Eternal Higgs inflation

Kin-ya Oda (Osaka)

with

Yuta Hamada & Hikaru Kawai (Kyoto) PRD (2013), PTEP (2014), PRD (2015);
• Seong Chan Park (Sungkyunkwan) PRL (2014), PRD (2015);
(Hamada, KO) + Fuminobu Takahashi (Tohoku) PRD (2014);
• Masatoshi Yamada (Kanazawa) to appear. At LHC,

Leele Quintion Lon/A

Higgs ever more SM-ish

https://indico.cern.ch/event/389531/session/31/contribution/51/attachments/1147368/1650410/LHCHCP_MarcoPieri_fin_1.pdf

Yog ob shell

A possible way

- + Extrapolate SM (+ α) toward very high scales.
- See what we can say.
- Will see rather rich ground to explore.

- 1. SM criticality: Triple coincidence
- 2. Higgs inflation with SM criticality
 - Milder non-minimal coupling ξ
 - Allows larger tensor-to-scalar ratio r
- 3. Eternal Higgs inflation
 - Saves from horizon problem

picture from web

Vacuum (in)stability

(m_t numbers given just to show amount of tuning)

[Hamada, Kawai, KO, Park, PRD 2015]

Mit vs Mh

[Buttazzo et al. 1307.3536]

Note what is meant by "top mass".

[E.g. Hamada, Kawai, KO, Park, PRD 2015]

 $M_t^{\text{pole}} = \begin{cases} 171.2 \pm 2.4 \text{ GeV}, & \text{MITP}[99], \\ 176.7^{+4.0}_{-3.4} \text{ GeV}, & \text{PDG}[136], \end{cases}$

 $M_t^{\text{Pythia}} = \begin{cases} 173.21 \pm 0.51 \pm 0.71 \text{ GeV}, & \text{direct measurment, PDG [136]} \\ 174.98 \pm 0.76 \text{ GeV}, & \text{D0[137]}, \\ 174.34 \pm 0.64 \text{ GeV}, & \text{D0} + \text{CDF [138]}, \\ 173.34 \pm 0.76 \text{ GeV}, & \text{ATLAS [139]}, \\ 172.38 \pm 0.10 \pm 0.65 \text{ GeV}, & \text{CMS [140]}. \end{cases}$

Mit vs Mh

[Buttazzo et al. 1307.3536]

Note what is meant by "top mass".

[E.g. Hamada, Kawai, **KO**, Park, *PRD* 2015]

D15] $M_{t}^{\text{pole}} = \begin{cases} 171.2 \pm 2.4 \text{ GeV}, & \text{MITP} [99], \\ 176.7_{-3.4}^{+4.0} \text{ GeV}, & \text{PDG} [136], \end{cases}$ $M_{t}^{\text{Pythia}} = \begin{cases} 173.21 \pm 0.51 \pm 0.71 \text{ GeV}, & \text{direct measurment}, \text{PDG} [136] \\ 174.98 \pm 0.76 \text{ GeV}, & \text{D0}[137], \\ 174.34 \pm 0.64 \text{ GeV}, & \text{D0} + \text{CDF} [138], \\ 173.34 \pm 0.76 \text{ GeV}, & \text{ATLAS} [139], \\ 172.38 \pm 0.10 \pm 0.65 \text{ GeV}, & \text{CMS} [140]. \end{cases}$

Our Universe

- Talala

Our Universe

pictures from web

Live life on the edge.

pictures

Contract and an an address of strategic data and a

Bare Higgs mass

Can be small for Planck scale cutoff.

- + Triple coincidence: λ , β_{λ} , $m_B^2 \sim 0$.
- Must indicate something!

[Hamada, Kawai, **KO**, *PRD* 2013]

enominielqxe ol

Hierarchy Groblem $\star m_R^2 = m_B^2 + (\lambda + \cdots) \Lambda^2 / 16\pi^2 + \cdots$ ren. mass bare mass radiative corrections

- $\star (100 \text{GeV})^2 = (10^{18} \text{GeV})^2 (10^{18} \text{GeV})^2?$
- \bigstar With SUSY,
 - \bigstar Top loop is cancelled by stop loop etc.
 - $\star \Lambda^2$ is replaced by SUSY breaking scale.
- ★ As we haven't seen SUSY up to TeV, subtraction problem emerges again.
 - ★ Matter of religious belief: 1% sect, 1‰ sect, etc.

Valtman condition

- This mass-relation, pplying a certain cancellation between bosonic and fermionic effects, would in this view be due to an underlying supersymmetry." [Veltman, APP 1981]
 - * Two loop corrections to bare mass are small. [Hamada, KO, Kawai, 2013]
- ◆ SUSY may well be broken at string/Planck scale. [Hamada, KO, Kawai, 2015]
 - * Indeed there are more **non-super string theories** than superstring theories:
 - ✤ In 4D fermionic construction. [Kawai, Lewellen & Tye, 1986, 1987]
 - They are tachyon free, unlike 26D bosonic string theory.

Recent model building: Blaszczyk, Groot Nibbelink, Loukas, Ramos-Sanchez, JHEP 2014.

- May be realized by a principle beyond ordinary QFT:
 - ★ Multiple point criticality [Froggatt, Nielsen (1996); …]
 - ★ Classical conformality [Meissner, Nicolai (2008); Foot, Kobakhidze, McDonald, Volkas (2008), Iso, Okada, Orikasa (2009); …]
 - ★Asymptotic safety [Weinberg (1979); Shaposhnikov, Wetterich (2010); …;
 KO, Yamada (to appear); …]
 - ★ Hidden duality [Kawamura (2013); …]

★ Maximum entropy principle [Kawai (2013); Hamada, Kawai, Kawana (2015); …]

 May be realized by a principle beyond ordinary QFT: **PREdicted the Higgs mass!**

★ Multiple point criticality [Froggatt, Nielsen (1996); …]

- ★ Classical conformality [Meissner, Nicolai (2008); Foot, Kobakhidze, McDonald, Volkas (2008), Iso, Okada, Orikasa (2009); …]
- ★Asymptotic safety [Weinberg (1979); Shaposhnikov, Wetterich (2010); …; KO, Yamada (to appear); …]
 PREdicted the Higgs mass!
- ★Hidden duality [Kawamura (2013); …]

★ Maximum entropy principle [Kawai (2013); Hamada, Kawai, Kawana (2015); …]

 May be realized by a principle beyond ordinary QFT: **PREdicted the Higgs mass!**

★ Multiple point criticality [Froggatt, Nielsen (1996); …]

a review in Hamada, Kawai,

- ★ Classical conformality [Meissner, Nicolai (2008); Foot, Kobakhidze, McDonald, Volkas (2008), Iso, Okada, Orikasa (2009); …]
- ★Asymptotic safety [Weinberg (1979); Shaposhnikov, Wetterich (2010); …; KO, Yamada (to appear); …]
 PREdicted the Higgs mass!
- ★Hidden duality [Kawamura (2013); …]

★ Maximum entropy principle [Kawai (2013); Hamada, Kawai, Kawana (2015); …]

Log₁₀^µ [GeV] Note: Flat or degenerate?

Phenomenologically, we do not distinguish principles requiring

+ as they are parametrically identical.

1. SM criticality: Triple coincidence

- 2. Higgs inflation with SM criticality
 - Milder non-minimal coupling ξ
 - Allows larger tensor-to-scalar ratio r

3. Eternal Higgs inflation

Saves from horizon problem

Observable inflation

picture from web

benelidentee meilente moitalim

70 points nicely fit by few parameters (2 from inflation)

[Planck 2015]

Ettel Vrienoitieltril hived as unished mi mubinally & villen fuctuations matter

Higgs inflation

retries the noitelini aggit

[[]Planck 2015]

Marvelous idea by Bezrukov & Shaposhnikov (2008)

Start from general action:

← Can switch to Einstein frame by $(R \sim g^{..}g^{..}g_{..}\partial_{.}g_{..} \propto (g_{..})^{-1})$

$$\left(1+\xi\frac{\varphi^2}{M_P^2}+\cdots\right)g_{\mu\nu}\to g^E_{\mu\nu}$$

$$S = \int d^4x \sqrt{-g} \left[\left(1 + \xi \frac{\varphi^2}{M_P^2} + \cdots \right) \frac{M_P^2}{2} R - (\partial \varphi)^2 - \left(\frac{\lambda}{4} \varphi^4 + \cdots \right) \right]$$

$$\left(1+\xi\frac{\varphi^2}{M_P^2}+\cdots\right)g_{\mu\nu}\to g^E_{\mu\nu}$$

+ Potential rescaled:

Electify elevel voi leibueve vel-

Potential rescaled:

 $U(\chi)$

Flat potential at φ » M_P/√ξ
★ If "…" do not contribute much.
★ Needs ξ ~ 10⁵⁻⁶ for λ~0.1

+ Needs $\xi \sim 10^{5\text{-}6}$ for $\lambda{\sim}0.1$

Can we evade such a large Z~105-6? Yas wa can

(We really can, in this case.)

Higgs Inflation from SM criticality

- + Combine with original idea by Bezrukov & Shaposhnikov.
 - $6.\times10^{-9}$ * Need only $\xi \sim 10$. $5. \times 10^{-9}$ $4. \times 10^{-9}$ $\overset{4.\times10^{-9}}{\underset{2}{\times}10^{-9}}$ Biproduct: $2. \times 10^{-9}$ Tensor-to-scalar ratio can be as large as $r \sim 0.1$. $1. \times 10^{-9}$ 0.0 0.5 1.5 2.0 1.0 May be seen in near future. *

 $\varphi[M_P]$

Predictions of (very)minimal model (skippable) $\star c := \mu_{\min} / (M_P / \sqrt{\xi})$

Higgs portal Z2 DM (skippable)

[Hamada, Kawai, **KO**, *JHEP* 2014]

*Higgs portal DM: [Also done by (several combinations of) Haba, Ishida, Kaneta & Takahashi.] $\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu}S)^2 - \frac{1}{2} m_S^2 S^2 - \frac{\rho}{4!} S^4 - \frac{\kappa}{2} S^2 H^{\dagger} H.$

* κ works like g_{γ} on running $\lambda(\mu)$

- * Testable relation btn m_{DM} & m_{t}
 - ◆ Upper bound: m_{DM} < 1TeV.
 (next)

enibro

- 1. SM criticality: Triple coincidence
- 2. Higgs inflation with SM criticality
 - Milder non-minimal coupling ξ
 - Larger tensor-to-scalar ratio r
- 3. Eternal Higgs inflation
 - Saves from horizon problem

Eternal (pre)inflation

picture from web

eeob noitstini llor-wole meldorg noziron evloe ICU

- + E.g. in chaotic inflation,
 - * A lager region than Hubble length scale
 - * must have the same field value
 - * simultaneously & coherently.
- Who sets this initial condition?
- How about having eternal inflation before the one we observe by CMB?

llew niemob is notislini(erg) lanreiE

[Hamada, **KO**, Takahashi, *PRD* 2014]

In string theory: we see there are two degenerate vacua.

- + If relative curvature at maximum is not large: $\eta < 1.4$
 - * DW supports inflation forever.

[Sakai, Shinkai, Tachizawa & Maeda, 1996]

* A solution to horizon problem!

muuseveelsi te noitalini lenneti

[Hamada, Kawai, **KO**, *PRD* 2015]

+ False vacuum eternal (pre)inflation also possible.

Higgs inflation works.

Need another inflaton.

Many things to do

- *Anything intermediate between weak and Planck scales (affecting <u>running of</u> <u>quartic coupling</u>) changes inflation prediction.
 - Higgs portal DM, right-handed neutrino, etc.

- 1. SM criticality: Triple coincidence
- 2. Higgs inflation with SM criticality
 - Milder non-minimal coupling ξ
 - Larger tensor-to-scalar ratio r
- 3. Eternal Higgs inflation
 - Saves from horizon problem

