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At LHC,



We have 
witnessed 

great victory  
of the SM!

picture	  from	  web



And nothing else.



No BSM in the loops 
•  Fizng&the&5&main&tree&level&coupling&modifiers&+&κμ&and&

resolving&all&the&loops.&
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Higgs ever more SM-ish

CMS-‐‑‒PAS-‐‑‒HIG-‐‑‒13-‐‑‒005

https://indico.cern.ch/event/389531/session/31/contribution/51/attachments/1147368/1650410/LHCHCP_̲MarcoPieri_̲fin_̲1.pdf
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Where to go?



A possible way

✦ Extrapolate	  SM	  (+α)	  toward	  very	  high	  scales.	  

✦ See	  what	  we	  can	  say. 	  

✦ Will	  see	  rather	  rich	  ground	  to	  explore. 



Outline
1. SM	  criticality:	  Triple	  coincidence	  

2. Higgs	  inflation	  with	  SM	  criticality	  

• Milder	  non-‐‑‒minimal	  coupling	  ξ	  

• Allows	  larger	  tensor-‐‑‒to-‐‑‒scalar	  ratio	  r	  

3. Eternal	  Higgs	  inflation	  

• Saves	  from	  horizon	  problem



SM criticality

picture	  from	  web



Vacuum (in)stability

(mt	  numbers	  given	  just	  to	  show	  amount	  of	  tuning)
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FIG. 1: The light red (lower) and blue (upper) bands are 2-loop RGE running of �e↵(µ) from the tree level

potential (3) and from the 1-loop e↵ective potential (4), respectively. The dark red (upper) and blue (lower)

bands are the beta function times ten 10⇥ d�e↵/d lnµ evaluated at the tree and 1-loop levels, respectively.

We take MH = 125.9GeV and ↵s = 0.1185. The band corresponds to 95% CL deviation of Mt; see Eq. (10).
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FIG. 2: Left: The tree level Higgs potential as a function of Higgs field '. Right: The one-loop Higgs

potential. Here we take MH = 125.9GeV and ↵s = 0.1185.

CMS value. Then, the tree and one-loop Higgs potential becomes flat around 1017–18GeV as shown

in Fig. 2.

Let us expand the e↵ective potential of the Higgs field V
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where the overall factor '4 is put to make the expansion well-bahaved. In the potential analysis

around the minimum, we can safely neglect the higher order terms with n � 3, and we will omit

[Hamada,	  Kawai,	  KO,	  Park,	  PRD	  2015]



Mt vs Mh

✦ Note	  what	  is	  meant	  by	  “top	  mass”.

Then we obtain

VðφÞ ¼ λeffðμ ¼ φÞ
4

φ4; ð10Þ

where λeffðμÞ is written by
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at the one-loop level.
The effective coupling λeff is quartically sensitive to yt and thus the top quark mass, Mt, which is scheme dependently

defined. The actual value ofMt is known with large uncertainties at the level of GeV scales depending on the measurements:

Mpole
t ¼

%
171.2% 2.4 GeV; MITP ½99';
176.7þ4.0

−3.4 GeV; PDG ½136';
ð12Þ

MPythia
t ¼

8
>>>>>><

>>>>>>:

173.21% 0.51% 0.71 GeV; directmeasurment; PDG ½136'
174.98% 0.76 GeV; D0½137';
174.34% 0.64 GeV; D0þ CDF ½138';
173.34% 0.76 GeV; ATLAS ½139';
172.38% 0.10% 0.65 GeV; CMS ½140':

ð13Þ

One should note that the “directly measured value” in
Eq. (13) obtained by Tevatron (D0 and CDF) and by LHC
(ATLAS and CMS) is indeed a parameter in Monte Carlo
simulation code [7,93], the so-called Pythia mass [94],
whose physical relation to the pole and MS masses is not
well established. In discussing the Higgs inflation near
criticality, however, the only important fact is that the
critical value for the pole mass Mt ≃ 171.3 GeV, shown
just below, is perfectly consistent with both the mainz
institute for theoretical physics (MITP) and PDG within 2σ
confidence level. Below, we take the MITP value as a
benchmark.
In Fig. 1, we can see that λeff has the minimum around

1017–18 GeV. Interestingly, if Mt ≃ 171.3 GeV, the mini-
mum value of λeff becomes zero around the scale
1017–18 GeV, and the Higgs potential has a plateau around
1017–18 GeV as shown in Fig. 2.4

Let us expand the effective potential of the Higgs field
VeffðφÞ on the flat spacetime background around its
minimum in terms of lnφ:

VðφÞ ¼ λeffðμ ¼ φÞ
4

φ4;

λeffðμÞ ¼ λmin þ
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where the overall factor φ4 is put to make the expansion
well behaved. In the potential analysis around the mini-
mum, we can safely neglect the higher order terms with
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FIG. 1 (color online). The light red (lower) and blue (upper)
bands are two-loop RGE running of λðμÞ and λeffðμÞ (11),
respectively. The dark red (upper) and blue (lower) bands are
the beta function times ten 10 × dλeff=d ln μ evaluated at the tree
and one-loop levels, respectively. We takeMH ¼ 125.9 GeV and
αs ¼ 0.1185. The band corresponds to 95% C.L. deviation of Mt
[99]; see Eq. (12).

4It has been known that such a position of plateau is unphysical
and can vary by an order of magnitude depending on the gauge
choice [95]. The gauge dependence of the effective potential can
be absorbed by a field redefinition [96]. The eventual field
equation for φ should not depend on such a choice, but the field
value here necessarily contains this amount of uncertainty. See
also Refs. [97,98] for a further account on the gauge (in)
dependence.
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.34GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-

19

[Buttazzo	  et	  al.	  1307.3536]

[E.g.	  Hamada,	  Kawai,	  KO,	  Park,	  PRD	  2015]
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FIG. 1 (color online). The light red (lower) and blue (upper)
bands are two-loop RGE running of λðμÞ and λeffðμÞ (11),
respectively. The dark red (upper) and blue (lower) bands are
the beta function times ten 10 × dλeff=d ln μ evaluated at the tree
and one-loop levels, respectively. We takeMH ¼ 125.9 GeV and
αs ¼ 0.1185. The band corresponds to 95% C.L. deviation of Mt
[99]; see Eq. (12).

4It has been known that such a position of plateau is unphysical
and can vary by an order of magnitude depending on the gauge
choice [95]. The gauge dependence of the effective potential can
be absorbed by a field redefinition [96]. The eventual field
equation for φ should not depend on such a choice, but the field
value here necessarily contains this amount of uncertainty. See
also Refs. [97,98] for a further account on the gauge (in)
dependence.
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.
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[Buttazzo	  et	  al.	  1307.3536]

[E.g.	  Hamada,	  Kawai,	  KO,	  Park,	  PRD	  2015]

1σ	  by	  Moch	  et	  al.



Anyway,



We are put on the edge
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Figure 4: Left: SM phase diagram in terms of quartic Higgs coupling � and top Yukawa coupling
yt renormalised at the Planck scale. The region where the instability scale ⇤I is larger than
1018 GeV is indicated as ‘Planck-scale dominated’. Right: Zoom around the experimentally
measured values of the couplings, which correspond to the thin ellipse roughly at the centre of
the panel. The dotted lines show contours of ⇤I in GeV.

EW vacuum’ corresponds to a situation in which � is negative at the weak scale, and therefore
the usual Higgs vacuum does not exist. In the region denoted as ‘Planck-scale dominated’ the
instability scale ⇤I is larger than 1018 GeV. In this situation we expect that both the Higgs
potential and the tunnelling rate receive large gravitational corrections and any assessment
about vacuum stability becomes unreliable.

From the left panel of fig. 4 it is evident that, even when we consider the situation in
terms of high-energy couplings, our universe appears to live under very special conditions.
The interesting theoretical question is to understand if the apparent peculiarity of �(MPl)
and yt(MPl) carry any important information about phenomena well beyond the reach of any
collider experiment. Of course this result could be just an accidental coincidence, because in
reality the SM potential is significantly modified by new physics at low or intermediate scales.
Indeed, the Higgs naturalness problem corroborates this possibility. However, both the reputed
violation of naturalness in the cosmological constant and the present lack of new physics at
the LHC cast doubts on the validity of the naturalness criterion for the Higgs boson. Of
course, even without a natural EW sector, there are good reasons to believe in the existence
of new degrees of freedom at intermediate energies. Neutrino masses, dark matter, axion,
inflation, baryon asymmetry provide good motivations for the existence of new dynamics below
the Planck mass. However, for each of these problems we can imagine solutions that either
involve physics well above the instability scale or do not significantly modify the shape of the
Higgs potential. As a typical example, take the see-saw mechanism. As shown in ref. [29], for
neutrino masses smaller than 0.1 eV (as suggested by neutrino-oscillation data without mass
degeneracies), either neutrino Yukawa couplings are too small to modify the running of � or

21
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Our	  Universe

On the edge

pictures from web
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Also,



Bare Higgs mass
✦ Can	  be	  small	  for	  Planck	  scale	  cutoff.	  

!

!

!

!

!

✦ Triple	  coincidence:	  λ,	  βλ,	  mB
2	  〜～	  0.	  

✦ Must	  indicate	  something!
[Hamada,	  Kawai,	  KO,	  PRD	  2013]



To explain more,



Hierarchy “problem”
★mR

2	  =	  mB
2	  +	  (λ	  +…)	  Λ2/16π2+…	  

!

★ (100GeV)2	  =	  (1018GeV)2	  −	  (1018GeV)2?	  
★With	  SUSY,	  
★Top	  loop	  is	  cancelled	  by	  stop	  loop	  etc.	  
★Λ2	  	  is	  replaced	  by	  SUSY	  breaking	  scale.	  

★ As	  we	  havenʼ’t	  seen	  SUSY	  up	  to	  TeV,	  
subtraction	  problem	  emerges	  again.	  
★Matter	  of	  religious	  belief:	  1%	  sect,	  1‰	  sect,	  etc.

bare	  mass radiative	  correctionsren.	  mass



Veltman condition
✦ “This	  mass-‐‑‒relation,	  implying	  a	  certain	  cancellation	  between	  bosonic	  
and	  fermionic	  effects,	  would	  in	  this	  view	  be	  due	  to	  an	  underlying	  
supersymmetry.”	  [Veltman,	  APP	  1981]	  

✴ Two	  loop	  corrections	  to	  bare	  mass	  are	  small.	  [Hamada,	  KO,	  Kawai,	  2013]	  	  

✦ SUSY	  may	  well	  be	  broken	  at	  string/Planck	  scale.	  [Hamada,	  KO,	  Kawai,	  
2015]	  

✴ Indeed	  there	  are	  more	  non-‐‑‒super	  string	  theories	  than	  superstring	  
theories:	  

✤ In	  4D	  fermionic	  construction.	  [Kawai,	  Lewellen	  &	  Tye,	  1986,	  1987]	  

✤ They	  are	  tachyon	  free,	  unlike	  26D	  bosonic	  string	  theory.

Recent	  model	  building:	  Blaszczyk,	  Groot	  Nibbelink,	  Loukas,	  Ramos-‐‑‒Sanchez,	  JHEP	  2014.



• May	  be	  realized	  by	  a	  principle	  beyond	  ordinary	  QFT:	  

★Multiple	  point	  criticality	  [Froggatt,	  Nielsen	  (1996);	  …]	  	  

★Classical	  conformality	  [Meissner,	  Nicolai	  (2008);	  Foot,	  Kobakhidze,	  
McDonald,	  Volkas	  (2008),	  Iso,	  Okada,	  Orikasa	  (2009);	  …]	  

★Asymptotic	  safety	  [Weinberg	  (1979);	  Shaposhnikov,	  Wetterich	  (2010);	  …;	  
KO,	  Yamada	  (to	  appear);	  …]	  

★Hidden	  duality	  [Kawamura	  (2013);	  …]	  

★Maximum	  entropy	  principle	  [Kawai	  (2013);	  Hamada,	  Kawai,	  Kawana	  
(2015);	  …]

SM criticality
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Note: Flat or degenerate?
✦ Phenomenologically,	  we	  do	  not	  distinguish	  principles	  
requiring	  

✴ “flat”	  potential	  

✴ degenerate	  vacua	  

!

✦ as	  they	  are	  parametrically	  identical.
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FIG. 1: The light red (lower) and blue (upper) bands are 2-loop RGE running of �e↵(µ) from the tree level

potential (3) and from the 1-loop e↵ective potential (4), respectively. The dark red (upper) and blue (lower)

bands are the beta function times ten 10⇥ d�e↵/d lnµ evaluated at the tree and 1-loop levels, respectively.

We take MH = 125.9GeV and ↵s = 0.1185. The band corresponds to 95% CL deviation of Mt; see Eq. (10).
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FIG. 2: Left: The tree level Higgs potential as a function of Higgs field '. Right: The one-loop Higgs

potential. Here we take MH = 125.9GeV and ↵s = 0.1185.

CMS value. Then, the tree and one-loop Higgs potential becomes flat around 1017–18GeV as shown

in Fig. 2.

Let us expand the e↵ective potential of the Higgs field V
e↵

(') on the flat space-time background

around its minimum:
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where the overall factor '4 is put to make the expansion well-bahaved. In the potential analysis

around the minimum, we can safely neglect the higher order terms with n � 3, and we will omit
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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Table 3. Parameters of the base ⇤CDM cosmology computed from the 2015 baseline Planck likelihoods illustrating the consistency
of parameters determined from the temperature and polarization spectra at high multipoles. Column [1] uses the TT spectra at
low and high multipoles and is the same as column [6] of Table 1. Columns [2] and [3] use only the T E and EE spectra at high
multipoles, and only polarization at low multipoles. Column [4] uses the full likelihood. The last column lists the deviations of the
cosmological parameters determined from the TT+lowP and TT,TE,EE+lowP likelihoods.

Parameter [1] Planck TT+lowP [2] Planck TE+lowP [3] Planck EE+lowP [4] Planck TT,TE,EE+lowP ([1] � [4])/�[1]

⌦bh2 . . . . . . . . . . 0.02222 ± 0.00023 0.02228 ± 0.00025 0.0240 ± 0.0013 0.02225 ± 0.00016 �0.1
⌦ch2 . . . . . . . . . . 0.1197 ± 0.0022 0.1187 ± 0.0021 0.1150+0.0048

�0.0055 0.1198 ± 0.0015 0.0
100✓MC . . . . . . . . 1.04085 ± 0.00047 1.04094 ± 0.00051 1.03988 ± 0.00094 1.04077 ± 0.00032 0.2
⌧ . . . . . . . . . . . . . 0.078 ± 0.019 0.053 ± 0.019 0.059+0.022

�0.019 0.079 ± 0.017 �0.1
ln(1010As) . . . . . . 3.089 ± 0.036 3.031 ± 0.041 3.066+0.046

�0.041 3.094 ± 0.034 �0.1
ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.965 ± 0.012 0.973 ± 0.016 0.9645 ± 0.0049 0.2
H0 . . . . . . . . . . . 67.31 ± 0.96 67.73 ± 0.92 70.2 ± 3.0 67.27 ± 0.66 0.0
⌦m . . . . . . . . . . . 0.315 ± 0.013 0.300 ± 0.012 0.286+0.027

�0.038 0.3156 ± 0.0091 0.0
�8 . . . . . . . . . . . . 0.829 ± 0.014 0.802 ± 0.018 0.796 ± 0.024 0.831 ± 0.013 0.0
109Ase�2⌧ . . . . . . 1.880 ± 0.014 1.865 ± 0.019 1.907 ± 0.027 1.882 ± 0.012 �0.1

which do not depend strongly on ⌧ are consistent between the TT
and T E spectra to within typically 0.5� or better. Furthermore,
the cosmological parameters derived from the T E spectra have
comparable errors to the TT parameters. None of the conclu-
sions in this paper would change in any significant way were we
to use the T E parameters in place of the TT parameters. The
consistency of the cosmological parameters for base ⇤CDM be-
tween temperature and polarization therefore gives added confi-
dence that Planck parameters are insensitive to the specific de-
tails of the foreground model that we have used to correct the
TT spectra. The EE parameters are also typically within about
1� of the TT parameters, though because the EE spectra from
Planck are noisier than the TT spectra, the errors on the EE pa-
rameters are significantly larger than those from TT . However,
both the T E and EE likelihoods give lower values of ⌧, As and
�8, by over 1� compared to the TT solutions. Note that the T E
and EE entries in Table 3 do not use any information from the
temperature in the low multipole likelihood. The tendency for
higher values of �8, As, and ⌧ in the Planck TT+lowP solution is
driven, in part, by the temperature power spectrum at low multi-
poles.

Columns [4] and [5] of Table 3 compare the parameters of
the TT likelihood with the full TT,T E, EE likelihood. These
are in agreement, shifting by less than 0.2�. Although we have
emphasized the presence of systematic e↵ects in the Planck
polarization spectra, which are not accounted for in the errors
quoted in column [4] of Table 3, the consistency of the TT and
TT,T E, EE parameters provides strong evidence that residual
systematics in the polarization spectra have little impact on the
scientific conclusions in this paper. The consistency of the base
⇤CDM parameters from temperature and polarization is illus-
trated graphically in Fig. 6. As a rough rule-of-thumb, for base
⇤CDM, or extensions to ⇤CDM with spatially flat geometry,
using the full TT,T E, EE likelihood produces improvements in
cosmological parameters of about the same size as adding BAO
to the Planck TT+lowP likelihood.

3.4. Constraints on the reionization optical depth parameter ⌧

The reionization optical depth parameter ⌧ provides an important
constraint on models of early galaxy evolution and star forma-
tion. The evolution of the inter-galactic Ly↵ opacity measured in
the spectra of quasars can be used to set limits on the epoch of
reionization (Gunn & Peterson 1965). The most recent measure-

ments suggest that the reionization of the inter-galactic medium
was largely complete by a redshift z ⇡ 6 (Fan et al. 2006). The
steep decline in the space density of Ly↵ emitting galaxies over
the redshift range 6 <⇠ z <⇠ 8 also implies a low redshift of reion-
ization (Choudhury et al. 2014). As a reference, for the Planck
parameters listed in Table 3, instantaneous reionization at red-
shift z = 7 results in an optical depth of ⌧ = 0.048.

The optical depth ⌧ can also be constrained from observa-
tions of the CMB. The WMAP9 results of Bennett et al. (2013)
give ⌧ = 0.089 ± 0.014, corresponding to an instantaneous red-
shift of reionization zre = 10.6 ± 1.1. The WMAP constraint
comes mainly from the EE spectrum in the multipole range
` = 2–6. It has been argued (e.g., Robertson et al. 2013, and ref-
erences therein) that the high optical depth reported by WMAP
cannot be produced by galaxies seen in deep redshift surveys,
even assuming high escape fractions for ionizing photons, im-
plying additional sources of photoionizing radiation from still
fainter objects. Evidently, it would be useful to have an indepen-
dent CMB measurement of ⌧.

The ⌧ measurement from CMB polarization is di�cult be-
cause it is a small signal, confined to low multipoles, requiring
accurate control of instrumental systematics and polarized fore-
ground emission. As discussed by Komatsu et al. (2009), uncer-
tainties in modelling polarized foreground emission are com-
parable to the statistical error in the WMAP ⌧ measurement.
In particular, at the time of the WMAP9 analysis there was
very little information available on polarized dust emission. This
situation has been partially rectified by the 353 GHz polariza-
tion maps from Planck (Planck Collaboration Int. XXII 2014;
Planck Collaboration Int. XXX 2014). In PPL13, we used pre-
liminary 353 GHz Planck polarization maps to clean the WMAP
Ka, Q, and V maps for polarized dust emission, using WMAP
K-band as a template for polarized synchrotron emission. This
lowered ⌧ by about 1� to ⌧ = 0.075 ± 0.013 compared to
⌧ = 0.089 ± 0.013 using the WMAP dust model.12 However,
given the preliminary nature of the Planck polarization analysis
we decided to use the WMAP polarization likelihood, as pro-
duced by the WMAP team, in the Planck 2013 papers.

In the 2015 papers, we use Planck polarization maps based
on low-resolution LFI 70 GHz maps, excluding Surveys 2 and
4. These maps are foreground-cleaned using the LFI 30 GHz

12Note that neither of these error estimates reflect the true uncer-
tainty in foreground removal.
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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Table 3. Parameters of the base ⇤CDM cosmology computed from the 2015 baseline Planck likelihoods illustrating the consistency
of parameters determined from the temperature and polarization spectra at high multipoles. Column [1] uses the TT spectra at
low and high multipoles and is the same as column [6] of Table 1. Columns [2] and [3] use only the T E and EE spectra at high
multipoles, and only polarization at low multipoles. Column [4] uses the full likelihood. The last column lists the deviations of the
cosmological parameters determined from the TT+lowP and TT,TE,EE+lowP likelihoods.

Parameter [1] Planck TT+lowP [2] Planck TE+lowP [3] Planck EE+lowP [4] Planck TT,TE,EE+lowP ([1] � [4])/�[1]

⌦bh2 . . . . . . . . . . 0.02222 ± 0.00023 0.02228 ± 0.00025 0.0240 ± 0.0013 0.02225 ± 0.00016 �0.1
⌦ch2 . . . . . . . . . . 0.1197 ± 0.0022 0.1187 ± 0.0021 0.1150+0.0048

�0.0055 0.1198 ± 0.0015 0.0
100✓MC . . . . . . . . 1.04085 ± 0.00047 1.04094 ± 0.00051 1.03988 ± 0.00094 1.04077 ± 0.00032 0.2
⌧ . . . . . . . . . . . . . 0.078 ± 0.019 0.053 ± 0.019 0.059+0.022

�0.019 0.079 ± 0.017 �0.1
ln(1010As) . . . . . . 3.089 ± 0.036 3.031 ± 0.041 3.066+0.046

�0.041 3.094 ± 0.034 �0.1
ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.965 ± 0.012 0.973 ± 0.016 0.9645 ± 0.0049 0.2
H0 . . . . . . . . . . . 67.31 ± 0.96 67.73 ± 0.92 70.2 ± 3.0 67.27 ± 0.66 0.0
⌦m . . . . . . . . . . . 0.315 ± 0.013 0.300 ± 0.012 0.286+0.027

�0.038 0.3156 ± 0.0091 0.0
�8 . . . . . . . . . . . . 0.829 ± 0.014 0.802 ± 0.018 0.796 ± 0.024 0.831 ± 0.013 0.0
109Ase�2⌧ . . . . . . 1.880 ± 0.014 1.865 ± 0.019 1.907 ± 0.027 1.882 ± 0.012 �0.1

which do not depend strongly on ⌧ are consistent between the TT
and T E spectra to within typically 0.5� or better. Furthermore,
the cosmological parameters derived from the T E spectra have
comparable errors to the TT parameters. None of the conclu-
sions in this paper would change in any significant way were we
to use the T E parameters in place of the TT parameters. The
consistency of the cosmological parameters for base ⇤CDM be-
tween temperature and polarization therefore gives added confi-
dence that Planck parameters are insensitive to the specific de-
tails of the foreground model that we have used to correct the
TT spectra. The EE parameters are also typically within about
1� of the TT parameters, though because the EE spectra from
Planck are noisier than the TT spectra, the errors on the EE pa-
rameters are significantly larger than those from TT . However,
both the T E and EE likelihoods give lower values of ⌧, As and
�8, by over 1� compared to the TT solutions. Note that the T E
and EE entries in Table 3 do not use any information from the
temperature in the low multipole likelihood. The tendency for
higher values of �8, As, and ⌧ in the Planck TT+lowP solution is
driven, in part, by the temperature power spectrum at low multi-
poles.

Columns [4] and [5] of Table 3 compare the parameters of
the TT likelihood with the full TT,T E, EE likelihood. These
are in agreement, shifting by less than 0.2�. Although we have
emphasized the presence of systematic e↵ects in the Planck
polarization spectra, which are not accounted for in the errors
quoted in column [4] of Table 3, the consistency of the TT and
TT,T E, EE parameters provides strong evidence that residual
systematics in the polarization spectra have little impact on the
scientific conclusions in this paper. The consistency of the base
⇤CDM parameters from temperature and polarization is illus-
trated graphically in Fig. 6. As a rough rule-of-thumb, for base
⇤CDM, or extensions to ⇤CDM with spatially flat geometry,
using the full TT,T E, EE likelihood produces improvements in
cosmological parameters of about the same size as adding BAO
to the Planck TT+lowP likelihood.

3.4. Constraints on the reionization optical depth parameter ⌧

The reionization optical depth parameter ⌧ provides an important
constraint on models of early galaxy evolution and star forma-
tion. The evolution of the inter-galactic Ly↵ opacity measured in
the spectra of quasars can be used to set limits on the epoch of
reionization (Gunn & Peterson 1965). The most recent measure-

ments suggest that the reionization of the inter-galactic medium
was largely complete by a redshift z ⇡ 6 (Fan et al. 2006). The
steep decline in the space density of Ly↵ emitting galaxies over
the redshift range 6 <⇠ z <⇠ 8 also implies a low redshift of reion-
ization (Choudhury et al. 2014). As a reference, for the Planck
parameters listed in Table 3, instantaneous reionization at red-
shift z = 7 results in an optical depth of ⌧ = 0.048.

The optical depth ⌧ can also be constrained from observa-
tions of the CMB. The WMAP9 results of Bennett et al. (2013)
give ⌧ = 0.089 ± 0.014, corresponding to an instantaneous red-
shift of reionization zre = 10.6 ± 1.1. The WMAP constraint
comes mainly from the EE spectrum in the multipole range
` = 2–6. It has been argued (e.g., Robertson et al. 2013, and ref-
erences therein) that the high optical depth reported by WMAP
cannot be produced by galaxies seen in deep redshift surveys,
even assuming high escape fractions for ionizing photons, im-
plying additional sources of photoionizing radiation from still
fainter objects. Evidently, it would be useful to have an indepen-
dent CMB measurement of ⌧.

The ⌧ measurement from CMB polarization is di�cult be-
cause it is a small signal, confined to low multipoles, requiring
accurate control of instrumental systematics and polarized fore-
ground emission. As discussed by Komatsu et al. (2009), uncer-
tainties in modelling polarized foreground emission are com-
parable to the statistical error in the WMAP ⌧ measurement.
In particular, at the time of the WMAP9 analysis there was
very little information available on polarized dust emission. This
situation has been partially rectified by the 353 GHz polariza-
tion maps from Planck (Planck Collaboration Int. XXII 2014;
Planck Collaboration Int. XXX 2014). In PPL13, we used pre-
liminary 353 GHz Planck polarization maps to clean the WMAP
Ka, Q, and V maps for polarized dust emission, using WMAP
K-band as a template for polarized synchrotron emission. This
lowered ⌧ by about 1� to ⌧ = 0.075 ± 0.013 compared to
⌧ = 0.089 ± 0.013 using the WMAP dust model.12 However,
given the preliminary nature of the Planck polarization analysis
we decided to use the WMAP polarization likelihood, as pro-
duced by the WMAP team, in the Planck 2013 papers.

In the 2015 papers, we use Planck polarization maps based
on low-resolution LFI 70 GHz maps, excluding Surveys 2 and
4. These maps are foreground-cleaned using the LFI 30 GHz

12Note that neither of these error estimates reflect the true uncer-
tainty in foreground removal.
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Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck in combination with other data sets, compared
to the theoretical predictions of selected inflationary models.

[Planck	  2015]



Recap: Higgs inflation
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Flat potential for large Higgs

✦ Flat	  potential	  at	  φ	  ≫	  MP/√ξ	  

★ If	  “…”	  do	  not	  contribute	  much.

704 F. Bezrukov, M. Shaposhnikov / Physics Letters B 659 (2008) 703–706

MP = (8πGN)−1/2 = 2.4 × 1018 GeV. This model has “good”
particle physics phenomenology but gives “bad” inflation since
the self-coupling of the Higgs field is too large and matter
fluctuations are many orders of magnitude larger than those ob-
served. Another extreme is to put M to zero and consider the
“induced” gravity [10–14], in which the electroweak symme-
try breaking generates the Planck mass [15–17]. This happens
if

√
ξ ∼ 1/(

√
GNMW) ∼ 1017, where MW ∼ 100 GeV is the

electroweak scale. This model may give “good” inflation [12–
14,18–20] even if the scalar self-coupling is of the order of
one, but most probably fails to describe particle physics experi-
ments. Indeed, the Higgs field in this case almost completely
decouples from other fields of the SM2 [15–17], which cor-
responds formally to the infinite Higgs mass mH . This is in
conflict with the precision tests of the electroweak theory which
tell that mH must be below 285 GeV [21] or even 200 GeV [22]
if less conservative point of view is taken.

These arguments indicate that there may exist some inter-
mediate choice of M and ξ which is “good” for particle physics
and for inflation at the same time. Indeed, if the parameter ξ is
sufficiently small,

√
ξ ≪ 1017, we are very far from the regime

of induced gravity and the low energy limit of the theory (1) is
just the SM with the usual Higgs boson. At the same time, if ξ is
sufficiently large, ξ ≫ 1, the scalar field behaviour, relevant for
chaotic inflation scenario [7], drastically changes, and success-
ful inflation becomes possible. We should note, that models of
chaotic inflation with both nonzero M and ξ were considered
in literature [12,14,19,20,23–25], but in the context of either
GUT or with an additional inflaton having nothing to do with
the Higgs field of the Standard Model.

The Letter is organized as follows. We start from discussion
of inflation in the model, and use the slow-roll approximation to
find the perturbation spectra parameters. Then we will argue in
Section 3 that quantum corrections are unlikely to spoil the clas-
sical analysis we used in Section 2. We conclude in Section 4.

2. Inflation and CMB fluctuations

Let us consider the scalar sector of the Standard Model, cou-
pled to gravity in a non-minimal way. We will use the unitary
gauge H = h/

√
2 and neglect all gauge interactions for the time

being, they will be discussed later in Section 3. Then the La-
grangian has the form:

SJ =
∫

d4x
√−g

{
−M2 + ξh2

2
R

(2)+ ∂µh∂µh

2
− λ

4

(
h2 − v2)2

}
.

This Lagrangian has been studied in detail in many papers on
inflation [14,19,20,24], we will reproduce here the main results
of [14,19]. To simplify the formulae, we will consider only ξ in
the region 1 ≪ √

ξ ≪ 1017, in which M ≃ MP with very good
accuracy.

2 This can be seen most easily by rewriting the Lagrangian (1), given in the
Jordan frame, to the Einstein frame, see also below.

Fig. 1. Effective potential in the Einstein frame.

It is possible to get rid of the non-minimal coupling to grav-
ity by making the conformal transformation from the Jordan
frame to the Einstein frame

(3)ĝµν = Ω2gµν, Ω2 = 1 + ξh2

M2
P

.

This transformation leads to a non-minimal kinetic term for the
Higgs field. So, it is convenient to make the change to the new
scalar field χ with

(4)
dχ

dh
=

√
Ω2 + 6ξ2h2/M2

P

Ω4 .

Finally, the action in the Einstein frame is

(5)SE =
∫

d4x
√

−ĝ

{
−M2

P

2
R̂ + ∂µχ∂µχ

2
− U(χ)

}
,

where R̂ is calculated using the metric ĝµν and the potential is

(6)U(χ) = 1
Ω(χ)4

λ

4

(
h(χ)2 − v2)2

.

For small field values h ≃ χ and Ω2 ≃ 1, so the potential for the
field χ is the same as that for the initial Higgs field. However,
for large values of h ≫ MP /

√
ξ (or χ ≫

√
6MP ) the situation

changes a lot. In this limit

(7)h ≃ MP√
ξ

exp
(

χ√
6MP

)
.

This means that the potential for the Higgs field is exponentially
flat and has the form

(8)U(χ) = λM4
P

4ξ2

(
1 + exp

(
− 2χ√

6MP

))−2

.

The full effective potential in the Einstein frame is presented
in Fig. 1. It is the flatness of the potential at χ ≫ MP which
makes the successful (chaotic) inflation possible.

Analysis of the inflation in the Einstein frame3 can be per-
formed in standard way using the slow-roll approximation. The

3 The same results can be obtained in the Jordan frame [26,27].

Bezrukov	  &	  Shaposhnikov	  (2008)
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✦ Potential	  rescaled:

✦ Needs	  ξ	  〜～	  105-‐‑‒6	  for	  λ~∼0.1



✦ Needs	  ξ	  〜～	  105-‐‑‒6	  for	  λ~∼0.1



Can we evade such a 
large ξ~105-6?



Yes we can

(We	  really	  can,	  in	  this	  case.)



Higgs inflation from SM criticality

✦ SM	  criticality:	  

✴ Flat	  potential	  

✦ Combine	  with	  original	  idea	  by	  Bezrukov	  &	  
Shaposhnikov.	  

✴ Need	  only	  ξ〜～10.	  

✴ Biproduct:	  	  

✤ Tensor-‐‑‒to-‐‑‒scalar	  ratio	  can	  be	  as	  large	  as	  r	  〜～0.1.	  

✤ May	  be	  seen	  in	  near	  future.

Hamada,	  Kawai,	  KO,	  Park,	  PRL	  2014,	  PRD	  2015;  
Bezrukov,	  Shaposhnikov,	  PLB	  2014;	  
also	  Cook,	  Krauss,	  Long,	  Sabharwal,	  PRD	  2014.

5

leff

10¥dleffêd lnm
5 10 15 20

-0.05

0.00

0.05

0.10

Log10m @GeVD

l e
ff

FIG. 1: The light red (lower) and blue (upper) bands are 2-loop RGE running of �e↵(µ) from the tree level

potential (3) and from the 1-loop e↵ective potential (4), respectively. The dark red (upper) and blue (lower)

bands are the beta function times ten 10⇥ d�e↵/d lnµ evaluated at the tree and 1-loop levels, respectively.

We take MH = 125.9GeV and ↵s = 0.1185. The band corresponds to 95% CL deviation of Mt; see Eq. (10).
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FIG. 2: Left: The tree level Higgs potential as a function of Higgs field '. Right: The one-loop Higgs

potential. Here we take MH = 125.9GeV and ↵s = 0.1185.

CMS value. Then, the tree and one-loop Higgs potential becomes flat around 1017–18GeV as shown

in Fig. 2.

Let us expand the e↵ective potential of the Higgs field V
e↵

(') on the flat space-time background

around its minimum:

V (') =
�
e↵

(µ = ')

4
'4, �

e↵

(µ) = �
min

+
1X

n=2

�n
(16⇡2)n

✓
ln

µ

µ
min

◆
2

, (11)

where the overall factor '4 is put to make the expansion well-bahaved. In the potential analysis

around the minimum, we can safely neglect the higher order terms with n � 3, and we will omit
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FIG. 4: SM Higgs potential in the prescription I with ⇠ = 10 and c = 1, corresponding to µmin = 7.6 ⇥

1017 GeV, and with �2 = 0.5. The red (upper), green (center) and purple (lower) lines are drawn with

�min = 2�c, �c, and �c/2, respectively. The values of �min = 2�c and �c/2 are chosen just for illustration.

Each line roughly corresponds to the one with the same color in Fig. 2.

We expanded the e↵ective potential of the Higgs field V
e↵

on the flat space-time background

around its minimum as in Eq. (14):

V =
�
e↵

(µ)

4
'4, (44)

�
e↵

(µ) = �
min

+
1X

n=2

�n
(16⇡2)n

✓
ln

µ

µ
min

◆
2

. (45)

The choice of scale (33) and (VB) correspond to the prescription I and II, respectively. As in

Section II, we can safely neglect the higher order terms with n � 3, and we continue to omit them.

A. Prescription I

1. Analysis in prescription I

In the prescription I, the Higgs potential is given by Eq. (26)(44) with the scale (33). Concretely,

U(') =
'4
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FIG. 5: Left: r vs ns. Right: dns/d ln k vs ns. The edges of dashed and solid lines correspond c = 0.94 and
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FIG. 6: Left: '
⇤

as a function of ⇠. �6 = 0, c = 1,�2 = 0.56. Right: '
⇤

as a function of ⇠. �6 = 5⇥ 10�9,

c = 1,�2 = 0.56.

In this scenario, '
⇤

corresponding to the current CMB observation is around '
⇤

⇠ MP . The

left panel of Fig. 6 shows '
⇤

in the case of c = 1 and �
2

= 0.5611 . The model can reproduce

r = O(10�3) ⇠ 0.2 and ns = 0.9 ⇠ 1.0. These predictions are consistent with Planck or BICEP2

result [53, 54]. However, the value of dns/d ln k is slightly large. The prediction is dns/d ln k =

11 Precisely speaking, there are two '⇤ which satisfies Eq. (30) given c, ⇠. We plot the one solution which gives more
desirable predictions on cosmological parameters.

Predictions of (very) 
minimal model (skippable)

[Hamada,	  Kawai,	  KO,	  Park,	  PRD	  2015]
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as a function of ⇠. �6 = 0, c = 1,�2 = 0.56. Right: '
⇤

as a function of ⇠. �6 = 5⇥ 10�9,

c = 1,�2 = 0.56.

In this scenario, '
⇤

corresponding to the current CMB observation is around '
⇤

⇠ MP . The

left panel of Fig. 6 shows '
⇤

in the case of c = 1 and �
2

= 0.5611 . The model can reproduce

r = O(10�3) ⇠ 0.2 and ns = 0.9 ⇠ 1.0. These predictions are consistent with Planck or BICEP2

result [53, 54]. However, the value of dns/d ln k is slightly large. The prediction is dns/d ln k =

11 Precisely speaking, there are two '⇤ which satisfies Eq. (30) given c, ⇠. We plot the one solution which gives more
desirable predictions on cosmological parameters.

Predictions of (very) 
minimal model (skippable)

[Hamada,	  Kawai,	  KO,	  Park,	  PRD	  2015]



Higgs portal Z2 DM (skippable)

★Higgs	  portal	  DM:	  

!

✴ κ	  works	  like	  gY	  on	  running	  λ(μ)	  

✴ Testable	  relation	  btn	  mDM	  &	  mt	  

✦ Upper	  bound:	  mDM<1TeV.	  
(next)	  

✴ Criticality	  →	  mDM	  〜～	  400GeV.

We further get the DM mass 400GeV < mDM < 470GeV if we impose the
flatness of the Higgs potential � ' �� ' 0 around the string scale 1017 GeV, as
is expected from the MPP or is required in the Higgs inflation at the critical
point [36, 38].

This paper is organized as follows: In Section 2, we review the Z2 scalar
model and its allowed region of the parameter space. In Section 3, we briefly
explain the flat potential Higgs inflation, and its constraint on the parameter
space. We will see that the DM mass is strongly constrained. In Section 4, we
conclude this paper.

2 Z2 scalar model

We add a gauge singlet real scalar S to the SM. We further impose the Z2

symmetry under which the SM fields are even and S is odd. This Z2 assignment
prohibits the decay of S into the SM particles, making it stable. The Lagrangian
is:

L = LSM +
1

2
(@µS)

2 � 1

2
m2

SS
2 � ⇢

4!
S4 � 

2
S2H†H. (1)

Let us first see the behavior of S as the DM. The mass eigenvalue is

m2
DM = m2

S +
v2

2
, (2)

where v ' 246GeV is the Higgs vacuum expectation value (VEV). The singlet
S takes part in the thermal bath of the SM sector through the coupling  to the
Higgs. After this interaction is frozen out, the abundance of S is fixed. There-
fore, the abundance solely depends on the DM mass mDM and the coupling ,
and is independent of the self coupling ⇢.

For mDM & mh (' 126GeV), the condition for the correct thermal abun-
dance is [60]

log10  ' �3.63 + 1.04 log10
mDM

GeV
, (3)

which is roughly mDM ⇠ 330GeV ⇥ 
0.1 . On the other hand, the light DM is

constrained from the invisible decay width of the Higgs at the 95% C.L. [60]:

mDM > 53GeV. (4)

The direct detection bound from XENON100 (2012) leaves two allowed regions
within 90% C.L. [60]:

mDM < 65GeV, mDM > 80GeV. (5)

3

κ↑

[Also	  done	  by	  (several	  combinations	  of)	  
Haba,	  Ishida,	  Kaneta	  &	  Takahashi.]

[Hamada,	  Kawai,	  KO,	  JHEP	  2014]



Outline
1. SM	  criticality:	  Triple	  coincidence	  

2. Higgs	  inflation	  with	  SM	  criticality	  

• Milder	  non-‐‑‒minimal	  coupling	  ξ	  

• Larger	  tensor-‐‑‒to-‐‑‒scalar	  ratio	  r	  

3. Eternal	  Higgs	  inflation	  

• Saves	  from	  horizon	  problem



Eternal (pre)inflation

picture	  from	  web



Slow-roll inflation does 
NOT solve horizon problem
✦ E.g.	  in	  chaotic	  inflation,	  

✴ A	  lager	  region	  than	  Hubble	  length	  scale	  

✴ must	  have	  the	  same	  field	  value	  

✴ simultaneously	  &	  coherently.	  	  

✦ Who	  sets	  this	  initial	  condition?	  

✦ How	  about	  having	  eternal	  inflation	  before	  the	  one	  we	  
observe	  by	  CMB?



✦ In	  string	  theory:	  we	  see	  there	  are	  two	  degenerate	  vacua.	  

!

!

✦ Domain	  wall,	  formed	  between	  two	  vacua:	  

✴ For	  a	  given	  random,	  say	  chaotic,	  initial	  condition.	  

✦ If	  relative	  curvature	  at	  maximum	  is	  not	  large:	  η	  <	  1.4	  

✴ DW	  supports	  inflation	  forever.	  

✴ A	  solution	  to	  horizon	  problem!

Eternal (pre)inflation at domain wall
[Hamada,	  KO,	  Takahashi,	  PRD	  2014]

[Sakai,	  Shinkai,	  Tachizawa	  &	  Maeda,	  1996]

potential

DW

field value

Figure 9: Schematic figure for the maximum that yields the domain wall, which becomes the
source for the eternal inflation.

it corresponds to the A-R (or ⌧̃
1

-⌧̃
2

) plane. As we have seen in this section,
generally there is at least one runaway direction in this space that corresponds to
opening up an extra dimension; see Fig. 8. We will discuss its physical implications
in the subsequent sections.

4 Eternal Higgs inflation

As shown in Introduction, the Higgs potential V ⇠ �
e↵

|H|4 in the SM shows a
quite peculiar behavior when extrapolated to very large field values: all of the
�
e↵

, its running, and the bare Higgs mass can be accidentally small. In Ref. [58],
we have proposed a possibility that this behavior, so to say the criticality, is a
consequence of the Planck scale physics and that the criticality is closely related
to the cosmic inflation.

We have seen that the large field limit goes down to a runaway direction, which
corresponds to opening up an extra dimension, in the multi degrees of freedom
space, as shown in Fig. 8. Therefore, there is at least one maximum of the potential
around the Planck scale; see Fig. 9. This maximum can be a source of an eternal
inflation at the core of the domain wall [97] between the electroweak vacuum and
the runaway vacuum, in which the fifth dimension is opened up. In order for
this to work, the curvature of the potential at the maximum must be su�ciently
small [98]:

M2

P

V''

V

����
maximum

. 1.4. (82)

In our scenario, this can be naturally satisfied as follows. The potential for the
fifth dimension can be seen by putting D = 5 in Eq. (19). In stringy language, the
action for the fifth dimension R0 � M�1

s

is coming from the one-loop potential:

24

Figure 7: The trajectory that starts from ⌘ = 0 at (⌧̃
1

, ⌧̃
2

) =
⇣
0, R/

p
↵0
⌘

for a fixed value of

R/
p

↵0 being
p

2, 2, and 21/3 in the left, center, and right panels, respectively, showing the
runaway, periodic, and chaotic limits. We have shaded the fundamental region for the T-dual
transformations.

potential

field value

䠛 A direction in
multi-d.o.f. sp.

Figure 8: Schematic figure for the Higgs potential. Low energy side is determined phe-
nomenologically. High energy side represents a runaway direction in the multi degrees of
freedom space.

what is the physical large field limit along a potential valley after including all the
higher order corrections. In Fig. 7, we have checked the large A limit for a fixed
R. Is this a physical limit, and if not, what should it be? Comparing Figs. 5 and
6, we see that it is a generic feature that there is a runaway vacuum no matter
what the structure is around A, R�1 ⇠ M

s

. It seems plausible that if the physical
large A limit is not the one with fixed ⌧̃

2

, then large A limit goes into the runaway
vacuum after all. However, we consider all the three limits, runaway, periodic,
and chaotic in order not to loose generality.

As said above, the extrapolation from the low energy data has revealed that
there is the quasi-flat direction of the Higgs potential in the SM. We are interested
in the potential for the large field values. Beyond the string or Planck scale,
there opens up several quasi-flat directions in general. Therefore we need to
consider a multi-dimensional field space. In the example examined in this section,
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Eternal inflation at false vacuum

✦ False	  vacuum	  eternal	  (pre)inflation	  also	  possible.

potential

field value

Tunneling

potential

field value

Tunneling

Figure 11: Schematic figure for the Higgs potential. On the left, the false vacuum has higher
energy than the quasi-flat potential in the SM, while on the right, it has lower energy.

the old inflation scenario [101, 102, 103]. However in the left case in Fig. 11, the
space inside the bubble experiences the second stage of inflation [58, 61], after the
dotted arrow in the figure, and hence this problem is ameliorated as we do not
need bubbles to collide. In the right case in Fig. 11, we need another inflation to
account for the observed CMB fluctuation such as the B � L Higgs inflation.

5 Cosmological constant

As is reviewed in detail in Appendix D, the MPP requires degenerate vacua at the
field value of the order of the Planck scale [36, 37, 38]. The cosmological constant
of the runaway vacuum is exactly zero; see footnote 6. Then the MPP tells us
that our electroweak vacuum must have the zero cosmological constant too. This
is a new solution to the cosmological constant problem in terms of the MPP.11

On the other hand, the current universe is being dominated by the cosmological
constant [104]

⇢obs
⇤

' (2.2 meV)4 , (86)

and is entering the second inflationary stage. This will eventually lead to the de
Sitter space dS

4

with the length scale H�1, where

H2 =
⇢obs
⇤

3M2

P

. (87)

We will discuss the possibility that the existence of the finite cosmological constant
is understood as a statistical fluctuation.

First we point out that our universe is a part of a large universe whose cosmo-
logical constant is fixed to zero by the MPP.12 The large universe can be divided
into parts that will eventually become causally disconnected de Sitter spaces in
the end of their histories, as in Fig. 12. After the Euclideanization, each de Sitter
space becomes S4 with radius rU = 1/H.

11 See also Ref. [38] in which the cosmological constant problem is discussed in a di↵erent perspective.
12 The argument in this section may also apply for the multiverse [51, 52, 53, 54, 55].
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Many things to do
★Anything	  intermediate	  between	  weak	  
and	  Planck	  scales	  (affecting	  running	  of	  
quartic	  coupling)	  changes	  inflation	  
prediction.	  

✴Higgs	  portal	  DM,	  right-‐‑‒handed	  neutrino,	  
etc.



Summary
1. SM	  criticality:	  Triple	  coincidence	  

2. Higgs	  inflation	  with	  SM	  criticality	  

• Milder	  non-‐‑‒minimal	  coupling	  ξ	  

• Larger	  tensor-‐‑‒to-‐‑‒scalar	  ratio	  r	  

3. Eternal	  Higgs	  inflation	  

• Saves	  from	  horizon	  problem



Thank you!

picture	  from	  web


