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Introduction

Quantum theories of gravity

» String Theory/M-theory
extended objects: strings, D-branes, M2/M5-branes,. . .
» Matrix-Theory; emergent gravity

» Loop Quantum Gravity, Group Field Theory, ...

quantum + gravity =

Generalize geometry

» microscopic non-commutative/non-associative spacetime structures



Aspects of quantization

Noncommutative geometry considers the algebra of functions on a
manifold and replaces it by a noncommutative algebra:
» Gelfand-Naimark:
spacetime manifold ~» noncommutative algebra
“points” ~~ irreducible representations

» Serre-Swan:
vector bundles ~~ projective modules

» Connes: noncommutative differential geometry
(Dirac operator, spectral triple, ...)

almost NC Standard Model: Higgs = gauge field in discrete direction

We shall concentrate on algebraic aspects in these lectures.



Aspects of quantization  6(x) ~ %

Deformation quantization of the point-wise product in the direction of a
Poisson bracket {f,g} = 079;f - 0;g:

i

h
frg="fg+ E{f,g}Jrthz(f,g)+h3Ba(f,g)+-~- :

with suitable bi-differential operators B,,.

There is a natural gauge symmetry: “equivalent star products”
x>, DfxDg=D(f«g),

with Df = f + ADyf + B2Dof + . ..



Aspects of quantization  6(x) ~ %

Deformation quantization of the point-wise product in the direction of a
Poisson bracket {f,g} = 079;f - 0;g:

h
frg="fg+ %{f,g}+h232(f,g)+h383(f,g)+-~- :

with suitable bi-differential operators B,,.

There is a natural gauge symmetry: “equivalent star products”
x>, DfxDg=D(f«g),

with Df = f + ADyf + B2Dof + . ..

Weyl quantization associates operators to polynomial functions via

symmetric ordering: x* ~> XH, x'x¥ ~» $(X1RY 4+ xV&M), etc.

extend to functions, define star product fi x f, := fl?g .



Aspects of quantization  0(x) ~> %

for 8 = const.:

Moyal-Weyl star product

(Frg)x) = -[ei"" 20 (F o g)]

1 /i, .
= ZE (§> Orv 9 (D, D £) (O - O )

f~g+é€“”3“f~81,g+...

partials commute, [0,,0,] =0 = star product * is associative



Aspects of quantization  0(x) ~> %

for 8 = const.:

Moyal-Weyl star product
(Fre)x) = -[ed"" 00 (F o g)]

-y (é) Om P (D, O F) (Do - - Oy )

m!

f~g+é€“”3#f~8l,g+...

partials commute, [0,,0,] =0 = star product * is associative

e.g. canonical commutation relations for (X') = (x*,...,x% p1,...,pq)

X', X, = ih0"  with©® =0 — <—0/ é)

starting point for phase-space formulation of QM



Aspects of quantization  6(x) ~ %

Kontsevich formality and star product
U, maps n k;-multivector fields to a (2 — 2n+ Y k;)-differential operator

Un(Xa, ..., X)) = Z wr Dr(Xy, ..., &,) .
regG, A

The star product for a given bivector 8 is:

f*gzzo %U,,(G,...,G)(f,g)

H 2
=gt 2 Y000 o~ S 00 gkt - 0ig
h2 ,
- (Z 019,04 (9;04f - Oig — Oncf - a,-a,g)) ¥

Kontsevich (1997)



Aspects of quantization  0(x) ~> %

AKSZ construction: action functionals in BV formalism of sigma model
QFT's in n+4 1 dimensions for symplectic Lie n-algebroids E
Alexandrov, Kontsevich, Schwarz, Zaboronsky (1995/97)

n =1 (open string):

Poisson sigma model
2-dimensional topological field theory, E = T*M

1
Sthso= [ (X + 30060 g)

with 6 = 2 09(x)9; A 0; , € = (&) € QY (T2, X*T*M)

perturbative expansion = Kontsevich formality maps
(valid on-shell ([0, 6]s = 0) as well as off-shell, e.g. twisted Poisson)
Cattaneo, Felder (2000)



Strings and NC geometry

Noncommutativity in electrodynamics and string theory

» electron in constant magnetic field B = Bé&,:

. . B .
L=232 ex A with  A=—Zepd
2 2
B.. . N Y
H St B oi o1 4 i
rmoﬁ e X €jx = (&, %] 5

» bosonic open strings in constant B-field

1

Sy = ——
* 2% ged

/ (g,-l-aaxié‘axj — 27TiaIB,-jeab5'aXi8ij)
b
in low energy limit g;j ~ (a/)? — 0:

i Y i
Sox = ) /az Bjjx'x’ = [, %] = <—>

C-S Chu, P-M Ho (1998); V Schomerus (1999); Seiberg, Witten



Strings and NC geometry

Open strings on D-branes in B-field background

(Ix'(r). ¥ (")) = i6”

non-commutative string endpoints with x-product depending on 6 via

1 1
B = Fro +0 (closed — openstringrelations)

add fluctuations B ~» B + F; depending on regularization scheme:

- non-commutative gauge theory (e.g. point-splitting)
ordinary gauge theory (e.g. Pauli-Villars)

= SW map: commutative <> noncommutative theory (duality)



Strings and NC geometry

A SW map (according to Seiberg & Witten) is a field redefinition
~ 1
AA 0 = A, + Zeﬁ" {AOcA + Fepy + .o,

such that 64, =N < A, =9, A+i[ArA,].

Introduce covariant coordinates
XY =D(x") = x" +0"PA,[A 0]  with  D(f« g)=DfxDg .

= a SW map is really a covariantizing change of coordinates.

quantization
B : 0 —_—> %

Moserl P ll’ lD
’

quantization
B+ F: 0 —— %

Jurgo, PS, Wess (2001)



Example: QM with 3-cocycle

60— 6
charged particle in a magnetic field

wzdp,-/\dx"»—>w'=w+eF F,'j:a,'Aj—ajA,'ZE,'jkBk

00 —60—e0-F-0+0-Fo.Fog—..—(° !
-l eF

quantize 6 and ¢’, determine SW map ...
x=« =D toxo(D®D)
D(x')=x"  D(p;)=pi —eA; (exact result!)

SW map = change of coordinates in phase-space = minimal substitution



Example: QM with 3-cocycle

0—0
alternatively: deformed canonical commutation relations

X', x'] =0, [x',pj] =ik, [pi,pj] = iheF; (where F;j = e Bx)
. p2
Let p=pic’ and H = 5 = Pauli Hamiltonian:

1
2m

< {o", o' Hpi, pj}' +-[<7 Ufl[p,,pjl> P _le g

Lorentz-Heisenberg equations of motion:

dp _

=2 IR
== [H] " (pxB-Bxp), L=3H7=2

dt

in this formalism V - B # 0 is allowed (magnetic sources)



Example: QM with 3-cocycle

Jacobi identity:
[p1, (P2, p3]'] + [P, [p3. p1]'T + [ps, [p1. p2] ] = 12V - B = Kepiopm

For p, # 0: non-associativity, 7 linear operator g = —ihV — eA

Translations are generated by T(3) = exp(%é’- p):
T(3)T(3) = er®2T(a, + &)

[T(3)T(3)] T(3) = ef = T(a,)[T(3) T(33)]

®1, = flux through triangle (31, 3>)
®123 = flux out of tetrahedron (31, 3, 33) = pogm

Associativity of translations is restored for:

Ho€dm
h

€ 217 (Dirac charge-quantization)

Jackiw '85,'02

point-like magnetic monopoles ... else: need NAQM



Example: QM with 3-cocycle

Magnetic monopoles in the lab
F

o

spin ice pyrochlore, Dirac strings and monopoles

>

Castelnovo, Moessner, Sondhi (2008)
Fennell; Morris; Hall, ...(2009)
Lieb, Schupp (1999)



Strings and NC geometry: effective actions

Massless bosonic modes

> open strings: A,, ¢ — gauge and scalar fields on D-branes

Open string effective action

Sosl :/andet%(g-i-B-l—F)Z/d"xdet%(é+a>+ﬁ)283’§|

commutative <+ non-commutative duality
generalized symmetry fixes action

Expand to first non-trivial order =

1
Spel = / d”x%g’fg“(sﬁ),-k(sﬁ)ﬂ (Maxwell/Yang-Mills)
S

il RN
Sbei :/an|4|§2é’ijé’k!{X',Xk}{XJ,Xl} (Matrix Model)
S



Strings and NC geometry: effective actions

Nambu-Dirac-Born-Infeld action
commutative <> non-commutative duality implies
1 b 1
Sp-pBI = /d”xg— det 2D [g] det oD g+ (C+FEg (C+F)T]
m

C6+A)T]

)

1 EEPPN ALa
:/anG—detml:G] detﬁ[G‘i‘(q)‘f'F)

m

This action interpolates between early proposals based on supersymmetry
and more recent work featuring higher geometric structures.

expand and quantize ~» Nambu matrix-model:

1 . PN .
—,\Tr(",-- [XJO,...,XJP] [XXD
2(p+1)gm gOJO ngp

Jurdo, PS, Vysoky (2012-14)



Strings and NC geometry: effective actions

Massless bosonic modes

» closed strings: g, Bu,, ® — background geometry, gravity

Closed string effective action

Weyl invariance (at 1 loop) requires vanishing beta functions:

Buv(g) = 5uui3) =p(®)=0

equations of motion for g,,,, B, ®

1)
closed string effective action
/de| gl? ( - —¢/3H HW_-a dO* ¢+...)

NC/generalized geometry appears to fix also this action



Strings and generalized geometry: non-geometric fluxes

Non-geometric flux backgrounds
T-dualizing a 3-torus with 3-form H-flux gives rise to geometric and

. T T ik T pi
non-geometric fluxes  Hy — f;* — QJF —4 Rk

Hellermann, McGreevy, Williams (2004)
Hull (2005), Shelton, Taylor, Wecht (2005)
Liist (2010), Blumenhagen, Plauschinn (2010)

Generalized (doubled) geometry (O(d, d) isometry, g, B,...)

Non-geometry geometrized in membrane model
quantization = non-associative *-product

frxg=-exp <%L [Rijkpkai@)aj"‘a;@éi—5i®8iD

(nonassociative) quantum mechanics with a 3-cocyle
Mylonas, PS, Szabo (2012-2013)



Strings and generalized geometry: non-geometric fluxes

H;; 3-form background flux

f,-jk geometric flux, [e;, ] = f,-jkek
-k globally non-geometric, T-fold
Rk locally non-geometric, non-associative

structure constants of a generalized bracket:

lei, &]]c = fi*ex + Hijke*
[er, €]c = QF%ex — f/ie”
¢, &/]c = R e+ Qe"
twisted Courant/Dorfman/Roytenberg bracket on ['(TM & T*M)

governs worldsheet current and charge algebras
Alekseev, Strobl; Halmagyi; Bouwknegt; . ..



Generalized geometry

Dorfman bracket

Generalizes the Lie bracket of vector fields X € [(TM) to
V=X+&el(TM @ T*M):

X+EY+np=[X,Y]+Lxn—ryd (+twisting terms)
E=TM@ T*M is called “generalized tangent bundle”

E with the Dorfman bracket, the natural pairing (—, —) of TM and T*M
and the projection h: E — TM (anchor) forms a Courant algebroid.

“twisting terms” can involve H, R, ...

Courant bracket: [V, W]c = 3([V, W]p — [W, V]p)



Generalized geometry

Courant algebroid

vector bundle E —=s M, anchor h € Hom(E, TM),
R-bilinear bracket [—, —] and fiber-wise metric (—, —) on TE x TE,
s.t. for e, €', e’ € E:

le. [, "]l = [[e, €], €"] + [¢/, [e, €”]] (1)

h(e)(e',e') =2(¢', [e, €']) = 2(e, [¢/, €]) (2)
Consequences:

e, fe'] = h(e).f & + fle, €] f e Co(M) (3)

h([e, €]) = [h(e), h(e')]. (4)

note: both axioms (2) can be polarized
(1) and (3) are the axioms of a Leibniz algebroid



Generalized geometry

Exact Courant algebroid

0O=-TM—=E—=TM—=0 = EXTM®T*M

Symmetries of pairing (, ): O(d,d) — next slide

Symmetries of Dorfman bracket [, |:

eg. eB(V 4+ €)=V + ¢+ iyB preserves bracket up to iyiywdB
= symmetries of bracket: Diff(M) x Q2 .4(M).

twisted Dorfman bracket [, | =[, ]+ iviwH for H € Q3. .4(M),
then: e : [, Ju [, |Hsds ; twisted differential: dy = d + HA.



Generalized geometry

E=TMagT*M

. . 0 I
signature (n,n) = symmetries: O(n, n), e.g.:

» B-transform: eB(V +¢&) =V + &+ B(V) (é ?)

) I 6

> O-transform: e”(V +&) =V + £+ 0() 0 J

commutative <> non-commutative symmetry
T N 0
> On(V +&) = N(V)+ N-"(£), smooth 0 N-T

any O € O(n, n) can be written as O = e BOye™?



Generalized geometry

consider an idempotent linear map 7 : I(E) — [(E), 72 =1
eigenvalues +1 ~» splitting E = V. & V_ with eigenbundle:
Vi ={V+A(V) | Ve TM}={A Y ()+£| € T*M} A=g+B
Vo= {VFA\V) | Ve TM} = {A Y+ | €€ T*M}y A= —g+B
. . % —-g7'B g ! ) <V>
in matrix form: = _ _
T(f) <g_5g 'B Bgt) \¢

positive definite metric via 7: (e1, &), = (Te1, &) = (€1, 7€)
= generalized metric



Generalized geometry: derived brackets

Dorfman bracket as a derived bracket
recall: the Lie-bracket of vector fields is a derived bracket:

Cartan relations
X,Y € [(TM): vector fields

ixty +tytx =0
dix +i1xd=Lx
dLx —Lxd=0
Lxiy —yLx = [{tx,d}, ty] = tx v Lie-bracket
LxLy — LyLx = Lix,y]



Generalized geometry: derived brackets

generalized vector field: X +& e I(TM & T*M)

Clifford module Q°*(M)

Vx+e) W =txw+EAwW
de-Rham differential
d: QM) = Q*(m)
can be twisted by a (closed) 3-form H:
dpw = dw + H A w
generalized Lie derivative

ﬁx.,.gw = Lxw + (df — LxH) AN w



Generalized geometry: derived brackets

Clifford-Cartan relations
V.Wel(TM® T*M), yv = V(x)7a

YWYW + Ywyv = <V7 W> YoV + V8V = Gap
dw+vd=~Ly
dLy—Lyd=0
Lvyw —ywLy = [{w,d}vw] = nv.wp, Dorfman-bracket
LvLw — LwLyv = Ly w)p
= (twisted) Dorfman bracket

[X +£7 Y +77]D = [X, Y] + Ex'f] — Lyd& + //XLyH



Geometrized non-geometry: membrane sigma model

extended objects in background fields

. "

object: point particle closed string

algebraic structure: non-commutative non-associative

AKSZ-model: Poisson-sigma Courant-sigma
(open string) (open membrane)



Geometrized non-geometry: membrane sigma model

Courant sigma model
TFT with 3-dimensional membrane world volume X3

51(\21)<sz:/): (¢i/\dXi+%GIJOéI/\dOéJ—h/i(X)(bi/\al
3
+1T X I J K
6 uk(X)a' Ao Aa

embedding maps X : ¥3 — M, 1-form «, aux. 2-form ¢, fiber metric G,
anchor h, 3-form T (e.g. H-flux, f-flux, Q-flux, R-flux).

AKSZ construction: action functionals in BV formalism of sigma model
QFT's for symplectic Lie n-algebroids E
Alexandrov, Kontsevich, Schwarz, Zaboronsky (1995/97)



Geometrized non-geometry: membrane sigma model

R-space Courant sigma-model AKSZ membrane action
@) _ ) i Lok AL
Sy’ = d§i N dX +6R (X) & NE A&k
X3
for constant backgrounds, using Stokes leads to boundary action
1
5,(?2) = / <77/ AdX! 4+ ZeM(X)n, /\m) :
3, 2
Poisson sigma-model with auxiliary fields 7, and
Rik 8 -
—_ (o — Pk
0= (") = ( Y 0J> — % (non-associative!)

doubled target space ~ phase space, X = (x,...,x% p1,...,pq)



Non-associative product

fxg=-exp (% |:Rijkpkai®aj+ai®5i_5i®8f:|)

» 2-cyclicity

/d2dxf*g:/d2dxg*f:/d2dxf~g

» 3-cyclicity

/ d®x fx (g *h) = / d*x (Fxg)xh
» inequivalent quartic expressions

/ﬁ*(fz*(fg*m) Z/(ﬂ*fz)*(fa*ﬁ;)Z/((fl*fz)*ﬁ)*ﬁ;

/ﬁ*((fz*ﬁ)*ﬂ)=/(f1*(f2*ﬁ))*f4



Nonassociative quantum mechanics

Phase-space formulation of QM
Similar to the density operator formulation of quantum mechanics.
» Operators and states are functions on phase space.

» Algebraic structure introduced with the help of a star product,
traces by integration.
Popular choices of star products:
Moyal-Weyl (symmetric ordering, Wigner quasi-probability function)
Wick-Voros (normal ordering, coherent state quantization)

(QHO states in Wick-Voros formulation)



Nonassociative quantum mechanics

Phase-space formulation of QM, suitably generalized:

A state p is an expression of the form
= davawuy with [ laP-1
a=1

Ao are probabilities and v, are phase space wave functions:

Expectation value:

<A>:2ajxa/w2*(Awa)=/A-sp,

with state function

Sp = Aata*1 /5,,:1.



Nonassociative quantum mechanics

» Operators: complex-valued functions on phase-space — the star
product severs as operator product

» Observables: real-valued functions on phase-space

» Dynamics: Heisenberg-type time evolution equations
0A
ot

these are in general not derivations of the star product!

= 1M, AL



Nonassociative quantum mechanics

Eigenfunctions and eigenstates

“star-genvalue equation”
Axf =M\ with A € C
complex conjugation implies f* x A* = \*f*
» real functions have real eigenvalues

F*x(Axf) = (F"xA)x f = (A= X")(f*«xf)

()\—)\*)/f**f:()\—)\*)/|f|2:0.

» eigenfunctions with different eigenvalues are orthogonal



Nonassociative quantum mechanics

Associator and common eigen states
if X!'«S=\Sand X/ xS =)S and XK xS = \KS then

/[(X’*XJ)*XK]*S = /(X’*XJ)*(XK*S)
= )\K/(X’*XJ)*S = )\K/X’*(XJ*S) = NN
likewise [[X!x (X7 % XK)] %S = ANAKN.
taking the difference implies
[X', X7, XKL = MAIA = AAKN =0

= Nonassociating observables do not have common eigen states
~~ spacetime coarse graining



Nonassociative quantum mechanics

Positivity
o) =3 N [ A« (Ax )] =3 e [ (5 A% (A 1)
=3 e [(Ar ) (Axa) =30 [ 1A%l 20
~ semi-definite, sesquilinear form
(A, B) = ZA /(A*qpa (B *1q)

= Cauchy-Schwarz inequality
(A, B)” < (A, A)(B, B) .

~~ uncertainty relations



Nonassociative quantum mechanics

Uncertainty relations

uncertainty in terms of shifted coordinates X! = X! — (X/)
(AX')? = (X', X))

Cauchy-Schwarz

(AX'P(AXTP = (X, X)P = |<[X' XJo)? + |<{>~<'7>~<J}o>|2
= Born-Jordan-Heisenberg-type uncertainty relation

AX' - ax? > %\([X’,XJ](,)]
recall: [x',x/] = ihR¥py, [x', pj] = ihd;, [pi,p] =0 =

Api-Ap; >0  Ax'-Ap > 55; Ax' - AxI > §|R’Jk<pk)'|



Nonassociative quantum mechanics

Area and volume operators
A = (X! X7], and VMK = [[)?',)?J,XK]]*

expectation values of these (oriented) area and volume operators:
(AMy = heM((p)) and (VMK) = thIJK

with three interesting special cases
(A2) = hs] , (AT) = AR (py) (V%) = SR

= coarse-grained spacetime with quantum of volume 31?R



Remark on Nambu-Poisson 3-brackets

Nambu-Poisson structures

» Appear in effective membrane actions

» Nambu mechanics: multi-Hamiltonian dynamics with generalized
Poisson brackets; e.g. Euler’'s equations for the spinning top :

d [2

L= {L;, = T} with {f,g, h} < €% 0,f 9;g Okh

» more generally
{{fbﬂ"'afp}ahh'”ahp} = {{foahh'"ahp}afla"'»fp}—‘f_"'
coo{fo, oo o1, {fp, b1, - L hp))



Remark on Nambu-Poisson 3-brackets

Nambu-Poisson structures

» Appear in effective membrane actions

» Nambu mechanics: multi-Hamiltonian dynamics with generalized
Poisson brackets; e.g. Euler’'s equations for the spinning top :

d [2

L= {L;, = T} with {f,g, h} < €% 0,f 9;g Okh

» more generally
({fo,-- 6l b, by = {{fo b, B} fie e b 4.
coo{fo, oo o1, {fp, b1, - L hp))
» The nonassociative x-product quantizes these brackets:

[[x, %/, xH]], = ihz (RU/[P/,Xk]* + cycl.) = 312 Rk
b !

Jacobiator



Remark on (non-associative) Jordan Algebras

“Noncommutative” Jordan Algebras
(1) x(yx) = (xy)x “flexible”

2) x2(yx) = (x%y)x implies: x™(yx") = (x"y)x"
P. Jordan (1933), A.A. Albert (1946), R.D. Schafer (1955)



Remark on (non-associative) Jordan Algebras

“Noncommutative” Jordan Algebras
(1) x(yx) = (xy)x “flexible”

2) x2(yx) = (x%y)x implies: x™(yx") = (x"y)x"
P. Jordan (1933), A.A. Albert (1946), R.D. Schafer (1955)

Question: Are we dealing with a Jordan algebra?

i

x!x (xK

xx!) = (x"x xK) % x! v

(x5 (xK % xT) = ((x")*2 % xK) % ! v



Remark on (non-associative) Jordan Algebras

“Noncommutative” Jordan Algebras
(1) x(yx) = (xy)x “flexible”
2) x3(yx) = (x%y)x implies: x™(yx") = (x"y)x"
P. Jordan (1933), A.A. Albert (1946), R.D. Schafer (1955)

Question: Are we dealing with a Jordan algebra?

i

x!x (xK

xx!) = (x"x xK) % x! v

(x5 (xK % xT) = ((x")*2 % xK) % ! v

but X2 (X2 % X2) — (X2 % X2)x X2 = 2iR?p - X + 0

(with R = Relk) = It's not a Jordan algebra Alexander Held, PS



_ R

~ Thanks for listening! :

e R




