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Tensor track results 2010-2013

@ Single scaling limit of tensor models at any D and double scaling limit at
have been solved and lead to branched polymers (Dartois, Gurau, R.
Schaeffer...).

o Tensor field theories extend non-commutative field theory just as random
tensors extend random matrices. They can be in many cases
(up to rank/dimension 6) (Ben Geloun, R.). More surprisingly, TGFT's
can also be renormalized in many cases (Carrozza, Lahoche, Oriti, R....).
Their amplitudes are then the spin-foams of LQG.

@ Some : tensor 1/N expansion not topological, d = 6 critical
dimension for tensorial double scaling, asymptotic freedom of quartic
TFTs (Ben Geloun & co)

@ Why are tensor field theories asymptotically free? see arXiv:1507.04190
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Tensor Track Results

Summary 2010-2013

Tensor field theories = promising quantum field theories of space time with
many nice features

@ background independence
@ sum over all topologies

@ renormalizability

@ asymptotic freedom

Random geometry program: look at critical point of leading graphs in 1/N
Main open problem in 2013: leading graphs = melonic graphs

=> critical point = . What lies beyond should incorporate
sub-leading graphs
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Tensor Track Results

Summary 2010-2013

What are melonic graphs? they are “super-planar” graphs, in the sense that all
their jackets are planar

<>

simple "russian dolls”" structure, governed by an underlying colored tree
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2014-2015 (~ 25 papers)

@ Tensor field theories better analyzed at leading (= melonic) order (Avohou,
Carrozza, Lahoche, Oriti, R., Samary, Vignes-Tourneret, Wulkenhaar)

@ Phase transition and symmetry breaking analyzed at critical point
(Benedetti, Gurau, Krajewski)

o Extended models in dimension 3 including non orientable geometries
analyzed (Dartois, Fusy, Gurau, R. Tanasa, R. Youmans...)

° : powerful link tensor and matrix models
(Bonzom, Dartois, Gurau, Eynard, Lionni, Nguyen Viet Anh, R....)

° => new 1/N expansions (Bonzom, Delepouve, Lionni,
R...) allow to go definitely beyond branched polymers

o Constructive program: Borel summability of general quartic tensor models
and of the first superrenormalizable TFT proved (Delepouve, Gurau, R.,)

@ Numerical flows computed through Functional Renormalization Group
Equations (Benedetti, Ben Geloun, Lahoche, Martini, Oriti...)
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Intermediate field representation of scalar ¢

Intermediate field representation (IFR)
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Intermediate Field

Intermediate field representation of scalar ¢* theory

Intermediate field representation (IFR)
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How does the IFR repack the initial Feynman graphs?

o first step (extension): decompose each Feynman ¢* graph with n vertices
into 3" combinatorial maps, with new "dashed edges” and loop vertices
whose " corners” or "arcs” are the former graph edges;
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Intermediate Field

How does the IFR repack the initial Feynman graphs?

o first step (extension): decompose each Feynman ¢* graph with n vertices
into 3" combinatorial maps, with new "dashed edges” and loop vertices
whose " corners” or "arcs” are the former graph edges;

@ second step (collapse): contract every loop vertex to a fat black vertex
=> result expressed in terms of maps with dashed edges only and new
black vertices
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Intermediate Field
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Intermediate Field
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Intermediate Field

Quartic Melonic Case

Partition function for rank d quartic melonic model
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Partition function for rank d quartic melonic model
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Quartic Melonic Case

Partition function for rank d quartic melonic model
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Intermediate Hermitian matrix field M. splits the melonic interaction term
(TeT)e(TeT)
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Quartic Melonic Case

Partition function for rank d quartic melonic model
7 — / deTe*’Vd*l(%(T‘TH% Zg:I(T‘ET)‘C(?'ET)).
(cvyed

Intermediate Hermitian matrix field M. splits the melonic interaction term
(TeT)e(TeT)

Example: d =3, c=1:
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Intermediate Field

Quartic Melonic Case

Partition function for rank d quartic melonic model
7 — / deTe*’Vd*l(%(T‘TH% Zg:I(T‘ET)‘C(?'ET)).
(cvyed

Intermediate Hermitian matrix field M. splits the melonic interaction term
(TeT)e(TeT)

Example: d =3, c=1": 2 ,c=2:

nd—1

e—Ndfl%(T.ar).c(T.&T):/nde— 7 TrM2—in/X/2N9 " Te( T2 T)Mc
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Quartic Melonic Case

Rewriting the tensor model using this representation of the interaction term
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where M. = 121 @ M, @ 19049 for any c € [1,d].
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Quartic Melonic Case

Rewriting the tensor model using this representation of the interaction term
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Intermediate Field

Quartic Melonic Case

Rewriting the tensor model using this representation of the interaction term

d
- [ ara [ [t T s S )T
(c® H

N c=1
where M. = 121 @ M, @ 19049 for any c € [1,d].

Integrating out the T's:

Z:/ [ dMee 2 2™ ,
(Hn)

c

This is the intermediate field representation of the T* melonic tensor model.
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Quartic Melonic Case

Results (Dartois, Eynard, Nguyen Viet-Anh)
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Intermediate Field

Quartic Melonic Case

Results (Dartois, Eynard, Nguyen Viet-Anh)
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Intermediate Field

Quartic Melonic Case

Results (Dartois, Eynard, Nguyen Viet-Anh)

L i,
2

(Tr ME) = <Ter(m9c)>v

where ©, = (T -z T) and H, is the Hermite polynomial of order p.

(meg) = (

Vincent Rivasseau Tensor Field Theory, 11



Intermediate Field

Quartic Melonic Case

Results (Dartois, Eynard, Nguyen Viet-Anh)

oy (2iV2\P
(reg) = ( ﬁ) (TrH,M.),
] VA
(TrMP) = <TrH<2f )

where ©, = (T -z T) and H, is the Hermite polynomial of order p.

Theorem

The total resolvent W(x) of any M. displays Catalan pole at leading order and
_ 1 1 2
W(x)fx_a—k\/m(l—a)( >
where 0
= —1++v142dX
idv/ 2)\( )
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Graphical Summary

Left: a quartic melonic interaction term.
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Intermediate Field

Graphical Summary

Left: a quartic melonic interaction term. Right: the same term split with the
intermediate Hermitian matrix field M; of color i € [1, d].
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Intermediate Field

Quartic Melonic Case, Graphical Representation

Figure: Intermediate Field Maps (courtesy L. Lionni)
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Intermediate Field

Intermediate Field Representation, Summary

Can be generalized beyond quartic invariants to any invariant (Stuffed
Walsh Maps, Bonzom, Lionni, R.)

@ Access to eigenvalues. Subleading order: Wigner-Dyson distribution

Generalizations of Givental formula, topological recursion
@ Good constructive formalism

@ Good formalism to enhance subleading terms and go out of the branched
polymer phase
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Enhanced Tensor Models

Enhanced Rank Four Quartic Tensor Models

(joint work V. Bonzom and T. Delepouve, arXiv:1502.01365)

Figure: The quartic invariants at rank 4.

Be, (T7 T) = E T nynynzng Tnlnéngng Tn{néngng Tn{n2n3n4

/ /
N1yeeesng,ng,...,ny

and three similar formulae for Be,, Bc, and Be,. Also

Bey, (T1 T) = E T nynyngng Tn1n2n§nf, Tn{néngn"l Tn{nén3n4

’ ’
N1yeeesNgyN,..yny
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Enhanced Rank Four Quartic Tensor Models

Standard general (color-symmetric) quartic tensor model at rank 4

—NAATE Be (T, T) =N N4, Be, (T, T
d,ulstandard = duoe i C:( T i=2 Cl,( ’ )
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Enhanced Rank Four Quartic Tensor Models

Standard general (color-symmetric) quartic tensor model at rank 4

—NAATE Be (T, T) =N N4, Be, (T, T
d,ulstandard = duoe i C:( T i=2 Cl,( ’ )

Borel summable uniformly in N for A, X’ in cardioid domains (Delepouve,
Gurau, R.).
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Enhanced Tensor Models

Enhanced Rank Four Quartic Tensor Models

Standard general (color-symmetric) quartic tensor model at rank 4

—NAATE Be (T, T) =N N4, Be, (T, T
d,ulstandard = duoe i C:( T i=2 Cl,( ’ )

Borel summable uniformly in N for A, X’ in cardioid domains (Delepouve,
Gurau, R.).

Enhanced (maximally rescaled) general quartic model at rank 4

3y 4 - 4y 4 =
ditmax = dpo e~ N AT Boy (TT) =N*N 5, Bey (TT)

Enhanced restricted quartic model at rank 4 is the same model but without
BC13 and Bc14.
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Enhanced Tensor Models

Leading Order Maps
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Enhanced Tensor Models

Leading Order Maps

Leading order maps in the IF representation: made of trees of unicolored edges
which connect . The latter can touch one another at a
single vertex at most, thus displaying a cactus structure.
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Enhanced Tensor Models

Leading Order Maps

Leading order maps in the IF representation: made of trees of unicolored edges
which connect . The latter can touch one another at a
single vertex at most, thus displaying a cactus structure.

Grey areas are connected components of given color types.
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Universality
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Enhanced Tensor Models

Universality

Inductive definition: A tree of necklaces of type {p1, ..., pn, pnt1} is obtained
from a tree of necklaces of type {p1,...,pn} by removing any edge of color i
and replacing it with the necklace of size p,+1 open on an edge of color i
(preserving bipartite character).
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Enhanced Tensor Models

Universality

Inductive definition: A tree of necklaces of type {p1, ..., pn, pnt1} is obtained
from a tree of necklaces of type {p1,...,pn} by removing any edge of color i
and replacing it with the necklace of size p,+1 open on an edge of color i
(preserving bipartite character).

Beware that {p1,...,ps} does not capture the full structure of the observable.
It only records the sizes of the necklaces which are inserted one after the other
one. But it is sufficient for

Vincent Rivasseau Tensor Field Theory, 11
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Enhancement of trees of necklaces
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Enhanced Tensor Models

Enhancement of trees of necklaces

Let us denote a generic tree of necklaces by L. If it is of type {p1,...,pn}, the
enhancement it requires to contribute at large N is

n

W)=Y (2+p)=3(n-1)=3-n+> pi

k=1 k=1
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Enhanced Tensor Models

Enhancement of trees of necklaces

Let us denote a generic tree of necklaces by L. If it is of type {p1,...,pn}, the
enhancement it requires to contribute at large N is

W)=Y (2+p)=3(n-1)=3-n+> pi
k=1 k=1
Generalized model has measure

du(T,T) = exp(= DN b2 Bo(T,T)) dyao(T, T).

where the sum in the exponential is over a

Vincent Rivasseau Tensor Field Theory, 11



Enhanced Tensor Models

Factorization
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Enhanced Tensor Models

Factorization

Let us denote the expectation of the necklace of size p as

B N2+P

‘ _ N [ du(T T)BIP(T.T)
-

N4 <B§5)(T’T)>* N* [du(T,T)
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Enhanced Tensor Models

Factorization

Theorem

Let us denote the expectation of the necklace of size p as

N2 =\ _ N [du(T, T)BE(T,T)
G = N4 <B{5)(T7T)> N4 f =
[ du(T,T)

Then the expectation of any tree of necklaces Ly, ... .3 factorizes in the large
N limit

—y Lo (T, T)) =

Vincent Rivasseau Tensor Field Theory, 11
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Schwinger-Dyson equations at leading order
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Schwinger-Dyson equations at leading order

Schwinger-Dyson equation
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Enhanced Tensor Models

Schwinger-Dyson equations at leading order

Schwinger-Dyson equation

p—1
p = Z Ck Co—i—1+
k=0

where V is some polynomial, and G, is the number of maps with root vertex of
degree p. The quadratic term corresponds, as usual for equations a la Tutte, to
the case where the root edge is a bridge.
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Enhanced Tensor Models

Schwinger-Dyson equations at leading order

Schwinger-Dyson equation

p—1
p = Z Ck Co—i—1+
k=0

where V is some polynomial, and G, is the number of maps with root vertex of
degree p. The quadratic term corresponds, as usual for equations a la Tutte, to
the case where the root edge is a bridge.

The extends the length of the boundary face from pto p+j — 1,
which is also usual for planar maps. However, it is more complicated due to the

Vincent Rivasseau Tensor Field Theory, 11
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Schwinger-Dyson equations at leading order
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Enhanced Tensor Models

Schwinger-Dyson equations at leading order

This equation was analyzed in the 90’s in the context of multi-trace matrix
models (Das, Dhar, Sengupta, Wadia, Korchemsky, Klebanov et al...).
Free energy behaves like (g — g.)?~”, where ~ is the entropy exponent.
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Schwinger-Dyson equations at leading order

This equation was analyzed in the 90’s in the context of multi-trace matrix
models (Das, Dhar, Sengupta, Wadia, Korchemsky, Klebanov et al...).
Free energy behaves like (g — g.)?~”, where ~ is the entropy exponent.

o Critical maps, non-critical trees

o Non-critical maps, critical trees @lue => v = 1/2 (branched polymers)

@ Both simultaneously critical => v = 1/3 (proliferation of baby universes)
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Conclusion, Open Problems

@ Continue the constructive program until treatrment of just-renormalizable
tensor models (and of ) is completed

@ Include terms beyond melonic LPA approximation in Wetterich equation
=> see how planar phase and baby universes appear in RG flow

o Organize next sub-leading levels in 1/N so as to see truly
;

1
2
3
T
1

=> QG 2
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Include terms beyond melonic LPA approximation in Wetterich equation
=> see how planar phase and baby universes appear in RG flow

Organize next sub-leading levels in 1/N so as to see truly
T 1

3
T
1

=> QG 2

Understand the , to
select a subclass of tensor models which admit a real-time continuation

Better contact with advanced random matrices techniques probably very
important for future progress towards QG,. Link to SUSY YM,?
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Continue the constructive program until treatrment of just-renormalizable
tensor models (and of ) is completed

Include terms beyond melonic LPA approximation in Wetterich equation
=> see how planar phase and baby universes appear in RG flow

Organize next sub-leading levels in 1/N so as to see truly
;

1
2

3
T
1

=> QG 2

Understand the , to
select a subclass of tensor models which admit a real-time continuation

Better contact with advanced random matrices techniques probably very
important for future progress towards QG,. Link to SUSY YM,?
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Thank you for your attention
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