mechanism.

To obtain a phenomenologically viable theory it is necessary to suppress some of these oper-

ators via additional symmetries. The simplest possibility is via discrete symmetries and various

possibilities have been suggested:

R-parity In the MSSM it is assumed there is a Z2 discrete symmetry12, “R” parity, under

which only the Higgs supermultiplets are even [36]. This kills the terms in the second line but

allows the “µ” term and all the dimension 5 terms. It also implies a very important restriction on

SUSY phenomenology for it requires that the SUSY states can only be pair produced and that

the lightest SUSY state (LSP) is stable and is a dark matter candidate.

Baryon parity An alternative “Baryon parity” is based on a Z3 discrete group under which

the supermultilet charges are Q = 1, D, Hu = α, L,E, U,Hd = α2 with α the cube root of

−1 [49]. This forbids the baryon number violating operator in the second line and the first two

dimension 5 operators. While baryon parity avoids nucleon decay it still requires that the lepton

number violating coefficients be very small to be consistent with the bounds on lepton number

violation. It also allows the µ term and an unstable LSP.

Proton hexality The Z6 combination of these two symmetries is more promising as it forbids

all lepton- and baryon-number terms apart from the necessary last term responsible for neutrino

masses [32]. However it still allows the µ term leaving the question why it should be only of order

the electroweak scale unanswered.

Discrete R-symmetry The simplest way of avoiding the µ problem together with the baryon-

and lepton-number violating terms requires an “R“ symmetry under which the upper and lower

components of a supermultiplet have charge differing by unity; in this case the superpotential

should have charge 2 under the symmetry.

There is a ZR
4 choice for an R-symmetry that commutes with the SO(10) GUT and avoids the

µ term[55, 56]. In this the quark and lepton supermultiplets carry R-charge 1 while the Higgs

supermultiplets are neutral. One may readily check that the µ term together with baryon- and

lepton-number violating operators, apart from the one generating neutrino masses, do not have

R-charge 2 and are forbidden. This scheme also generates a µ term of the correct magnitude

because, in the local SUSY case, the VEV of the superpotential is the order parameter for SUSY

breaking with the graviton mass, m3/2, given by m3/2 =< W > /MPlanck. Since the superpotential

carries R-charge 2 this VEV breaks the Z(4)R symmetry to Z(2) R-parity. Then the operator

HuHdW/M
2
Planck generates a µ term of O(m3/2).

12 All the discrete symmetries discussed here are discrete gauge symmetries in the sense that they are discrete

anomaly free [49].
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Since the dimension 4 terms are now forbidden only the dimension 6 operator of Figure 12a

contributes to proton decay with the dominant channel. The current experimental bound is

τSuperKp→e+π0 > 1 × 1034yrs. This requires MX > 6 × 1015GeV for the SU(5) gauge boson mass to be

compared with the unification scale MU = (2.5± 2).1016GeV . Thus the expectation of the SU(5)

SUSYGUT with the Z(4)R symmetry is that the proton decay lifetime should be very close to the

present limit.

C. SUSY and flavour physics

In supersymmetric models flavour changing and CP violating effects can be significantly en-

hanced relative to the SM, driven by processes involving squarks and leptons. In particular such

models introduce new sources of CP violation such as the phase of the µ term or of the diagonal

A0 parameters which, if unsuppressed, lead to unacceptable electric dipole moments (EDM) - the

SUSY CP problem. They may also generate significant favour changing neutral currents (FCNC)

leading to processes such as K0, K̄0 mixing and µ → eγ. The latter may be suppressed by

demanding that at least the first two families of squarks and leptons be degenerate 13 as in the

CMSSM or in models with an underlying family symmetry. This implements a GIM cancellation

in the scalar sector in a similar manner to that in the fermion sector. Even so significant FCNC

can be generated through the running of the scalar masses from the initial scale to the EW scale.

The SUSY CP problem is more difficult to control. Initially it was argued that the CP violation

could be made small through cancellations between different terms but this introduces further fine

tuning and is not very satisfactory. A much more natural solution follows if one can build a SUSY

model that approximates minimal flavour violation (MFV) in which the origin of CP violation

is via Yukawa couplings in the flavour changing sector where it is observed to be large. In this

case the CP violation in the flavour conserving sector that generates EDMs results from processes

involving two flavour changing vertices and hence is suppressed by powers of small mixing angles.

Models achieving this can be built using a family symmetry to generate viable Yukawa couplings

and their related masses and mixing angles. In this case one starts with a CP invariant theory

(compactified 4D theories in string theory often are CP invariant - CP being a discrete relic of the

higher dimensional Lorentz group). CP is then spontaneously broken by the familon vevs that

spontaneously break the family symmetry [69]. Via the Froggatt Nielsen mechanism the familions

generate the (CP violating) Yukawa couplings. The resulting models do not realise exact MFV

as the soft A-terms do not have exactly the same structure as the Yukawa couplings and lead

to additional FCNC and CP violating effects. However these corrections are also suppressed by

powers of small mixing angles.

Detailed estimates for various SUSY models of this type have been made. The most challenging

channels turns out to be the EDMs and µ → eγ. As an example of the expected rates we con-

sider a supergravity model with an SU(3) family symmetry that, while unbroken, guarantees the

13 Strictly the degeneracy need only apply to the left- and right- up- and down- squarks and leptons separately.



23

degeneracy of squarks and sleptons in a given representation of the gauge group 14. CP violating

and flavour changing couplings are generated when the symmetry is spontaneously broken. Then

the rate for µ→ eγ characterised by the mass insertion parameter, |(δ`LR)12| [11] is given by

|(δ`LR)12| ≈ 1× 10−4 A0

100 GeV

(200 GeV)2

〈m̃l〉2LR
10

tan β

(
ε

0.13

)3

|y1| |x123 − x23 − xΣ| . (36)

where ε̄ is the expansion parameter determining the mixing in the down quark charged lepton sector

[66] (of the order of the Cabibbo angle) and y1 and x123,23,Σ are parameters that are typically of

order 1. y1 is the coefficient of the leading super potential term generating the lepton mixing

and x123,23,Σ are the coefficients multiplying the natural magnitudes of the F-terms of the familon

fields. For the EDM one finds for the relevant mass insertion parameters

|Im(δuLR)11|≈2×10−7 A0

100 GeV

(
500 GeV

〈m̃u〉LR

)2(
ε

0.13

)3( ε

0.05

)2

|yf1 + yf2 | |x123 − x23 − xΣ| sinφ1,

|Im(δdLR)11|≈5×10−7 A0

100 GeV

(
500 GeV

〈m̃d〉LR

)2(
ε

0.13

)5
10

tan β
|yf1 + yf2 | |x123 − x23 − xΣ| sinφ1, (37)

|Im(δ`LR)11|≈2×10−7 A0

100 GeV

(
200 GeV

〈m̃e〉LR

)2(
ε

0.13

)5
10

tan β
|yf1 + yf2 | |x123 − x23 − xΣ| sinφ1,

where ε is the expansion parameter determining the mixing in the up quark sector, yfi are the

analogues of y1 in the quark sector and φ1 is a CP phase associated to the VEV of the relevant

familon field.

The present experimental bound from the non-observation of µ → eγ is |(δ`LR)12| ≤ 10−5

which is in some tension with this bound requiring, for example, m̃l = 600 GeV if the remaining

factors in Eq. (36) are of O(1). For the EDMs the most stringent bound comes from mercury and

corresponds to |Im(δdLR)11| < 6.7 × 10−8 and requires m̃d = 1500 GeV if the other factors are of

O(1).

It is interesting that the SUSY mass scales needed for consistency with experiment are close to

the increased mass scales needed to accommodate the 125 GeV mass discussed above, suggesting

that the experimental limits may be quite close to the actual rates! Of course this depends on

the O(1) assumption for the values of the parameters; while this is the most natural value for the

parameters there is a mechanism capable of suppressing the rates a bit more, by an extra power

of ε in |Im(δuLR)11| and of ε in |Im(δdLR)11| and |Im(δlLR)11| respectively (for further details c.f. [8])

D. The little hierarchy problem in SUSY

In SUSY the Higgs quartic coupling is not a free parameter but is determined by the gauge

couplings. As a result the Higgs mass is determined and given by [45]

14 For a more general analysis and comparison with MFV expectations, see [54]
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m2
h ' m2

Zcos22β +
3

(4π)2

[
ln
M2

S

m2
t

+
X2
t

m2
t̃

(
1− X2

t

12m2
t̃

)]
(38)

where M2
S = mt̃L

mt̃R
, Xt = A0 − µ cot β, A0 is the coefficient of the soft SUSY breaking trilinear

terms in the superpotential, m̃i are the SUSY breaking masses and the parameters are evaluated

at the EW scale. From this one may see that to get large radiative corrections requires a large

stop mass and/or Xt, leading to very heavy coloured SUSY states in the TeV range. While SUSY

GUTs allow for a Higgs to be much lighter than the unification scale there remains a problem in

that there is a tension between the lower limits on SUSY particles masses coming from eq(38) and

from experimental bounds and the requirement that the EW scale be acceptable. In particular

there are corrections to m2
Hu

that sets the EW scale given by

δm2
Hu ' −

3y2t
4π2

(
m2
stop + g2s

3π2m
2
gluino log

(
Λ

mgluino

))
log
(

Λ
mstop

)
(39)

where Λ is the cut-off scale that in a SUSY GUT is the unification scale. These corrections drive

the EW breaking scale near the squark and gaugino mass limits, uncomfortably large - this is the

little hierarchy problem.

1. Fine tuning measures

In order to quantify the fine tuning needed to keep the electroweak scale much lower than the

SUSY masses several fine tuning measures have been suggested [14, 34]. Two frequently used are

∆m and ∆q where

∆m = max
∣∣∆γi

∣∣, ∆q =
(∑

∆2
γi

)1/2

, ∆γi =
∂ ln v2

∂ ln γ2
i

, γi = m0,m1/2, µ0, A0, ... (40)

Here the basic measure ∆γi roughly determines the relative magnitude of the terms contributing

to the Higgs mass proportional to the parameter γi. A value of 100 means that the cancellation

should be accurate to 1 part in 100. Typically one term dominates in which case ∆m and ∆q are

nearly equal but in the case that there are several comparable terms ∆q would seem the more

reasonable measure.

Of course the difficult question to answer when using such measures to limit the SUSY spectrum

is how large the fine tuning measure can reasonably be? However it has recently been shown how

the measure arises when performing a likelihood fit to the data [17, 43, 44] and this allows us

to give a quantitative estimate for acceptable fine tuning. In particular the integration over the

nuisance variable corresponding to the constraint requiring the W mass be as measured has the

likelihood inversely proportional to ∆q times the unconstrained likelihood.

This shows that it is the constrained likelihood that should be maximised when fitting data,

i.e. one should maximize the ratio of the unconstrained likelihood to the fine tuning ∆ (∆ = ∆γκ

or ∆q). If the fine tuning is large it reduces the overall likelihood. In terms of the associated χ2

(χ2
new) and unconstrained (χ2

old) likelihoods are related by
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χ2
new = χ2

old + 2 ln ∆. (41)

This relation can be used to infer what can be regarded as the “acceptable” upper bound of the

fine tuning requiring that ∆γκ � exp(Nd/2) where Ndf is the number of degrees of freedom. If

this is satisfied then χ2 per degree of freedom will not be significantly worsened. For simple SUSY

extensions of the SM such as the CMSSM Ndf = O(10) which requires ∆ << 100 [44].

E. Fine tuning of the CMSSM

The “Constrained” MSSM is the name given to the MSSM with a particular choice of SUSY

breaking parameters corresponding to a common scalar mass, m0, a common gaugino mass, m1/2,

plus trilinear and bilinear scalar couplings A0W̃
3 and B0µHuHd, where W̃ 3 is the trilinear super-

potial with the superfieds replaced by their scalar components.

FIG. 13: Two-loop fine-tuning versus Higgs mass for the scan over CMSSM parameters with no
constraint on the Higgs mass. The solid line is the minimum fine-tuning with (αs,Mt) =

(0.1176, 173.1 GeV). The dark green, purple, crimson and black coloured regions have a dark
matter density within Ωh2 = 0.1099± 3× 0.0062 (i.e. 3σ saturation) while the lighter coloured

versions of these regions lie below this bound. The colours and their associated numbers refer to
different LSP structures as described in the text. Regions 1, 3, 4 and 5 have an LSP which is

mostly bino-like. In region 2, the LSP has a significant higgsino component.

In the CMSSM the Higgs mass is given by eq(38). The heavier the Higgs mass is the larger

the radiative correction that is needed. Before the LHC start-up the bound on the Higgs mass

was 114 GeV corresponding, for small Xt, to MS ≈ 500 GeV . The measurement of the Higgs

mass close to 126 GeV increases this to Ms ≈ 1TeV . Thus the Higgs discovery has pushed the
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SUSY threshold for the stops (or for Xt) up and this leads to the need for significantly greater

fine tuning. Of course one must also allow for the Xt contribution and perform a fit to all the

available data. The result of such a fit [20] that was performed before the LHC start-up is shown

in Figure 13 where the fine tuning, ∆ ≡ ∆m, is shown as a function of the Higgs mass; note that

the LEP bound on the Higgs mass was not included in the fit. The origin of the structure is due

to two factors: the fall as the Higgs mass increases is due to the fact that the effective quartic

interaction, λeff , increases, reducing the sensitivity of the EW breaking vev, v2 = m2
eff/λeff to

changes in λeff . The sharp rise as the Higgs mass further increases is due to the fact that the

sensitivity of mHu to m0 increases rapidly as Q2 ∼ mh2 grows above 115 GeV 2.

It is instructive to see the origin of this sensitivity. The dominant terms in the RG equation for

m2
Hu

, that sets the EW scale, involving m0 are those proportional to the square of the top Yukawa

coupling, yt and can be integrated to give

m2
Hu

(
Q2
)

= m2
Hu

(
M2

X

)
+

1

2

(
m2
Hu

(
M2

X

)
+m2

Q3

(
M2

X

)
+m2

u3

(
M2

X

))( Q2

M2
X

) 3y2t
4π2

− 1

 (42)

= m2
0

1 +
3

2

( Q2

M2
X

) 3y2t
4π2

− 1

 (43)

where we have used the fact that in the CMSSM all the scalar masses are equal unification scale.

When the factor in square brackets is -2/3 the coefficient of m2
0 vanishes - this is known as the

focus point (FP) [37]. Remarkable the focus point is close to the electroweak scale! Clearly the

appearance of the focus point affects the bounds on the SUSY spectrum coming from the hierarchy

problem because the dependence of the scalars, the squarks and sleptons, on m2
0 is suppressed and

consequently, for models with the focus point, they can be much heavier than the Higgs. This

nicely illustrates how correlations amongst the initial parameters can significantly reduce the fine

tuning needed.

Also shown in Figure 13 is the dark matter abundance, colour coded [20] according to the

dominant annihilation mechanism. The purple points with low fine tuning lie close to the focus

point discussed above and one may see that, before the LHC startup, there were points in the

parameter space scan with fine tuning less than 10, close to the LEP bound on the Higgs mass.

As noted above, the points in the FP region have significant Higgsino component and the lowest

fine tuned points are in conflict with the XENON100 bounds. However the most significant effect

ruling out the low-fine-tuned points is the measurement of the Higgs mass giving

∆CMSSM
Min > 350 , mh = 125.6± 3GeV, (44)

unacceptably large given the constraint of eq(41).

F. Beyond the CMSSM

Of course the CMSSM is only one particular version of the MSSM, expressing the more than

100 SUSY parameters in terms of just 5. One may ask if there are other MSSM parameter choices
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with lower fine tuning that remain to be tested. However this is not so easy as the CMSSM has

the scalar focus point that, c.f. eq(43), de-sensitizes the EW breaking scale to the common scalar

mass m2
0 and, in this sense, represents the class of models capable of minimising, at least part,

of the fine tuning measure. In contrast gauge mediated supersymmetry breaking models do not

have a common scalar mass and as a result the fine tuning in them is typically much larger [1]

even though they may have a lower initial scale, MX .

To do better than the CMSSM requires identifying a systematic way to reduce fine tuning. In

the following subsection we discuss whether the fine tuning can be reduced by theoretically well-

motivated modifications of the CMSSM boundary conditions for the SUSY breaking parameters.

In the second subsection we consider the possibility that the fine tuning is reduced through an

extension of the particle content of the MSSM.

1. Natural SUSY

In natural SUSY the universality of squark masses is relaxed with much lighter stop squarks

than those associated with the first two generations [24, 29]. As we discussed in Section VI C the

suppression of flavour changing neutral currents and CP violating effects place strong constraints

on the first and second generation squarks favouring their mass to be in the TeV region. However

the constraint on the stop squarks is very mild and this has led to the suggestion that they may

be quite light, much less than a TeV . This is consistent with present LHC bounds due to the

reduction in the ET missing signals compared to that for the first two generation squarks. Since

a large contribution to fine tuning comes from the sensitivity of the EW scale to the stop quark

mass one may hope that fine tuning will be substantially reduced. However this turns out not to

be the case because it is still necessary to have significant radiative corrections to the Higgs mass

to drive it to 126 GeV and, for light stops, this must come from another sector of the theory,

reintroducing large fine tuning. Recent studies [19, 46] find the fine tuning is at least 400 for

the case the initial scale, MX , at which the parameters are defined is close to the GUT scale,

unacceptably large by the criterion in eq(41). Even in the case that the initial scale Λ in eq(39) is

low there is no significant fine tuning advantage of a light stop if the gluino is in the TeV range.

2. Gaugino focus point

The second possibility that has been suggested is that there is a further focus point associated

with the gauginos that reduces the sensitivity of the EW breaking scale to m1/2. This can occur if

the initial values of the gaugino masses have special, non-universal, ratios [48]. It has been shown

that the required ratios are generated in specific GUT or string models and thus should not be

considered as fine-tuned. The origin of the gaugino focus point may be seen from the RG equation

16π2 d

dt
m2
Hu = 3

(
2|yt|2(m2

Hu +m2
Q3

+m2
u3

) + 2|at|2
)
− 6g2

2|M2|2 −
6

5
g2

1|M1|2 (45)

The first term on the RHS implicitly includes the effect of the gluino contribution to the squark

masses. Although this is of higher order, since the QCD coupling is quite large, it gives a significant
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contribution that is comparable to that coming from the last two terms. Indeed if the gluino mass

at the EW scale is similar to that of the Wino there is a cancellation between these terms that

reduces the sensitivity of m2
Hu

to the gaugino masses. Interestingly gauge coupling unification is

also improved for lighter gluino mass due to the additional contribution at low scales of the gluino

in the RG equations [70].

It has been shown [50] that there there are many models that naturally have the gaugino focus

point at the EW scale and so it is interesting to ask how the overall fine tuning is affected. We

consider the case of the MSSM with the CMSSM spectrum modified to allow for non-universal

gaugino masses at the unification scale (the (C)MSSM) and requiring gauge coupling unification.

The result of a fit to all the available data including the DM abundance gives

∆
(C)MSSM
Min = 60 (500) , mh = 125.6± 3GeV, (46)

marginally acceptable by the criterion of eq(41).

Due to the additional flexibility in the gaugino sector, a large variety of LSP compositions

is possible. For points satisfying the relic abundance upper bound the LSP is mainly composed

of wino and higgsino, with typically only a very small bino component. Unlike the case for the

CMSSM the direct detection cross section lies below the Xenon100 limit with the bulk of the points

more than two orders of magnitude below. The correct relic abundance seems to be more easily

achieved with a higgsino like LSP. A recent discussion of the phenomenology of the low-fine-tuned

points can be found in [7].

3. Beyond the MSSM

The MSSM is the minimal extension of the SM, minimal in the sense that the fewest new states

have been included when building a SUSY model. Could it be that non-minimal extensions reduce

the fine-tuning constraints on SUSY and have not yet been experimentally tested?

Operator analysis

A useful way to look such extensions is to allow for a general modification of the MSSM by

adding higher dimension operators that correspond to the effective field theory that results from

integrating out additional heavy degrees of freedom and ask if such operators can reduce fine

tuning. There is a unique leading dimension 5 operator with the form [21]

L =
1

M∗

∫
d2θf(X)(HuHd) (47)

where X = θθm0, θ the superspace parameter [31] and m0 is the SUSY breaking scale.

This gives contributions to the scalar potential of the form

V = (|hu|2 + |hd|2)(χ1huhd + h.c.) +
1

2
(χ2(huhd)

2 + h.c.) (48)

where χ1 = 2f(0)µeff/M∗, χ2 = −2f ′(0)m0/M∗ and µeff is the effective µ term including the

singlet contribution.
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Note that the χ1 term is supersymmetric so there are associated corrections involving Higgsinos

that will generate Higgsino mass terms of the same order of magnitude as the correction to the

Higgs mass terms (once the Higgs acquire their vevs). However in practice these corrections are

going to be of O(10 Gev), important to get a Higgs mass of 125 GeV but small compared to the

Higgsino mass coming from the µeff term. For this reason we concentrate on the effect in the

scalar sector.

The fine tuning of this model has been analysed in [21] where it was shown that the fine tuning

is significantly reduced by the first term of Eq.(48) while the second term only gives a modest

reduction. The dominant effect comes from the contribution of Eq.(48) to the Higgs mass after

electroweak breaking and, due to the fact that the first term involves an extra power of hu, it gives

the larger contribution.

The GNMSSM

The obvious question is what new physics can give rise to the first operator corresponding to

this term. The answer is through the integration out of a new heavy gauge singlet or SU(2) triplet

superfield coupling to the Higgs sector. Interestingly the operator is not generated in the NMSSM,

the simplest singlet extension of the MSSM, as it requires an explicit mass term for the singlet

super field. We refer to this model as the generalised NMSSM (the GNMSSM).

The most general extension of the MSSM by a gauge singlet chiral superfield consistent with

the SM gauge symmetry has a superpotential of the form

W = WYukawa +
1

3
κS3 + (µ+ λS)HuHd + ξS +

1

2
µsS

2 (49)

≡ WNMSSM + µHuHd + ξS +
1

2
µsS

2 (50)

where WYukawa is the MSSM superpotential generating the SM Yukawa couplings and WNMSSM

is the “normal” NMSSM with a Z3 symmetry [35]. One of the dimensionful parameters can be

eliminated by a shift in the vev vs and can be used to set the linear term in S in the superpotential

to zero, ξ = 0.

The form of eq(50) seems to make the hierarchy problem much worse as the SM symmetries

do not prevent arbitrarily high scales for the dimensionfull mass terms. However these terms

can be naturally of order the SUSY breaking scale if there is an underlying ZR
4 or ZR

8 symmetry

[55, 56]. Implementing one of these R-symmetries forbids the last three terms of eq(50) so that,

before SUSY breaking, the superpotential is of the NMSSM form. However, after supersymmetry

breaking in a hidden sector with gravity mediation, soft superpotential terms are generated but

with a scale of order the supersymmetry breaking scale in the visible sector characterised by the

gravitino mass, m3/2. With these the renormalisable terms of the superpotential take the form

[56]

WZR4
∼ WNMSSM +m2

3/2 S +m3/2 S
2 +m3/2HuHd , (51)

WZR8
∼ WNMSSM +m2

3/2 S (52)

where the ∼ denotes that the dimensional terms are specified up to O(1) coefficients. Clearly the

ZR
4 case is equivalent to the GNMSSM. After eliminating the linear term in S the ZR

8 case gives a
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constrained version of the GNMSSM with µs/µ = 2κ/λ. Note that the SUSY breaking also breaks

the discrete R symmetry but leaves the subgroup ZR
2 , corresponding to the usual matter parity,

unbroken. As a result the lightest supersymmetric particle, the LSP, is stable and a candidate for

dark matter.

Fine tuning in the GNMSSM

Fine tuning has been explored in detail for the simplified case of universal boundary conditions

for the SUSY breaking parameters (CGNMSSM) [68]. Note that this goes beyond the operator

analysis as we do not require that the singlet mass is large compared to the other parameters of the

theory and thus cannot be integrated out. However, even allowing for the additional contribution

to the Higgs mass coming from the singlet couplings, the regions of this model corresponding to

low fine tuning have essentially been ruled out by a combination of LHC non-observation of SUSY

and dark matter (DM) abundance. In particular the DM abundance has to be reduced below the

“over-closure” limit and this is dominantly through stau co-annihilation that is only effective for

relatively low m0 and m1/2 and hence sparticle masses in the reach of LHC8.

For the case of non-universal gaugino masses (the (C)GNMSSM) the situation changes because

the LSP can now have significant Wino/higgsino components that ensures its efficient annihilation.

> 200

0

Mgluino

msquark mLSP

Δ

FIG. 14: The fine tuning of acceptable points in the (C)GNMSSM plotted in a) the
msquark, mgluino plane and b) the mLSP , mgluino plane.

The minimal fine tuning after the cuts were imposed is given by

∆Min = 20(25) , mh = 125.6± 3GeV, (53)
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perfectly acceptable by the criterion of eq(41), and there are significant areas of low fine tuning

remaining to be explored by LHC14.

It is of interest to determine why the model is able to evade the current LHC bounds to see if

there are lessons for future searches. In Fig. 14 we show typical masses of the superpartners in

the low fine tuned region. It can be seen that points in blue with fine tuning below 100 can have

gluino masses beyond 2 TeV and squark masses around 3 TeV. The most significant aspect is the

fact that the points have large LSP mass ranging from 550GeV to 1250GeV , corresponding to a

compressed SUSY spectrum that is often the case for non-universal gaugino masses.

FIG. 15: Present and future sensitivity of gluino searches to the LSP mass at the LHC.

The reason these points escape the LHC search is obvious from Figure 15. The current LHC

bound is shown in yellow and one may see that if the LSP is above 550GeV there is no LHC

sensitivity to gluinos. In this example the squarks are taken to be heavier than the gluino but a

similar conclusion applies if the opposite is true. The reason for this structure is a combination of

effects: For gluino masses close to the LSP mass the missing energy is insufficient for the missing

energy searches. For much heavier gluinos the missing energy is substantial but the production

rate drops below the LHC sensitivity.

Will the future runs of the LHC be able to cover the full low-fine-tuned region of Figure 15?

Figure 15 also shows the expected sensitivity at 14TeV . One may see that with 300fb−1 the LSP

sensitivity extends to 1200GeV and with the high luminosity 3000fb−1 it is 1500GeV . Comparing

with Figure 14, one sees that most, but not entirely all, of the the low fine tuned blue-region will
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be probed.

Dark Matter

Direct DM searches 

LUX 

XENON 100 

LSP composition 

FIG. 16: (i)The dark matter direct detection cross section as a function of the neutralino mass.

It has been scaled (i.e. multiplied with (Ωh2)th/0.1199) to account for cases with underabundant

neutralinos. Also shown is the latest bound from XENON100 [9] and LUX [47]. (ii)The dark

matter composition as a function of the relic density. Mostly bino-like LSPs are shown in blue,

mostly Wino-like LSPs are shown in red and mostly higgsino-like LSPs are shown in green. For

all points, in addition to the SUSY and Higgs cuts, a fine tuning ∆ < 100 was imposed.

As mentioned above, the region of parameter space of the CGNMSSM that solves the little

hierarchy problem has essentially been ruled out by a combination of LHC non-observation of

SUSY and dark matter abundance. For the case of non-universal gaugino masses the situation

changes because the LSP can now have significant non-bino component to allow for its efficient

annihilation. In Figure 16 we show the direct detection cross section vs. the mass of the lightest

neutralino together with the latest bound from XENON100 [9] as well as the dark matter compo-

sition as a function of the relic density. In this case direct dark matter searches are only able to

probe a small part of the low-fine-tuned region of parameter space.

VII. THE COMPOSITE SOLUTION TO THE HIERARCHY PROBLEM

The composite solution to the hierarchy problem relies on having a form factor for the Higgs

coupling appearing in Figure 8 that is exponentially suppressed above the composite scale which,

to avoid fine tuning, should be ≤ O(1TeV ). To achieve this there have to be be new composite

resonant states in this mass range that provide characteristic experimental signatures for com-

positeness. The effective field theory describing composite theories below the mass scale of these
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states will have deviations from the SM structure that may show up in precision tests before the

scale for production of the new states is reached.

As an introduction to composite theories and its description as an effective field theory15 it is

helpful to note that, while in the SM the fundamental interactions are symmetric under SU(2)×
U(1), the observed mass spectrum is not. In the SM the masses come from the Higgs interactions

through spontaneous symmetry breakdown that may be written in a chiral Lagrangian form

(without the Higgs boson)

Lmass =
v2

4
Tr
[
(DµΣ)†(DµΣ)

]
− v√

2

∑
i,j

(
uiLd

i
L

)
Σ

(
λuiju

j
R

λdijd
j
R

)
+ h.c. (54)

where Σ contains the would-be Goldstone modes χa that ultimately are eaten by the Higgs mech-

anism to provide the longitudinal degrees of freedom of the massive gauge bosons and

Σ(x) = exp (iσaχa(x)/v) , DµΣ = ∂µΣ− igσ
a

2
W a
µΣ + ig′

σ3

2
Bµ. (55)

In this form the local SU(2)× U(1) invariance is now manifest:

Σ→ UL(x)ΣU †Y (x)

UL(x) = exp (iαaL(x)σa/2) , UY (x) = exp
(
iαY (x)σ3/2

)
(56)

In the unitary gauge 〈
∑
〉 = 1 and then it is clear that ρ ≡ M2

W

M2
Zcos2θW

= 1, a relation that has been

verified to high precision. This relation follows because, c.f. eq(56), after SSB the Higgs sector has

an enlarged custodial symmetry SU(2)L×SU(2)R → SU(2)Custodial under which χa form a triplet

representation. In the chiral Lagrangian form this symmetry forbids the term v2Tr
[∑†Dµ

∑
σ3
]2

that would spoil the ρ = 1 prediction. In building composite models of the Higgs it is important

to maintain the custodial symmetry.

Perturbative Unitarity

However the chiral Lagrangian of eq(54) violates perturbative unitarity as follows directly in

the ξ gauge where one has quartic χ interactions from the gauge fixing terms

LGF = − 1
2ξ

(∂µW
3
µ + ξ gv

2
χ3)2 − 1

2ξ
(∂µBµ + ξ g

′v
2
χ3)2 − 1

2ξ
(∂µW

+
µ + ξ gv

2
χ+)2 (57)

that give the untarity violating amplitude A(χ+χ− → χ+χ−) = 1
v2 (s+t) where s, t are Mandelstam

variables.

15 In preparing this discussion of composite theories I have relied heavily on a superb review “The Higgs as a

Composite Nambu-Goldstone boson” by R.Contino [26] and for a much more detailed discussion and extensive

references to the original work I recommend studying this review.
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The most economical way of restoring perturbative unitarity is to add a SM singlet scalar field

h(x) with the most general couplings of the form

LH =
1

2
(∂µh)2 + V (h) +

v2

4
Tr
[
(DµΣ)†(DµΣ)

](
1 + 2a

h

v
+ b

h2

v2
+ ...

)
− v√

2

∑
i,j

(
uiLd

i
L

)(
1 + c

h

v

)
Σ

(
λuiju

j
R

λdijd
j
R

)
+ h.c. (58)

These give additional contributions to A(χ+χ− → χ+χ−) as shown in Figure 17. In the SM

FIG. 17: Contributions to A(χ+χ− → χ+χ−).

a = b = c = 1 and (c.f. Figure 17) perturbative unitarity is restored. This is due to the custodial

symmetry because χa, h form a linear representation under SU(2)L×SU(2)R. The Higgs potential

is a function of the SO(4) invariant H†H =
∑

i h
2
i and so when one component of h acquires a

VEV we have the breaking pattern

SO(4) ∼ SU(2)L × SU(2)R → SO (3) ∼ SU(2)Custodial (59)

In this case the three would-be Goldstone modes of the SM are those of the quotient group

SO(4)/SO(3). We will see later how this generalised for the case the Higgs is itself a pseudo

Goldstone mode.

In composite models there will be corrections generating deviations from the SM values of a, b, c

because there is no reason to have perturbative unitarity in the presence of new strong interactions.
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These corrections are measurable in Higgs interactions and, as discussed below, there has been

considerable effort to determine their expected magnitude in composite models.

A. Technicolour

Technicolour (TC) proposes that there is a new strong interaction in which the Higgs is a bound

state of new technifermions. It is modelled on QCD which, even in the absence of the Higgs boson,

does spontaneously breaks the SM and give masses to the W and Z. This occurs because QCD

drives a quark condensate < q̄q > at the scale at which it becomes strong which causes the

spontaneous breakdown of the global symmetry of the strong interactions (in the absence of quark

masses)

SU(2)L × SU(2)R × U(1)Baryon #B
< q̄q >

−→ SU(2)V=L+R × U(1)B (60)

with the pions, πa, the (pseudo-)Goldstone modes, Σ(x) = exp(iσaπa(x)/fπ), fπ = 92MeV .

Since the quarks carry SM charges this breaks the SM gauge symmetry SU(2) × U(1) giving W

and Z mass, MW = gfπ/2 = 29MeV , with electromagnetism (Q = T3L + T3R + B/2) unbroken.

The residual symmetry SU(2)V acts as the custodial symmetry16.

Copying this structure Technicolour starts with a new TC group, SU(NTC), with technigluons

coupling to new techniquarks that carry SM charges as well as TC charges. Thus when the TC

drives a techniquark condensate it will spontaneously break the SM group at the scale, v, at which

the coupling becomes large. The RG equation for the TC coupling, starting with the value at the

GUT scale determines the scale, v,

µ
d

dµ

1

g2
TC

(µ) = − β0

8π2
⇒ v =MPlanck exp

(
8π2

g2
TC (MPlanck) (−β0)

)
(61)

and it is assumed in Technicolour that the condensate scale lies at a higher scale than in QCD

with fπ → Fπ = 246 GeV thus generating acceptable W and Z masses. As for QCD, SU(2)V acts

as a custodial symmetry.

However TC has several problems in generating a phenomenologically acceptable model. Apart

from the difficulty in explaining why, unlike QCD, there is a light scalar state to play the role of

the Higgs, it tends to give too large corrections to the variables that are used to provide precision

tests of the SM. For example the S-variable, defined in terms of the vacuum polarisation, gets a

contribtion

S ≡ −16π
∂

∂q2
Π3B

(
q2
)
q2=0
∼ NTCTTechniDoublets

π
≥ O(1) (62)

to be compared to the experimental limit S ≤ 0.3 @ 99% CL.

Another severe problem for TC is the need to generate fermion masses. In TC this requires

an extension of the gauge group under which the SM quarks belong to the same multiplet as

16 However we know that in QCD there is no light scalar resonance to play the role of the Higgs and unitarity is

enforced by a tower of heavy resonances, ρ....
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the techniquarks. This extended technicolour (ETC) group is broken at an new ETC scale

SU(NETC)→ SU(3)C × SU(NTC). The ETC interactions couple the two sectors together giving

Lint =
g2ETC
Λ2
ETC

(qq)(ψTCψTC) so that the TC condensate drives fermion masses

mq =
g2
ETC

Λ2
ETC

< ψTCψTC >∼ Fπ

(
Fπ

ΛETC

)2

(63)

The problem arises because the new ETC interactions also generate new flavour changing neutral

current (FCNC) interactions amongst the SM quarks via the 4-quark operators, (qq)2

Λ2
ETC

. The bounds

on FCNC require ΛETC ≥ 105TeV which is too large to generate acceptable quark masses via

eq(63). While there are suggestions for avoiding this conflict by assuming TC behaviour is not

like QCD, these attempts are not entirely convincing.

B. The Higgs as a pseudo-Goldstone boson

There have been significant recent developments in the study of composite models that ad-

dresses the shortcomings of Technicolour. To try to explain why there should be a light scalar

state with mass below the strong binding threshold it is postulated that the Higgs should be a

pseudo-Goldstone boson with mass zero up to relatively small corrections from interactions not

respecting the underlying global symmetry [51]. To generate fermion masses it is assumed that

fermions are (partially) composite [4, 28]. The composite components of the LH and RH fermions

couple strongly to the composite Higgs, generating the fermion mass. The mass depends on the

fermion composite proportion allowing for an hierarchical fermion mass structure both for the

quarks, charged leptons and neutrinos.

1. Pseudo Goldstone structure

The idea is to generalise the structure below eq(59) to obtain additional Goldstone modes via

the quotient structure G/H. For G = SO(4), H = SO(3) one has the 3 Goldstone modes of the

SM which generate the longitudinal modes W±
L , ZL. The choice G = SO(5), H = SO(3) has 4

Goldstone modes which may be identified with W±
L , ZL, h and clearly one may obtain additional

scalar states by choosing larger groups.

For the case of SO(5)/SO(3) the nonlinear representation has the form

Σ(x) = Σ0 exp(Π(x)/f), Π(x) = −iT aha(x)
√

2 (64)

In this model the coefficients of eq(58) have been computed to give [2, 27]

a =
√

1− ξ, b = 1− 2ξ, ξ ≡ v2

f 2
(65)

The corrections to the SM are already known to be small, ≤ 20%, so it is necessary to choose

f much larger than the Higgs VEV. What about the precision tests? The T ≡ ∆ρ parameter is
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under control due to the custodial symmetry. The S parameter is given by

S ∼ 4π(1.36)

(
v

mρ

)2

(66)

which requires mρ > 2.5TeV for the new composite ρ resonance.

2. Fermion masses

Fermion masses are particularly interesting in this model. The expectation is that the pseudo

Goldstone Higgs is a composite state, a bound state of technifermions as in the TC model. How-

ever it is now understood that it is not necessary to have an ETC group to generate fermion

masses. Instead it is argued that elementary SM fermions will mix with composite techni-fermion

resonances via mixing terms of the form

Lmix = f qαL(λL)αIO
qI
L + f tαR(λR)αIO

tI
L + h.c. (67)

where OL,R are techni-fermion composite operators. As a result of this mixing the fermion mass

eigenstates are “partially composite” [4, 28]:

tmass eigenstateL,R ≈ tL,R + εL,RO
t
L,R, εL,R =

λL,Rf

mψ

(68)

where mψ is the techni-fermion mass. The Yukawa couplings, hqi , of the SM fermions proceeds

through the strong coupling between the composite components of the fermions and the Higgs

and so has the form hqi ∝ εLεR. Thus heavy quark states are dominantly composite in nature

while light quark states are dominantly elementary.

5D Analogue

There is an interesting correspondence between such composite models and higher dimensional

theories that is helpful in understanding composite phenomenology [3]. Consider a field φ in a flat

extra dimension (0 ≤ y ≤ a) with 5D mass parameter, M . The states of the SM are zero modes

in 4D and can be written as φ = φ0(y)eip.x with the 4D momentum satisfying p2 = 0. φ0 then

satisfies (
∂2|5D +M2

)
φ0eip.x = eip.x

(
−∂2

y +M2
)
φ0 = 0 (69)

Solving this equation with appropriate boundary conditions gives two types of solution,

φ0 (y) ∝ e−My or e+My, corresponding to the wave function being peaked towards the LH

or RH boundary. The interpretation in terms of the 4D composite model is that the LH bound-

ary is where the elementary fields live while the states on the RH boundary are composite. The

Kaluza Klein (KK) modes that live in the bulk are identified with the techni-resonances in the

4D composite analogue.

The 4D Yukawa couplings are then given by the overlap of the LH and RH fermions ψ0
L,R with

the Higgs wave function H0 (c.f. Figure 18).
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FIG. 18: The 5D structure of fermion and Higgs states.

Y4D,ij ∼
a∫

0

dyY5D,ij(y)e−(MLi
+MRj

)y+MH(y−a) (70)

Then there are two classes of coupling depending on the 5D mass parameters (which fix the 4D

compositeness fractions, εL,R):

Y L
4D,ij ∼ Y (0)ije

−MHa, MLi +MRj > MH

Y R
4D,ij ∼ Y (a)ije

−(MLi
+MRj)a, MLi +MRj < MH (71)

The first, with the integral dominated by y ∼ 0, is the case the fermions are more elementary

than in the second with y ∼ a. Note that there is a strong ordering of the Yukawas, Y L << Y R.

The second case with more composite fermions is capable of describing charged fermion masses

very well with large flavour hierarchies between the masses and small mixing angles. The case

with more elementary fermions is capable of explaining neutrino masses and mixing because the

Yukawas are much smaller and have small flavour sensitivity leading to neutrinos close in mass

with large mixing angles. In this picture there is significant mixing of the Higgs with the techini-

resonance bulk states.

3. The hierarchy problem and light top quark partners

As is clear from eq(17), radiative corrections to the Higgs require a cut-off scale ≤ O(1TeV )

to avoid the need for significant fine tuning. In composite models the cut-off is due to the Higgs

form factor and for this to produce a low cut-off scale there must be composite states at the

same scale. However, from eq(66), there are strong lower bounds on the techni-resonances in the

Higgs channel (e.g.mρ > 2.5TeV ) and so one needs another source for the low-scale form factor.

For the case of the top quark loop which gives the dominant contribution to the radiative Higgs
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correction, this must come from the composite top structure and requires light techni-fermion top

quark partners of mass ≤ O(1TeV ). Detailed studies of this [60, 61] show that the fine tuning

needed is sensitive to the representation content of the top quark resonances. The minimum fine

tuning occurs for the case they make up an SO(4) 9-plet in which case the fine tuning is given by

∆composite ∼ ξ−1 ≥ 10 (72)

Top techni-resonance phenomenology [60, 61] Since the top partners carry colour their

production cross section is large

QCD pair production : σmt=500GeV = 570fb, σmt=1TeV = 1.3fb (8TeV C.M.) (73)

Moreover the top partners carry large charge

9(SO(4) ∼ 35/3 ⊕ 32/3 ⊕ 3−1/3 (SU(2)L × U(1)Y ) ⊃ 2×Q5/3 +Q8/3 (74)

The large charge can lead to characteristic signals; for example t8/3 → 3W+ + b + ... leading to

significant multi-lepton branching ratios:

BR
(
Q5/3(8/3) → l+l+..

)
= 5(6)%, BR

(
Q5/3(8/3) → lll..

)
= 3(6.5)% (75)

The present bound coming from the first LHC run is mt > 770GeV (95%) but the run at 13TeV

will be able to extend this above 1TeV .

VIII. SUMMARY

The discovery of the Higgs in good agreement with the SM Higgs properties has put significant

constraints on possible physics beyond the Standard Model:

• It is necessary to invoke a symmetry to keep the Higgs light: scale symmetry, supersymmetry

or Nambu-Goldstone symmetry.

• All these cases require new states: more Higgs and/or Higgs interactions, SUSY partners or

top quark partners.

• The fine tuning limits imply all these states should be discoverable at the LHC running at

14TeV .

• Grand Unification is still viable but requires that we find SUSY.

The next few years will be exciting and I hope will point the way “Beyond the Standard Model”!
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