
Tensor Track Results
Intermediate Field

Enhanced Tensor Models

Tensor Field Theory, II

Vincent Rivasseau

Laboratoire de Physique théorique
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Tensor track results 2010-2013

Single scaling limit of tensor models at any D and double scaling limit at
d ≤ 6 have been solved and lead to branched polymers (Dartois, Gurau, R.
Schaeffer...).

Tensor field theories extend non-commutative field theory just as random
tensors extend random matrices. They can be renormalized in many cases
(up to rank/dimension 6) (Ben Geloun, R.). More surprisingly, TGFT’s
can also be renormalized in many cases (Carrozza, Lahoche, Oriti, R....).
Their amplitudes are then the spin-foams of LQG.

Some surprises: tensor 1/N expansion not topological, d = 6 critical
dimension for tensorial double scaling, asymptotic freedom of quartic
TFTs (Ben Geloun & co)

Why are tensor field theories asymptotically free? see arXiv:1507.04190
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Summary 2010-2013

Tensor field theories = promising quantum field theories of space time with
many nice features

background independence

sum over all topologies

renormalizability

asymptotic freedom

Random geometry program: look at critical point of leading graphs in 1/N

Main open problem in 2013: leading graphs = melonic graphs

=> critical point = branched polymers. What lies beyond should incorporate
sub-leading graphs
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Summary 2010-2013

What are melonic graphs? they are “super-planar” graphs, in the sense that all
their jackets are planar
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2014-2015 (' 25 papers)

Tensor field theories better analyzed at leading (= melonic) order (Avohou,
Carrozza, Lahoche, Oriti, R., Samary, Vignes-Tourneret, Wulkenhaar)

Phase transition and symmetry breaking analyzed at critical point
(Benedetti, Gurau, Krajewski)

Extended models in dimension 3 including non orientable geometries
analyzed (Dartois, Fusy, Gurau, R. Tanasa, R. Youmans...)

Intermediate field representation: powerful link tensor and matrix models
(Bonzom, Dartois, Gurau, Eynard, Lionni, Nguyen Viet Anh, R....)

Enhanced Models => new 1/N expansions (Bonzom, Delepouve, Lionni,
R...) allow to go definitely beyond branched polymers

Constructive program: Borel summability of general quartic tensor models
and of the first superrenormalizable TFT proved (Delepouve, Gurau, R.,)

Numerical flows computed through Functional Renormalization Group
Equations (Benedetti, Ben Geloun, Lahoche, Martini, Oriti...)
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Intermediate field representation of scalar φ4 theory

Intermediate field representation (IFR)

F =

∫ +∞

−∞
e−λx

4−x2/2 dx√
2π

=

∫ +∞

−∞

∫ +∞

−∞
e−i
√

2λσx2−x2/2−σ2/2 dx√
2π

dσ√
2π

=

∫ +∞

−∞
e−

1
2

log[1+i2
√

2λσ]−σ2/2 dσ√
2π

=

∫ +∞

−∞

∞∑
n=0

V n

n!
dµ(σ)

V (σ) = −1

2
log[1 + i2

√
2λσ]
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How does the IFR repack the initial Feynman graphs?

first step (extension): decompose each Feynman φ4 graph with n vertices
into 3n combinatorial maps, with new ”dashed edges” and loop vertices
whose ”corners” or ”arcs” are the former graph edges;

second step (collapse): contract every loop vertex to a fat black vertex
=> result expressed in terms of maps with dashed edges only and new
black vertices
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= + + =

Tree structure in loop vertex expansion:
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extension collapse
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Quartic Melonic Case

Partition function for rank d quartic melonic model

Z =

∫
(CN )⊗d

dTdT̄e−Nd−1
(

1
2

(T̄ ·T )+λ
4

∑d
c=1(T̄ ·ĉT )·c (T̄ ·ĉT )

)
.

Intermediate Hermitian matrix field Mc splits the melonic interaction term
(T̄ ·ĉ T ) ·c (T̄ ·ĉ T )

Example: d = 3, c = 1 :

11

2

3

3

2

, c = 2 : 1

3

3
22

1

, c = 3 :

1

2

2

3 3
1

.

e−Nd−1 λ
4

(T̄ ·ĉT )·c (T̄ ·ĉT ) =

∫
dMce

− Nd−1

2
TrM2

c−i
√
λ/2Nd−1Tr(T̄ ·ĉT )Mc .
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(T̄ ·ĉT )·c (T̄ ·ĉT ) =
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(T̄ ·ĉT )·c (T̄ ·ĉT ) =
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Intermediate Hermitian matrix field Mc splits the melonic interaction term
(T̄ ·ĉ T ) ·c (T̄ ·ĉ T )
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(T̄ ·ĉ T ) ·c (T̄ ·ĉ T )
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Rewriting the tensor model using this representation of the interaction term
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Results (Dartois, Eynard, Nguyen Viet-Anh)

〈TrΘp
c 〉 =

(2i
√

2√
λ

)p
〈TrHpMc〉,

〈TrMp
c 〉 = 〈TrHp(

√
λ

2i
√

2
Θc)〉,

where Θc = (T̄ ·ĉ T ) and Hp is the Hermite polynomial of order p.

Theorem

The total resolvent W(x) of any Mc displays Catalan pole at leading order and
Wigner’s law at next-to-leading order

W(x) =
1

x − α +
1√
Nd−2

(1− α2)

(
x ±

√
x2 − 1

(1− α2)

)
.

where

α =
1

id
√

2λ
(−1 +

√
1 + 2dλ)
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Left: a quartic melonic interaction term. Right: the same term split with the
intermediate Hermitian matrix field Mi of color i ∈ [1, d ].
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Quartic Melonic Case, Graphical Representation
10 LUCA LIONNI UNDER THE SUPERVISION OF V.BONZOM AND V. RIVASSEAU
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Fig 2.1 : Examples of p-point graphs and of their equivalent MEG

a vertex, then each corner represents an edge of color 0 (a propagator) which connects
a white vertex to a black vertex of some quartic bubbles and the vertex represents d ⌅ p
faces of colors 0i, i ⇤ J1, dK ⌥ {i1, ..., ip}, each edge 0 being common to all the faces.
- If the d-p faces 0i of a vertex are external, a cilium is to be drawn at this vertex. The
cilium therefore represents two external half-lines of color 0 (linked by d-p boundary paths
0i). One should respect the location of the cilium with respect to the other edges : it is a
priori of importance for the determination of the boundary graph (see examples fig 2.1).

Proposition 2.1 :The map that associates to a 2p-point graph its mixed expansion
representation with p marked vertices is two-to-one (swapping black and white vertices
leads to the same mixed expansion graph).

proof (sketch). The map that associates to an edge a quartic bubble of the same color,
connecting them with color 0 lines such that any vertex correspond to the faces 0i for all i
that aren’t incident to it, and opening the dotted lines of color 0 into two half lines where
the cilia are is the inverse of the map described in definition 2.2.

Note that each connected component of the mixed expansion graph in the image of this
map has at least one edge (one quartic bubble). Its space of arrival is the space of 2p-point
graph such that no connected component is a single (marked or unmarked) vertex. In

Figure: Intermediate Field Maps (courtesy L. Lionni)
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Intermediate Field Representation, Summary

Can be generalized beyond quartic invariants to any invariant (Stuffed
Walsh Maps, Bonzom, Lionni, R.)

Access to eigenvalues. Subleading order: Wigner-Dyson distribution

Generalizations of Givental formula, topological recursion

Good constructive formalism (Loop Vertex Expansion)

Good formalism to enhance subleading terms and go out of the branched
polymer phase

Vincent Rivasseau Tensor Field Theory, II



Tensor Track Results
Intermediate Field

Enhanced Tensor Models

Intermediate Field Representation, Summary

Can be generalized beyond quartic invariants to any invariant (Stuffed
Walsh Maps, Bonzom, Lionni, R.)

Access to eigenvalues. Subleading order: Wigner-Dyson distribution

Generalizations of Givental formula, topological recursion

Good constructive formalism (Loop Vertex Expansion)

Good formalism to enhance subleading terms and go out of the branched
polymer phase

Vincent Rivasseau Tensor Field Theory, II



Tensor Track Results
Intermediate Field

Enhanced Tensor Models

Intermediate Field Representation, Summary

Can be generalized beyond quartic invariants to any invariant (Stuffed
Walsh Maps, Bonzom, Lionni, R.)

Access to eigenvalues. Subleading order: Wigner-Dyson distribution

Generalizations of Givental formula, topological recursion

Good constructive formalism (Loop Vertex Expansion)

Good formalism to enhance subleading terms and go out of the branched
polymer phase

Vincent Rivasseau Tensor Field Theory, II



Tensor Track Results
Intermediate Field

Enhanced Tensor Models

Intermediate Field Representation, Summary

Can be generalized beyond quartic invariants to any invariant (Stuffed
Walsh Maps, Bonzom, Lionni, R.)

Access to eigenvalues. Subleading order: Wigner-Dyson distribution

Generalizations of Givental formula, topological recursion

Good constructive formalism (Loop Vertex Expansion)

Good formalism to enhance subleading terms and go out of the branched
polymer phase

Vincent Rivasseau Tensor Field Theory, II



Tensor Track Results
Intermediate Field

Enhanced Tensor Models

Intermediate Field Representation, Summary

Can be generalized beyond quartic invariants to any invariant (Stuffed
Walsh Maps, Bonzom, Lionni, R.)

Access to eigenvalues. Subleading order: Wigner-Dyson distribution

Generalizations of Givental formula, topological recursion

Good constructive formalism (Loop Vertex Expansion)

Good formalism to enhance subleading terms and go out of the branched
polymer phase

Vincent Rivasseau Tensor Field Theory, II



Tensor Track Results
Intermediate Field

Enhanced Tensor Models

Intermediate Field Representation, Summary

Can be generalized beyond quartic invariants to any invariant (Stuffed
Walsh Maps, Bonzom, Lionni, R.)

Access to eigenvalues. Subleading order: Wigner-Dyson distribution

Generalizations of Givental formula, topological recursion

Good constructive formalism (Loop Vertex Expansion)

Good formalism to enhance subleading terms and go out of the branched
polymer phase

Vincent Rivasseau Tensor Field Theory, II



Tensor Track Results
Intermediate Field

Enhanced Tensor Models

Enhanced Rank Four Quartic Tensor Models

(joint work V. Bonzom and T. Delepouve, arXiv:1502.01365)
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Figure: The quartic invariants at rank 4.

BC1 (T,T) =
∑

n1,...,n4,n
′
1,...,n

′
4

T n1n2n3n4Tn1n
′
2n
′
3n
′
4
T n′1n

′
2n
′
3n
′
4
Tn′1n2n3n4

and three similar formulae for BC2 , BC3 and BC4 . Also

BC12 (T,T) =
∑

n1,...,n4,n
′
1,...,n

′
4

T n1n2n3n4Tn1n2n
′
3n
′
4
T n′1n

′
2n
′
3n
′
4
Tn′1n

′
2n3n4
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Enhanced Rank Four Quartic Tensor Models

Standard general (color-symmetric) quartic tensor model at rank 4

dµstandard = dµ0 e
−N3λ

∑4
i=1 BCi (T,T) −λ′N3 ∑4

i=2 BC1i
(T,T) .

Borel summable uniformly in N for λ, λ′ in cardioid domains (Delepouve,
Gurau, R.).
Enhanced (maximally rescaled) general quartic model at rank 4

dµmax = dµ0 e−N3λ
∑4

i=1 BCi (T,T) −N4λ′
∑4

i=2 BC1i
(T,T) .

Enhanced restricted quartic model at rank 4 is the same model but without
BC13 and BC14 .
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Leading Order Maps

Leading order maps in the IF representation: made of trees of unicolored edges
which connect bicolored planar maps. The latter can touch one another at a
single vertex at most, thus displaying a cactus structure.

12

12

3

13

14

14

1

2

4

1312

13 14

4

1
2

3
3

1
14

12

12

3

2

1213

Grey areas are connected components of given color types.
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single vertex at most, thus displaying a cactus structure.
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Universality

Inductive definition: A tree of necklaces of type {p1, . . . , pn, pn+1} is obtained
from a tree of necklaces of type {p1, . . . , pn} by removing any edge of color i
and replacing it with the necklace of size pn+1 open on an edge of color i
(preserving bipartite character).

1

1
1

2

2 2

4

Beware that {p1, . . . , pn} does not capture the full structure of the observable.
It only records the sizes of the necklaces which are inserted one after the other
one. But it is sufficient for enumeration of the leading order contributions.
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Enhancement of trees of necklaces

Let us denote a generic tree of necklaces by L. If it is of type {p1, . . . , pn}, the
enhancement it requires to contribute at large N is

ω(L) =
n∑

k=1

(2 + pk)− 3(n − 1) = 3− n +
n∑

k=1

pk .

Generalized model has measure

dµ(T,T) = exp
(
−
∑
L

Nω(L) tL BL(T,T)
)
dµ0(T,T).

where the sum in the exponential is over a finite number of trees of necklaces.
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Factorization

Theorem

Let us denote the expectation of the necklace of size p as

Cp =
N2+p

N4

〈
B

(p)
12 (T,T)

〉
=

N2+p

N4

∫
dµ(T,T)B

(p)
12 (T,T)∫

dµ(T,T)
.

Then the expectation of any tree of necklaces L{p1,...,pn} factorizes in the large
N limit

Nω(L{p1,...,pn})

N4

〈
L{p1,...,pn}(T,T)

〉
=

n∏
k=1

Cpk .
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Schwinger-Dyson equations at leading order

Schwinger-Dyson equation

Cp =

p−1∑
k=0

Ck Cp−k−1 +
∑
j≥1

j ∂jV (C1,C2,C3, . . . ) Cj+p−1

where V is some polynomial, and Cp is the number of maps with root vertex of
degree p. The quadratic term corresponds, as usual for equations à la Tutte, to
the case where the root edge is a bridge.

The second term extends the length of the boundary face from p to p + j − 1,
which is also usual for planar maps. However, it is more complicated due to the
branching process.
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Schwinger-Dyson equations at leading order

This equation was analyzed in the 90’s in the context of multi-trace matrix
models (Das, Dhar, Sengupta, Wadia, Korchemsky, Klebanov et al...).
Free energy behaves like (g − gc)2−γ , where γ is the entropy exponent.

Critical maps, non-critical trees => γ = −1/2 (pure 2D gravity).

Non-critical maps, critical trees ºlue => γ = 1/2 (branched polymers)

Both simultaneously critical => γ = 1/3 (proliferation of baby universes)
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Conclusion, Open Problems

Continue the constructive program until treatrment of just-renormalizable
tensor models (and of Grosse-Wulkenhaar matrix model) is completed

Include terms beyond melonic LPA approximation in Wetterich equation
=> see how planar phase and baby universes appear in RG flow

Organize next sub-leading levels in 1/N so as to see truly three

dimensional random-geometric effects emerge => QG3
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Understand the pregeometric analog of Osterwalder-Schrader positivity, to
select a subclass of tensor models which admit a real-time continuation

Better contact with advanced random matrices techniques probably very
important for future progress towards QG4. Link to SUSY YM4?

color code: blue = before next Corfu, orange: before my retirement?
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Thank you for your attention
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