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1. Introduction

1.1. Invariant differential operators play very
important role in the description of physical sym-
metries - starting from the early occurrences in the
Maxwell, d’Allembert, Dirac, equations, to the lat-
est applications of (super-)differential and difference
operators in conformal field theory, supergravity and
string theory and their deformations. Thus, it is im-
portant for the applications in physics to study sys-
tematically such operators and, in particular, their
deformations in the setting of quantum groups.

The approach to this problem used here relies
on the following classical considerations. Consider
a semisimple Lie group G and two representations
T, T ′ acting in the representation spaces C, C ′, which
may be Hilbert, Fréchet, etc. An intertwining op-
erator I for these two representations is a contin-
uous linear map

I : C −→ C ′ (1.1)

such that

I ◦ T (g) = T ′(g) ◦ I , ∀g ∈ G (1.2)



Such equations exist also for more general sym-
metries. However, if G is semisimple (even reduc-
tive) then there exists canonical ways for the con-
struction of all intertwining operators and thus, of
the G - invariant equations. These operators are of
two types - differential and integral. Here we are
interested in the invariant differential operators.

1.2. We shall apply a procedure [D] which
is rather algebraic and can be generalized almost
straightforwardly to quantum groups. We sketch
this procedure illustrating the general notions with
the conformal group SU(2, 2).

Let G be a real semisimple Lie group. Let G
be the Lie algebra of G. We shall use the so-called
Bruhat decompositions of G

G = N+ ⊕M⊕A⊕N− (1.3)

(considered as direct sum of linear spaces), where A
is a noncompact abelian subalgebra, M (a reductive
Lie algebra) is the centralizer of A in G (mod A),
and N+, N−, resp., are nilpotent subalgebras form-
ing the positive, negative, resp., root spaces of the
restricted root system (G,A).



For the conformal group the subalgebras N−,
M, A, N+ may be chosen to be the subalgebras
of translations, Lorentz transformations, dilatations,
special conformal transformations, resp.

Note that P̃± = N± ⊕M ⊕ A in (1.3) are
subalgebras of G, the so-called parabolic subalge-
bras. When dimA = 1 then P̃± are maximal
conjugate parabolic subalgebras. In the conformal
case P̃+ is called the Weyl algebra (comprising the
Poincaré algebra and the dilatations).

Let us now introduce the corresponding sub-
groups of G. Let K denote the maximal compact
subgroup of G, and let K denote the Lie algebra of
K. Then we have the simply connected subgroups
A = exp(A), N± = exp(N±). Further, M is the
centralizer of A in G (mod A). (M has the structure
M = MdMr, where Md is a finite group, Mr is re-
ductive with the same Lie algebra M as M .) Then
P± = MAN± are called parabolic subgroups of G.

The importance of the parabolic subgroups
comes from the fact that the representations induced
from them generate all (admissible) irreducible rep-
resentations of G [La,KZ].

Let P = MAN be an arbitrary parabolic sub-
group, (P = P+, N = N+, or P = P−, N = N−



is specified by convenience). Let µ fix a finite-
dimensional representation Dµ of M on a space Vµ .
Let ν be a character of A, ν ∈ A∗.

We call the induced representation
χ = IndG

P (µ⊗ ν ⊗ 1) an elementary representa-
tion of G.

Consider the space of functions

Cχ = {F ∈ C∞(G,Vµ) |
F(gman) = eν(H) ·Dµ(m−1)F(g)}

(1.4)

where g ∈ G, m ∈ M , a = exp(H) ∈ A, H ∈ A,
n ∈ N . The special property of the functions of Cχ

is called right covariance.
Then the elementary representation (ER) T χ acts

in Cχ as the left regular representation (LRR), by:

(T χ(g)F)(g′) = F(g−1g′) , g, g′ ∈ G (1.5)

An important ingredient in our considerations
are the highest/lowest weight representations of GCI .
These can be realized as (factor-modules of) Verma
modules V Λ over GCI , where Λ ∈ (HCI)∗, HCI is
a Cartan subalgebra of GCI , weight Λ = Λ(χ) is
determined uniquely from χ [D].



We recall that a Verma module is a highest
weight module V Λ with highest weight L, such that
V Λ ∼= U(GCI

−)v0, where v0 is the highest weight vec-
tor, U(GCI

−) is the universal enveloping algebra of GCI
−.

Generically, Verma modules are irreducible, how-
ever, we shall be mostly interested in the reducible
ones since these are relevant for the construction
of invariant differential operators. We recall the
Bernstein-Gel’fand-Gel’fand criterion according to
which the Verma module V Λ is reducible iff

〈Λ + ρ, β∨〉 = m (1.6)

holds for some β ∈ ∆+, m ∈ IN , where ∆+ denotes
the positive roots of the root system (GCI ,HCI), ρ is
half the sum of the positive roots ∆+.

Whenever (1.6) is fulfilled there exists [Dix] in
V Λ a unique vector vs, called singular vector, such
that vs 6= CIv0 and it has the properties of a highest
weight vector with shifted weight Λ−mβ :

X̂vs = (Λ−mβ)(X) · vs , X ∈ HCI (1.7a)
X̂vs = 0 , X ∈ GCI

+ (1.7b)

The general structure of a singular vector is [D]:

vs = Pmβ(X−
1 , . . . , X−

` )v0 (1.8)



where Pmβ is a homogeneous polynomial in its vari-
ables of degrees mki, where ki ∈ ZZ+ come from the
decomposition of β into simple roots: β =

∑
kiαi,

αi ∈ ∆S , the system of simple roots, X−
j are the

root vectors for −αj , αj are the simple roots, ` =
rankGCI .

It is obvious that (1.8) satisfies (1.7a), while
conditions (1.7b) fix the coefficients of Pmβ up to
an overall multiplicative nonzero constant.

Now we are in a position to define the differ-
ential intertwining operators, corresponding to the
singular vectors.

Let the signature χ of an ER be such that
the corresponding Λ = Λχ satisfies (1.6) for some
β ∈ ∆+ and some m ∈ IN . Then there exists an
intertwining differential operator [D]

Dmβ : C̃χ −→ C̃χ′ (1.9)

where χ′ is such that Λ′ = Λ′χ′ = Λ−mβ.
The important fact is that (1.9) is explicitly

given by [D]

Dmβ ϕ(g) = Pmβ(X̂−
1 , . . . , X̂−

` )ϕ(g) (1.10)

where Pmβ is the same polynomial as in (1.8) and
X̂−

j denotes the right action.



One important simplification is that in order to
check the intertwining properties of the operator in
(1.10) it is enough to work with the infinitesimal
versions of (1.4) and (1.5), i.e., work with represen-
tations of the Lie algebra. Thus, also in the quantum
group setting we work with representations of quan-
tum algebras.



2. The matrix quantum group GLq(n) and
the dual quantum algebra

Let us consider an n × n quantum matrix
M with non-commuting matrix elements aij , 1 ≤
i, j ≤ n. The matrix quantum group Ag = GLq(n),
q ∈ CI, is generated by the matrix elements aij with
the following commutation relations [Ma] (λ = q −
q−1) :

ai`aij = qaijai` , ` > j (2.1a)
akjaij = qaijakj , k > i (2.1b)
akjai` = ai`akj , k > i , ` > j (2.1c)
aijak` = ak`aij − λai`akj , k > i, ` > j(2.1d)

Considered as a bialgebra, it has the following co-
multiplication δA and counit εA :

δA(aij) =
n∑

k=1

aik ⊗ akj , εA(aij) = δij (2.2)

This algebra has determinant D given by:

D =
∑

ρ∈Sn

ε(ρ) a1,ρ(1) . . . an,ρ(n) =

=
∑

ρ∈Sn

ε(ρ) aρ(1),1 . . . aρ(n),n

(2.3)



where summations are over all permutations ρ of
{1, . . . , n} and the quantum signature is:

ε(ρ) =
∏
j<k

ρ(j)>ρ(k)

(−q−1) (2.4)

The determinant obeys:

δA(D) = D ⊗D , εA(D) = 1,

aik D = D aik

(2.5)

Further, if D 6= 0 one extends the algebra by an
element D−1 which obeys:

DD−1 = D−1D = 1A (2.6)

Then one can introduce the antipode in GLq(n)
which is omitted for the lack of time.

Next we introduce a basis of GLq(n) which con-
sists of monomials

fm̄,¯̀,n̄ = (a21)m21 . . . (an,n−1)mn,n−1 ×
× (a11)`1 . . . (ann)`n ×
× (an−1,n)nn−1,n . . . (a12)n12 ,

f0̄,0̄,0̄ = 1Ag

(2.7)



where m̄, ¯̀, n̄ denote the sets {mi}, {`ij}, {nij},
resp., mi, `ij , nij ∈ ZZ+ and we use the so-called nor-

mal ordering of the elements aij .

The dual algebra of GLq(n) is Ug = Uq(sl(n))⊗
Uq(Z), where Uq(Z) is central in Ug. We denote

the Chevalley generators of sl(n) by Hi, X±
i , i =

1, . . . , n−1. Then we take for the ’Chevalley’ gener-

ators of U = Uq(sl(n)) : ki = qHi/2, k−1
i = q−Hi/2,

X±
i , i = 1, . . . , n−1, with the following algebra re-

lations:

kikj = kjki , kik
−1
i = k−1

i ki = 1Ug

kiX
±
j = q±cij X±

j ki

[X+
i , X−

j ] = δij

(
k2

i − k−2
i

)
/λ

(
X±

i

)2
X±

j − [2]qX±
i X±

j X±
i + X±

j

(
X±

i

)2
= 0

|i− j| = 1

[X±
i , X±

j ] = 0 , |i− j| 6= 1
(2.8)

where cij is the Cartan matrix of sl(n), and coal-



gebra relations :

δU (k±i ) = k±i ⊗ k±i

δU (X±
i ) = X±

i ⊗ ki + k−1
i ⊗X±

i

εU (k±i ) = 1 , εU (X±
i ) = 0

γU (ki) = k−1
i , γU (X±

i ) = −q±1 X±
i

(2.9)

where k+
i = ki, k−i = k−1

i . Further, we denote the
generator of Z by H and the generators of Uq(Z) by
k = qH/2, k−1 = q−H/2, kk−1 = k−1k = 1Ug . The
generators k, k−1 commute with the generators of U ,
and their coalgebra relations are as those of any ki.

The bilinear form giving the duality between
Ug and Ag is given by [D]:

〈 ki , aj` 〉 = δj` q(δij−δi,j+1)/2 (2.10a)
〈 X+

i , aj` 〉 = δj+1,`δij (2.10b)
〈 X−

i , aj` 〉 = δj−1,`δi` (2.10c)

〈 k , aj` 〉 = δj` q1/2 (2.10d)

The pairing between arbitrary elements of Ug and f
follows then from the properties of the duality pair-
ing. The pairing (2.10) is standardly supplemented
with

〈 y , 1Ag 〉 = εUg (y) (2.11)



3. Representations of Ug and U

We begin by defining two actions of the dual
algebra Ug on the basis (2.7) of Ag.

First we introduce the left regular representa-
tion of Ug for which in the q = 1 case we need the
infinitesimal version of :

π(Y ) M = Y −1 M , Y, M ∈ GL(n) (3.1)

Explicitly, we define the action of Ug on Ag as
follows (cf. also (1.5)):

π(y) ai`
.=

(
F

(
γ0
U (y)

)
M

)
i`

=

=
∑

j

F
(
γ0
U (y)

)
ij

aj` =
∑

j

〈 γ0
U (y) , aij 〉 aj`

(3.2)
where y denotes the generators of Ug and γ0

U (y) is
the antipode action for q = 1.

In order to derive the action of π(y) on ar-
bitrary elements of the basis (2.7), we use the
twisted derivation rule consistent with the coproduct
and the representation structure, namely, we take:
π(y)ϕψ = π(δ′Ug

(y))(ϕ⊗ψ), where δ′Ug
= σ ◦ δUg



is the opposite coproduct, (σ is the permutation op-
erator). Thus, we have:

π(ki)ϕψ = π(ki)ϕ · π(ki)ψ (3.3a)

π(X±
i )ϕψ = π(X±

i )ϕ · π(k−1
i )ψ +

+ π(ki)ϕ · π(X±
i )ψ

(3.3b)

π(k)ϕψ = π(k)ϕ · π(k)ψ (3.3c)

Analogously, we introduce the right action for
which in the classical case one needs the infinitesimal
counterpart of :

πR(Y ) M = M Y , Y, M ∈ GL(n) (3.4)

Thus, we define the right action of Ug as follows:

πR(y) ai` = (MF (y))i` =
∑

j

aij F (y)j` =

=
∑

j

aij 〈 y , aj` 〉

(3.5)
where y denotes the generators of Ug



The twisted derivation rule is now given by
πR(y)ϕψ = πR(δUg

(y))(ϕ⊗ ψ), i.e.,

πR(ki)ϕψ = πR(ki)ϕ · πR(ki)ψ (3.6a)

πR(X±
i )ϕψ = πR(X±

i )ϕ · πR(ki)ψ +

+ πR(k−1
i )ϕ · πR(X±

i )ψ
(3.6b)

πR(k)ϕψ = πR(k)ϕ · πR(k)ψ , (3.6c)

Let us now introduce the elements ϕ as formal
power series of the basis (2.7):

ϕ =
∑

m̄,¯̀,n̄∈ZZ+

µm̄,¯̀,n̄ fm̄,¯̀,n̄ (3.7)

As in the classical case the left and right actions
commute, and as in [D] we shall use the right covari-
ance to reduce the left regular representation. In
particular, we require the right action to mimic prop-
erties of a highest weight module, i.e., annihilation
by the raising generators X+

i and scalar action by
the (exponents of the) Cartan operators ki, k. How-
ever, first we have to make a change of basis using
the q-analogue of the classical Gauss decomposition.



For this we have to suppose that the principal minor
determinants of M :

Dm =
∑

ρ∈Sm

ε(ρ) a1,ρ(1) . . . am,ρ(m) =

=
∑

ρ∈Sm

ε(ρ) aρ(1),1 . . . aρ(m),m , m ≤ n

(3.8)
are invertible; note that Dn = D, Dn−1 = Ann.

Further, for the ordered sets I = {i1 < · · · < ir}
and J = {j1 < · · · < jr}, let ξI

J be the r-minor
determinant with respect to rows I and columns J
such that

ξI
J =

∑

ρ∈Sr

ε(ρ) aiρ(1)j1 · · · aiρ(r)jr
(3.9)

Note that ξ1 ··· i
1 ··· i = Di . Then we have (i, j, ` =

1, . . . , n) :

ai` =
∑

j

ỸijDjjZj` ,

Ỹij = ξ1 ··· j−1 i
1 ··· j D−1

j

Djj = DjD
−1
j−1 ,

Zj` = D−1
j ξ1 ··· j

1 ··· j−1 `

(3.10)



Ỹij = 0 for i < j, Zj` = 0 for j > `, D0 ≡ 1Ag .
Then Ỹij , i > j, may be regarded as a q-analogue of
local coordinates of the q - deformed flag manifold
GL(n)/DZ, while Zj`, j < `, may be regarded as
a q-analogue of local coordinates of the q - deformed
flag manifold Ỹ D\GL(n).

Clearly, we can replace the basis (2.7) ofAg with
a basis in terms of Ỹi`, i > `, D`, Zi`, i < `. (Note
that Ỹii = Zii = 1Ag .) Thus, we consider formal
power series:

ϕ̃ =
∑

m̄,n̄∈ZZ+
¯̀∈ZZ

µ′̄`,m̄,n̄ (Ỹ21)m21 . . . (Ỹn,n−1)mn,n−1×

× (D1)`1 . . . (Dn)`n(Zn−1,n)nn−1,n . . . (Z12)n12

(3.11)
Now, let us impose right covariance with respect

to X+
i :

πR(X+
i ) ϕ̃ = 0 (3.12)

This is fulfilled automatically for Dj and Ỹj` , but
not for Zj` , which simply means that our functions
ϕ̃ do not depend on Zj` . Thus, the functions



obeying (3.12) are:

ϕ̃ =
∑

¯̀∈ZZ , m̄∈ZZ+

µ¯̀,m̄ (Ỹ21)m21 . . . (Ỹn,n−1)mn,n−1×

× (D1)`1 . . . (Dn)`n

(3.13)
Next, we impose right covariance with respect

to ki, k :

πR(ki) ϕ̃ = qri/2 ϕ̃ (3.14a)

πR(k) ϕ̃ = qr̂/2 ϕ̃ (3.14b)

As a consequence we obtain that the powers of Di in
(3.13) are fixed: `i = ri, for i < n,

∑n
j=1 j`j = r̂.

This means that ri, r̂ ∈ ZZ and that there is no
summation in `i, also `n = (r̂ −∑n−1

j=1 jrj)/n ≡ r̃.
Thus, the reduced functions obeying (3.12) and

(3.14) are:

ϕ̃ =
∑

m̄∈ZZ+

µm̄ (Ỹ21)m21 . . . (Ỹn,n−1)mn,n−1×

× (D1)r1 . . . (Dn−1)rn−1(Dn)r̃

(3.15)



Next we derive the Ug - action π on ϕ̃ .
First, we notice that U acts trivially on Dn = D :

π(X±
i ) D = 0 , π(ki) D = D (3.16)

Then we note:

π(k) Dj = q−j/2 Dj , π(k) Ỹj` = Ỹj` (3.17)

from which follows:

π(k) ϕ̃ = q−r̂/2 ϕ̃ (3.18)

Thus, the action of U involves only the parameters
ri, i < n, while the action of Uq(Z) involves only
the parameter r̂. Thus we can consistently also
from the representation theory point of view restrict
to the matrix quantum group SLq(n), i.e., we set:

D = D−1 = 1Ag (3.19)

Then the dual algebra is U = Uq(sl(n)). This is
justified as in the q = 1 case [D] since for our con-
siderations only the semisimple part of the algebra
is important. (This would not be possible for the
multiparameter deformation of GL(n) since there D
is not central. Nevertheless, we expect most of the



essential features of our approach to be preserved
since the dual algebra can be transformed as a com-
mutation algebra to the one-parameter Ug, with the
extra parameters entering only the co-algebra struc-
ture [D].)

Thus, the reduced functions for the U action
are:

ϕ̃(Ȳ , D̄) =
∑

m̄∈ZZ+

µm̄ (Ỹ21)m21 . . . (Ỹn,n−1)mn,n−1 ×

× (D1)r1 . . . (Dn−1)rn−1 = (3.20a)
= ϕ̂(Ȳ ) (D1)r1 . . . (Dn−1)rn−1 (3.20b)

where Ȳ , D̄ denote the variables Ỹil, i > `, Di, i < n.
From (3.20) it is clear that the parameters

ri indeed characterize the representation of U .
Furthermore, we can introduce the restricted

functions ϕ̂(Ȳ ) by the formula which is prompted
in (3.20b) :

ϕ̂(Ȳ ) .= ϕ̃(Ȳ ,Dj = 1Ag ) =

=
∑

m̄∈ZZ+

µm̄ (Ỹ21)m21 . . . (Ỹn,n−1)mn,n−1 (3.21)

We have defined the representations π̂r̄ for
ri ∈ ZZ. However, notice that we can consider



the restricted functions ϕ̂(Ȳ ) for arbitrary complex
ri. We shall make these extension from now on,
since this gives the same set of representations for
Uq(sl(n)) as in the case q = 1.

For the more compact exposition of the repre-
sentation formulae we shall need below also the fol-
lowing operators (corresponding to each Ỹj`) :

M̂j` ϕ̂(Ȳ ) =
∑

m̄∈ZZ+

µm̄ M̂j` f̃m̄ (3.22a)

Tj` ϕ̂(Ȳ ) =
∑

m̄∈ZZ+

µm̄ Tj` f̃m̄ (3.22b)

M̂j`f̃m̄ = (Ỹ21)m21 . . . (Ỹj`)mj`+1 . . . ×
× . . . (Ỹn,n−1)mn,n−1

(3.23a)

Tj` f̃m̄ = qmj` f̃m̄ (3.23b)

f̃m̄ = (Ỹ21)m21 . . . (Ỹn,n−1)mn,n−1 (3.23c)
Using this we define the q-difference operators by:

D̂j` ϕ̂(Ȳ ) =
1
λ

M̂−1
j`

(
Tj` − T−1

j`

)
ϕ̂(Ȳ ) (3.24)

from which follows:
D̂j` f̃m̄ =

= [mj`]q (Ỹ21)m21 . . . (Ỹj`)mj`−1 . . . (Ỹn,n−1)mn,n−1

(3.25)



Of course, for q → 1 we have D̂j` → ∂Yj`
≡ ∂/∂Yj`.

(Note that the above operators for different variables
commute, i.e., with these we have actually passed to
commuting variables.)



4. The case of Uq(sl(4))

Here we consider in more detail the case n = 4.
It is convenient (also for the comparison with the
q = 1 case) to make the following change of variables:

Y31 = Ỹ31 − qỸ21Ỹ32 , Y41 = Ỹ41 − qỸ21Ỹ42

Y21 = −qỸ21 , Y43 = qỸ43

Yij = Ỹij , for (ij) = (32), (42)
(4.1)

For the commutation properties we have:

Yi`Yij = q1−δ`2YijYi`

4 ≥ i > ` > j ≥ 1
(4.2a)

YkjYij = q1−δi2YijYkj

4 ≥ k > i > j ≥ 1
(4.2b)

Y41Y32 = Y32Y41 + λY31Y42 (4.2c)

Y4iYj1 = Yj1Y4i , (ij) = (23), (32) , (4.2d)

YkiYij = q1−2δi3YijYki − (−1)δi3λYkj

4 ≥ k > i > j ≥ 1
(4.2e)



(each of (4.2a, b, e) has four cases).
Note that for q a phase (|q| = 1) the q - de-

formed flag manifold in the Y coordinates is invari-
ant under the anti-linear anti-involution ω acting
as:

ω(Yj`) = Y5−`,5−j (4.3)

Thus it can be considered as a q - deformed flag
manifold of the quantum group SUq(2, 2).

The restricted functions for the U action are
(cf. (3.21)):

ϕ̂(Ȳ ) =
∑

i,j,k,`,m,n∈ZZ+

µijk`mn ϕ̂ijk`mn

ϕ̂ijk`mn = (Y21)i (Y31)j (Y32)k (Y41)` (Y42)m (Y43)n

(4.4)
Recall that we consider the representations

π̂r̄ for arbitrary complex ri and we know from the
general analysis of [D] that whenever some mi =
ri + 1 or mij = mi + · · · + mj , (i < j) is a positive
integer the representations are reducible and there
exist invariant subspaces. We give now two simple
examples.



Let m1 = r1 + 1 ∈ IN . Then it is clear that
functions ϕ̃ with µijk`mn = 0 if i ≥ m1 form an
invariant subspace since:

π̂r̄(X+
1 ) ϕ̃r1,jk`mn =

= q(j+m−`−2−k)/2 [k]q ϕ̃r1,j+1,k−1,`mn +

+ q(j+`−k−2−m)/2 [m]q ϕ̃r1,jk,`+1,m−1,n

(4.5)
and all other actions either preserve or lower the in-
dex i. The same is true for the functions ϕ̂. In
particular, for r1 = 0 the functions in the invariant
subspace do not depend on the variable Y21.

Analogously if m3 = r3 + 1 ∈ IN the functions
ϕ̃ with µijk`mn = 0 if n ≥ m3 form an invariant
subspace. In particular, for r3 = 0 the functions in
the invariant subspace do not depend on the variable
Y43.

It will be convenient to use also the following
notation for the coordinates of the flag manifold:

ξ = Y21 , x = Y31 , u = Y32

w = Y41 , y = Y42 , η = Y43

(4.6)



5. Intertwining operators

The general prescription for finding the inter-
twining operators is as in the classical case (cf. also
[D]). In order to apply this procedure we need the ex-
plicit action of πR(X−

i ) on our functions. We have:

πR(X−
1 ) ϕ̃r1,r2,r3

ijk`mn =

= −qi−j−k−`−m+(r1−1)/2 [i]qϕ̃
r1−2,r2+1,r3
i−1,jk`mn +

+ q(r1−1)/2 [r1]q ϕ̃r1,r2,r3
ijk`mn Z12

(5.1a)

πR(X−
2 ) ϕ̃r1,r2,r3

ijk`mn =

= q2k+`+m−n+(r2−1)/2 [j]q ϕ̃r1+1,r2−2,r3+1
i+1,j−1,k`mn +

+ qk+`+m−n+(r2−3)/2 [k]q ϕ̃r1+1,r2−2,r3+1
ij,k−1,`mn +

+ qk−j+2m−n+(r2−3)/2[`]qϕ̃
r1+1,r2−2,r3+1
i+1,jk,`−1,m,n+1+

+ qm−n+(r2−5)/2 [m]q ϕ̃r1+1,r2−2,r3+1
ijk`,m−1,n+1 −

− q2m−n+(r2−3)/2 λ [k]q [`]q ϕ̃r1+1,r2−2,r3+1
i,j+1,k−1,`−1,m,n+1 +

+ q(r2−1)/2 [r2]q ϕ̃r1,r2,r3
ijk`mn Z23

(5.1b)



πR(X−
3 ) ϕ̃r1,r2,r3

ijk`mn =

= qn+(r3−1)/2 [n]q ϕ̃r1,r2+1,r3−2
ijk`m,n−1 +

+ q(r3−1)/2 [r3]q ϕ̃r1,r2,r3
ijk`mn Z34

(5.1c)

where we have labelled the functions also with the
representation parameters rs. As in the classical case
[D] the right action is taking out from the represen-
tation space Cr̄, and while some of the terms are
functions from other representation spaces (depend-
ing on which X−

s is acting), there are terms involving
the Zj` variables which do not belong to any of our
representation spaces. The terms with Zj` vanish ex-
actly when rs ∈ ZZ+ and we take (πR(X−

s ))ms [D],
ms = rs + 1.

The explicit expressions for two of these opera-
tors are:

(πR(X−
1 ))m1 ϕ̃m1,m2,m3

ijk`mn =

= (−1)m1 qm1(i−m1/2) [i]q!
[i−m1]q!

ϕ̃−m1,m12,m3
i−m1,jk`mn

(5.2)
(πR(X−

3 ))m3 ϕ̃m1,m2,m3
ijk`mn =

= qm3(i−m3/2) [n]q!
[n−m3]q!

ϕ̃m1,m23,−m3
ijk`m,n−m3

(5.3)



We also use q-difference operators (using nota-
tion (3.22), (3.24), (4.6)):

Î1 = − q(r1−1)/2 D̂ξ Tξ (TxTuTwTy)−1 , (5.4a)

Î2 = q(r2−3)/2
(
q M̂ξ D̂x Tu + D̂u +

+ M̂ξ M̂η D̂w (TxTw)−1 Ty +

+ q−1 M̂η D̂y (TuTw)−1 −

− λ M̂x M̂η D̂u D̂w (TuTw)−1 Ty

)
×

× Tu Tw Ty T−1
η ,

(5.4b)

Î3 = q(r3−1)/2 D̂η Tη (5.4c)

and we note (for ms ∈ IN):

Îms
s = Ims

s = (πR(X−
s ))ms (5.5)

Let us consider now the intertwinig operators
corresponding to the two non-simple non-highest
roots α12, α23 which are realized when m12 ∈ IN ,
m23 ∈ IN , resp. In these cases the intertwining op-
erators (up to an overall multiplicative constant) are



given by :

Im
ij =

m∑

k=0

ak (πR(X−
i ))m−k ×

× (πR(X−
j ))m (πR(X−

i ))k

m = mij , (ij) = (12), (23),

(5.6a)

ak = (−1)k a
[mi]q

[mi − k]q

(m

k

)
q

k = 0, . . . , m, a 6= 0

(5.6b)

or equivalently, by :

Im
ij =

m∑

k=0

a′k (πR(X−
j ))m−k ×

× (πR(X−
i ))m (πR(X−

j ))k

m = mij , (ij) = (12), (23),

(5.6c)

a′k = (−1)k a′
[mj ]q

[mj − k]q

(m

k

)
q

k = 0, . . . , m, a′ 6= 0

(5.6d)

where we are using the explicit formulae for singular
vectors, cf. [D].



Let us illustrate the resulting intertwining oper-
ators in the cases m12 = 1, m23 = 1. We have (after
a suitable renormalization) :

I1
12|r1+r2=−1 = − [r1]q πR(X−

1 ) πR(X−
2 ) +

+ [r1 + 1]q πR(X−
2 ) πR(X−

1 ) =

= − [r1]q Î1 Î2 + [r1 + 1]q Î2 Î1

(5.7)

I1
23|r2+r3=−1 = − [r3]q πR(X−

3 ) πR(X−
2 ) +

+ [r3 + 1]q πR(X−
2 ) πR(X−

3 ) =

= − [r3]q Î3 Î2 + [r3 + 1]q Î2 Î3

(5.8)



6. q - Minkowski space-time and q - Maxwell
equations hierarchy from q - conformal in-
variance

6.1. We start with the q = 1 situation and
we first write the Maxwell equations in an indexless
formulation, trading the indices for two conjugate
variables z, z̄. This formulation has two advantages.

First, it is very simple, and in fact, just with the
introduction of an additional parameter, we can de-
scribe a whole infinite hierarchy of equations, which
we call the Maxwell hierarchy .

Second, we can easily identify the variables z, z̄
and the four Minkowski coordinates with the six lo-
cal coordinates of a flag manifold of SU(2, 2), or of
SL(4) with the appropriate conjugation. Thus, one
may look at this as a nice example of unifying inter-
nal and external degrees of freedom.

Next we give the q - analogs using the Uq(sl(4))
apparatus of Sections 4 and 5. Thus, we use q -
Minkowski coordinates as part of the appropriate
q - deformed flag manifold. Using the correspond-
ing representations and intertwiners of Uq(sl(4)) we
can finally write down the infinite hierarchy of q -
Maxwell equations.



6.2. It is well known that Maxwell equations

∂µFµν = Jν , ∂µ∗Fµν = 0 (6.1)

or, equivalently

∂kEk = J0 , ∂0Ek − εk`m∂`Hm = Jk ,

∂kHk = 0 , ∂0Hk + εk`m∂`Em = 0
(6.2)

where Ek ≡ Fk0, Hk ≡ (1/2)εk`mF`m, can be
rewritten in the following manner:

∂kF±k = J0 , ∂0F
±
k ± iεk`m∂`F

±
m = Jk (6.3)

where
F±k ≡ Ek ± iHk (6.4)

Not so well known is the fact that the eight
equations in (6.3) can be rewritten as two conjugate
scalar equations in the following way:

I+ F+(z) = J(z, z̄) , (6.5a)

I− F−(z̄) = J(z, z̄) (6.5b)



where
I+ = z̄∂+ + ∂v −

− 1
2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z

(6.6a)

I− = z∂+ + ∂v̄ −

− 1
2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z̄

(6.6b)

x± ≡ x0 ± x3

v ≡ x1 − ix2, v̄ ≡ x1 + ix2

(6.7a)

∂± ≡ ∂/∂x±, ∂v ≡ ∂/∂v, ∂v̄ ≡ ∂/∂v̄,(6.7b)

F+(z) ≡ z2(F+
1 + iF+

2 ) −
− 2zF+

3 − (F+
1 − iF+

2 )
(6.8a)

F−(z̄) ≡ z̄2(F−1 − iF−2 ) −
− 2z̄F−3 − (F−1 + iF−2 )

(6.8b)

J(z, z̄) ≡ z̄z(J0 + J3) + z̄(J1 − iJ2)+

+ z(J1 + iJ2) + (J0 − J3)
(6.8c)



where we continue to suppress the xµ, resp., x±, v, v̄,
dependence in F and J . (The conjugation mentioned
above is standard and in our terms it is: I+ ←→ I−,
F+(z) ←→ F−(z̄).)

It is easy to recover (6.3) from (6.5) - just note
that both sides of each equation are first order poly-
nomials in each of the two variables z and z̄, then
comparing the independent terms in (6.5) one gets
at once (6.3).

Writing the Maxwell equations in the simple
form (6.5) has also important conceptual meaning.
The point is that each of the two scalar operators
I+, I− is indeed a single object, namely it is an inter-
twiner of the conformal group, while the individual
components in (6.1) - (6.3) do not have this interpre-
tation. This is also the simplest way to see that the
Maxwell equations are conformally invariant, since
this is equivalent to the intertwining property.

Let us be more explicit. The physically rele-
vant representations Tχ of the 4-dimensional con-
formal algebra su(2, 2) may be labelled by χ =
[n1, n2; d], where n1, n2 are non-negative integers fix-
ing finite-dimensional irreducible representations of
the Lorentz subalgebra, (the dimension being (n1 +
1)(n2 + 1)), and d is the conformal dimension (or



energy). (In the literature these Lorentz represen-
tations are labelled also by (j1, j2) = (n1/2, n2/2).)
Then the intertwining properties of the operators in
(6.6) are given by:

I+ : C+ −→ C0 , I+ ◦ T+ = T 0 ◦ I+

I− : C− −→ C0 , I− ◦ T− = T 0 ◦ I−
(6.9)

where T a = Tχa

, a = 0, +,−, Ca = Cχa

are the
representation spaces, and the signatures are given
explicitly by:

χ+ = [2, 0; 2] , χ− = [0, 2; 2] , χ0 = [1, 1; 3]
(6.10)

as anticipated. Indeed, (n1, n2) = (1, 1) is the
four-dimensional Lorentz representation, (carried by
Jµ above), and (n1, n2) = (2, 0), (0, 2) are the
two conjugate three-dimensional Lorentz represen-
tations, (carried by F±k above), while the conformal
dimensions are the canonical dimensions of a current
(d = 3), and of the Maxwell field (d = 2). We see
that the variables z, z̄ are related to the spin prop-
erties and we shall call them ’spin variables’. [In
general, a Lorentz spin-tensor G(z, z̄) with signature
(n1, n2) is a polynomial in z, z̄ of order n1, n2, resp.]

We can illustrate the above occurrence with the
following diagrams of intertwining operators:
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Fig. 1. Simplest example of diagram with conformal invariant operators

(arrows are differential operators, dashed arrows are integral operators)

∂µ = ∂
∂ xµ

, Aµ electromagnetic potential, ∂µ φ = A0
µ

F electromagnetic field, ∂[λAµ] = ∂λAµ − ∂µAλ = F 0
λµ

Jµ electromagnetic current, ∂λFλµ = J0
µ, ∂µJµ = Φ0

superscript ’0’ indicates that the mapping is not onto
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Fig. 2. More precise showing of the simplest example,

using also notations from the text above
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Fig. 3. The general classification of invariant differential operators valid for

so(4, 2), so(5, 1) and so(3, 3) ∼= sl(4, R).

p, ν, n are three natural numbers, the shown simplest case is when p = ν = n = 1,

dν

1
is a linear differential operator of order ν, similarly d′ν

1
, dn

2
, d

p

3



From the last figure we can derive the fact that
the Maxwell equations (6.9), (6.10) are part of an
infinite hierarchy of couples of first order invariant
equations (that would be obtained for p = n = 1).
Explicitly, instead of (6.9), (6.10) we have [D] :

I+
ν : C+

ν −→ C0
ν , I+

ν ◦ T+
ν = T 0

ν ◦ I+
ν

I−ν : C−ν −→ C0
ν , I−ν ◦ T−ν = T 0

ν ◦ I−ν
(6.11)

where T a
ν = Tχa

ν , Ca
ν = Cχa

ν , and the signatures
are:

χ+
ν = [ν + 1, ν − 1; 2] , χ−ν = [ν − 1, ν + 1; 2]

χ0
ν = [ν, ν; 3] , ν ∈ IN

(6.12)
while instead of (6.5) we have:

I+
ν F+

ν (z, z̄) = Jν(z, z̄) (6.13a)
I−ν F−ν (z, z̄) = Jν(z, z̄) (6.13b)

where

I+
ν =

ν + 1
2

(
z̄∂+ + ∂v

)
−

− 1
2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z , ν ∈ IN

(6.14a)



I−ν =
ν + 1

2

(
z∂+ + ∂v̄

)
−

− 1
2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z̄ , ν ∈ IN

(6.14b)

while F+
ν (z, z̄), F−ν (z, z̄), Jν(z, z̄), are polynomials

in z, z̄ of degrees (ν + 1, ν − 1), (ν − 1, ν + 1), (ν, ν),
resp., as explained above.
Remark: If we want to use the notation with indices
as in (6.1), then F+

ν (z, z̄) and F−ν (z, z̄) correspond
to Fλµ,α1,...,αν−1 which is antisymmetric in the in-
dices λ, µ, symmetric in α1, . . . , αν−1, and traceless
in every pair of indices, while Jν(z, z̄) corresponds to
Jµ,α1,...,αν−1 which is symmetric and traceless in ev-
ery pair of indices. Note, however, that the analogs
of (6.1) would be much more complicated if one
wants to write explicitly all components. The cru-
cial advantage of (6.13) is that the operators I±ν are
given just by a slight generalization of I± = I±1 . ♦

We shall call the hierarchy of equations (6.13)
the Maxwell hierarchy . The Maxwell equations
are the zero member of this hierarchy.



To proceed further we rewrite (6.14) in the fol-
lowing form:

I+
ν =

1
2

(
(ν + 1)I1I2 − (ν + 2)I2I1

)
(6.15a)

I−ν =
1
2

(
(ν + 1)I3I2 − (ν + 2)I2I3

)
(6.15b)

where

I1 ≡ ∂z , I2 ≡ z̄z∂++z∂v+z̄∂v̄+∂− , I3 ≡ ∂z̄

(6.16)
We note in passing that group-theoretically the op-
erators Ia correspond to the three simple roots of the
root system of sl(4), while the operators I±ν corre-
spond to the two non-simple non-highest roots [D].

This is the form that we generalize for the q -
deformed case. In fact, we can write at once the gen-
eral form of the intertwining operators which follows
from (5.7), (5.8) (cf. also (5.4)) :

qI
+
ν =

1
2

(
[ν + 1]q Î1Î2 − [ν + 2]q Î2Î1

)

qI
−
ν =

1
2

(
[ν + 1]q Î3Î2 − [ν + 2]q Î2Î3

) (6.17)

It is our task (using the previous Sections) to
make this form explicit by introducing the appropri-
ate variables and functions.



6.3. The variables x±, v, v̄, z, z̄ have definite
group-theoretical meaning, namely, they are six lo-
cal coordinates on the flag manifold Y = SL(4)/B,
where B is the Borel subgroup of SL(4) consisting of
all upper diagonal matrices. Under the natural con-
jugation (cf. also below) this is also a flag manifold
of the conformal group SU(2, 2).

We know from Sections 3. and 4. what are
the properties of the non-commutative coordinates
on the q - deformed SL(4) flag manifold. We make
the following identification (compare with (4.6)) :

x+ = w = Y41 , x− = u = Y32

v = x = Y31 , v̄ = y = Y42

(6.18a)

z = ξ = Y21 , z̄ = η = Y43 (6.18b)

for the q-Minkowski space-time coordinates and for
the spin coordinates, which we denote as their classi-
cal counterparts. Thus, we obtain for the commuta-
tion rules of the q-Minkowski space-time coordinates
(cf. (4.2)) :

x±v = q±1vx± , x±v̄ = q±1v̄x±

x+x− − x−x+ = λvv̄ , v̄v = vv̄
(6.19)



As expected, relations (6.19) coincide with the
commutation relations between the translation gen-
erators Pµ of the q-conformal algebra [D].

It is also easy to notice that these relations are
as the GLq(2) commutation relations [Ma], if we
identify our coordinates with the standard a, b, c, d
generators of GLq(2) as follows:

M =
(

a b
c d

)
=

(
x+ v
v̄ x−

)
(6.20)

Thus, the q-Minkowski length is defined as the
GLq(2) q-determinant :

`q
.= detq M = ad−qbc = x+x−−qv̄v (6.21)

and hence it commutes with the q-Minkowski coor-
dinates. It has the correct classical limit `q=1 =
x2

0 − ~x2.
We know from (4.3) that for q phase (|q| = 1)

the commutation relations (6.19) are preserved by
an anti-linear anti-involution ω acting as :

ω(x±) = x± , ω(v) = v̄ (6.22)

from which follows also that ω(`q) = `q .



The commutation rules of the spin variables
z̄, z between themselves, with the q-Minkowski co-
ordinates and with the q-Minkowski length are (cf.
(4.2)) :

z̄z = zz̄

x+z = q−1zx+ , x−z = qzx− − λv

vz = q−1zv , v̄z = qzv̄ − λx+

z̄x+ = qx+z̄ , z̄x− = q−1x−z̄ + λv̄

z̄v = q−1vz̄ + λx+ , z̄v̄ = qv̄z̄

z`q = `qz , z̄`q = `q z̄

(6.23)

Certainly, the commutation relations (6.23) are also
preserved (for q phase) by the conjugation ω which
acts (cf. (4.3)) by : ω(z) = z̄. Thus, with this con-
jugation Yq becomes a flag manifold of SUq(2, 2).

We know the normally ordered basis of the q -
deformed flag manifold Yq considered as an asso-
ciative algebra :

ϕ̂ijk`mn = zi vj xk
− x`

+ v̄m z̄n , i, j, k, `, m, n ∈ ZZ+

(6.24)
Let us denote by Z, Z̄, and Mq the associative

algebras with unity generated by z, z̄, and x±, v, v̄,



resp. These three algebras are subalgebras of Yq,
and we notice the following structure of Yq :

Yq
∼= Z x⊂Mq x⊃ Z̄ (6.25)

where A x⊂ B denotes the tensor product of A and B
with A acting on B.

We introduce now the representation spaces
Cχ , χ = [n1, n2; d] . The elements of Cχ , which
we shall call (abusing the notion) functions, are poly-
nomials in z, z̄ of degrees n1, n2, resp., and formal
power series in the q - Minkowski variables. (In the
general Uq(sl(n)) situation the signatures n1, n2 are
complex numbers and the functions are formal power
series in z, z̄ too, cf. (3.21)b.) Namely, these func-
tions are given by:

ϕ̂n1,n2(Ȳ ) =
∑

i,j,k,`,m,n∈ZZ+
i≤n1, n≤n2

µn1,n2
ijk`mn ϕ̂ijk`mn (6.26)

where Ȳ denotes the set of the six coordinates on
Yq . Thus the analogs of F±ν , Jν , cf. (6.13), are :

qF
+
ν = ϕ̂ν+1,ν−1(Ȳ ) , qF

−
ν = ϕ̂ν−1,ν+1(Ȳ )

qJν = ϕ̂ν,ν(Ȳ )
(6.27)



Next, analogously to the operators M̂j` , Tj` ,
D̂j` , from (3.22), (3.23), (3.24), we introduce oper-
ators M̂κ , Tκ , D̂κ . We use these to write down
explicitly the operators qI

±
ν in (6.17). We have:

qI
+
ν =

q2

2
[ν + 1]q

(
q D̂v T− +

+ M̂z̄ D̂+ (TvT+)−1 Tv̄

)
T 2

z (TvTz̄)−1 −

− 1
2
q−ν−1

(
q M̂z D̂v T− + D̂− +

+ M̂z M̂z̄ D̂+ (TvT+)−1 Tv̄ +

+ q−1 M̂z̄ D̂v̄ (T−T+)−1 −

− λ M̂v M̂z̄ D̂− D̂+ (T−T+)−1 Tv̄

)
D̂z Tz (TvTz̄)−1

(6.28a)



qI
−
ν =

q

2
[ν + 1]q

(
q−1 D̂v̄ (T−T+)−1 +

+ M̂z D̂+ (TvT+)−1 Tv̄ −

− λ M̂v D̂− D̂+ (T−T+)−1 Tv̄

)
T− T+ Tv̄ Tz̄ +

+
1
2
qν+2

(
q M̂z D̂v T− + D̂− +

+ M̂z M̂z̄ D̂+ (TvT+)−1 Tv̄ +

+ q−1 M̂z̄ D̂v̄ (T−T+)−1 −

− λ M̂v M̂z̄ D̂− D̂+ (T−T+)−1 Tv̄

)
D̂z̄ T− T+ Tv̄

(6.28b)

With this the final result for the q - Maxwell
hierarchy of equations is (cf. (6.27)) :

qI
+
ν qF

+
ν = qJν

qI
−
ν qF

−
ν = qJν

(6.29)

We stress that the q-Maxwell hierarchy of equa-
tions is a nontrivial deformation since the opera-
tors qI

±
ν from (6.28) contain terms proportional

to λ = q − q−1 that vanish when q → 1.
Equations (6.29) appear on the next diagram:
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Fig. 4. The special case p = n = 1 containing the Maxwell hierarchy

Thank you for your attention !


