

Physics highlights from LHCb

Neville Harnew University of Oxford

September 2nd 2015

Corfu Summer Institute

15th Hellenic School and Workshops on Elementary Particle Physics and Gravity Corfy, Greece 2015

Outline

The LHCb detector and running conditions

Selected physics highlights

Focus on current measurements from LHCb: based on 3 fb⁻¹ (2011&12) pp collision data at 7 & 8 TeV CM energy.

- Parameters of the CKM matrix
- Rare B decays
- Studies of CPV in the B_s system
- Mixing and CP violation in charm
- Other highlights (pentaquarks).
- Summary and Outlook

The Large Hadron Collider

LHCb- forward spectrometer

- Forward-peaked production → LHCb is a forward spectrometer (operating in LHC collider mode)
- bb cross-section = 284 ± 20 ± 49 μ b at \sqrt{s} = 7 TeV
 - [Phys. Lett. B694, (2010) 209]
 - At $\sqrt{s} = 13 \text{ TeV}$: 518 ± 2 ± 53 µb (EPS 2015)
- \rightarrow ~ 100,000 bb pairs produced/second (10⁴ × B factories)

A fish-eye view

Corfu Summer Institute

2 September 2015

LHCb data taking

- Nominal luminosity = 2 × 10³² cm⁻² s⁻¹ (50 times less than ATLAS/CMS) : however, LHCb has learned to run at >2 times this
 - 37 pb⁻¹ @ 7 TeV collected in 2010
 - I fb⁻¹ @ 7 TeV in 2011
 - 2 fb⁻¹ @ 8 TeV recorded in 2012

2015 at 13 TeV !!

Selected physics highlights

Parameters of the CKM matrix

- □ Studies of CPV in the B_s system
- CP violation in charm
- Rare B decays

Pentaquarks

Corfu Summer Institute

Quark mixing and CKM matrix

- In the SM charge -1/3 quarks (d, s, b) are mixed
- Mixing described by CKM matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

 6 unitarity conditions of CKM matrix, 2 of which give triangles which do not have a side much shorter than the other two:

Unitarity triangle history : CKM fitter

- The CKM describes all the flavour-changing processes in the SM
- Amazing progress in the last 20 years; the SM remains intact, but still a whole lot still to learn

Measurement of angle β

Interference between B⁰ decay to $J/\psi K_{S}^{0}$ directly and via B⁰ $\overline{B^{0}}$ oscillation gives rise to a CP violating phase

$$\phi = \phi_{Mixing} - 2 \phi_{Decay} = 2\beta$$

Corfu Summer Institute

2 September 2015

Spectacular results from e⁺e⁻ B factories on CP violation

Large CP violation effects : $sin(2\beta)$ from $B^0 \rightarrow J/\psi K^0_{S/L}$

Corfu Summer Institute

2 September 2015

N.Harnew

11

LHCb now well into the game ...

World average from $B^0 \rightarrow J/\psi \ K^0_{\ S}(EPS \ 2015) : sin(2\beta) = 0.748 \ ^{+0.030}_{-0.032}$

A measurement of γ from $\mathbf{B}^{\pm} \rightarrow \mathbf{D}\mathbf{K}^{\pm}$ and $\mathbf{D}\pi^{\pm}$

- Four methods, comprising 14 B[±] decays included in a combined fit
 - B[±] \rightarrow DK[±] , D \rightarrow K_S⁰ $\pi^{\pm} \pi^{\mp}$ and D \rightarrow K_S⁰ K[±] K[∓]
 - B[±] \rightarrow Dh[±] , D \rightarrow π^{\pm} K[∓] π^{\pm} π^{\mp} and D \rightarrow K[±] π^{\mp} π^{\pm} π^{\mp}
 - $\blacksquare \quad B^{\pm} \to Dh^{\pm} \text{ , } D \to \pi^{\pm} \text{ } K^{\mp} \text{ and } D \to \text{ } K^{\pm} \pi^{\mp}$
 - B[±] \rightarrow Dh[±] , D \rightarrow K[±] K[∓] and D \rightarrow π^{\pm} π^{\mp}

"GGSZ"	JHEP 10 (2014) 097
"K3π" :	PLB 712 (2012) 203
"ADS"	Phys Lett B712 (2012) 203
"GLW"	Phys Lett B712 (2012) 203

Two paths to the same final state via D^0 and \overline{D}^0 \rightarrow interference sensitive to gamma

$B^{\pm} \rightarrow DK^{\pm} and B^{\pm} \rightarrow D\pi^{\pm} ADS \& GLW modes$

$B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$ GGSZ & K(3 π) modes

Corfu Summer Institute 2 September 2

2 September 2015

CP violation in $\mathbf{B} \rightarrow \pi^+ \pi^- \& \mathbf{B}_s \rightarrow \mathbf{K}^+ \mathbf{K}^-$ (angle α/γ)

- I fb⁻¹ : ~9000 B⁰ $\rightarrow \pi^+\pi^-$ events
- First time-dependent CP asymmetry plot of $B^0 \rightarrow \pi^+\pi^-$ at a hadron collider

 $C_{\pi\pi} = -0.38 \pm 0.15 \pm 0.02$ cos term (direct) $S_{\pi\pi} = -0.71 \pm 0.13 \pm 0.02$ sine term (indirect)

■ Also first ever time-dependent asymmetry seen in $B_s \rightarrow K^+K^-$

 $C_{\rm KK} = 0.14 \pm 0.11 \pm 0.03$ $S_{\rm KK} = 0.30 \pm 0.12 \pm 0.04$

LHCb measurement of |V_{ub}

- Side opposite to β proportional to $|V_{ub}| / |V_{cb}|$. Both β and $|V_{cb}|$ known better than 3%.
- Closure test of UT mainly limited by |V_{ub}|
- The measurement of |V_{ub}| has an internal inconsistency between
 - Exclusive measurement: $B^0 \rightarrow \pi^- \mu^+ \nu$
 - Inclusive measurement : $B^0/B^+ \rightarrow X_u \ \mu^+ \ v$

 |V_{ub}|/ |V_{cb}| long thought to be impossible at a hadron colliders due to neutrinos

Selected physics highlights

- Parameters of the CKM matrix
- □ Rare B decays
- □ Studies of CPV in the B_s system
- CP violation in charm
- Pentaquarks

Corfu Summer Institute

Rare decay
$$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$$

- Decays strongly suppressed in SM
- Predicted BRs

 $B^0{}_s \rightarrow \mu^+ \mu^-$ = (3.66 ± 0.23) \times 10^{-9}

 $B^0 \rightarrow \mu^+ \mu^-$ = (1.06 ± 0.09) × 10⁻¹⁰

arXiv:1208:0934 & PRL 109 041801 (2012)

- Very sensitive to new physics e.g. MSSM
- But it's a bit like looking for a needle in a haystack

Corfu Summer Institute

LHCb µ+µ– mass spectrum

Corfu Summer Institute

2 September 2015

- $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ sensitivity to NP has motivated searches since 1984 ...
- BR(B⁰_s $\rightarrow \mu^+\mu^-$) has now surpassed the SM prediction

LHCb $B_s \rightarrow \mu^+\mu^-$ candidate

Corfu Summer Institute

2 September 2015

- Results based on 2011/12 data:
 3 fb⁻¹ blinded analysis
- Selection based on multivariate estimator (BDT) combining vertex and topological information
- Cut on BDT>0.5
- The known B masses and widths are fixed in the fit

 $\begin{array}{rcl} |\mathcal{B}(\mathsf{B}^0_{\mathsf{s}} \to \mu^+ \mu^-) &=& (2.9^{+1.1}_{-1.0} st \; {}^{+0.3}_{-0.1} sy) \times 10^{-9} \\ Significance &:& 4.0 \; (Expected \; 5.0) \end{array}$

 $\begin{array}{rcl} \mathcal{B}(\mathsf{B}^0 \to \mu^+ \mu^-) &=& (3.7^{+2.4}_{-2.1} st \; {}^{+0.6}_{-0.4} sy) \times 10^{-10} \\ Significance &:& 2.0 \end{array}$

N.Harnew

26

Combining with CMS results

Nature 522, 68-72 (June 2015)

$$B_{d} \rightarrow \mu^{+}\mu^{-}:$$

$$BR = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$$

$$3.0\sigma \text{ significance}$$

$$B_{s} \rightarrow \mu^{+}\mu^{-}:$$

$$BR = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$$

$$6.2\sigma \text{ significance}$$
First observation!
$$B^{0} \text{ compatible at}$$

$$2.2\sigma \text{ with SM},$$

$$B_{s} \text{ at } 1.2\sigma$$
N.Harnew

Constraints on new physics models

New 3fb⁻¹ sample now analysed, 7/8 TeV dataset LHCb-CONF-2015-002

$B^0 \rightarrow K^* \mu^+ \mu^-$ continued

JHEP 08 (2013) 131

- But forward-backward asymmetry A_{FB}(q²) in the μμ rest-frame is a sensitive NP probe (q² = m_{μμ}²)
- Measurement of zero crossing point with 3 fb⁻¹: q² = 3.7 ^{+0.8} -1.0 GeV² [JHEP 01 (2012) 107]
- A_{FB} measured by LHCb consistent with Standard Model

Angular observables in $B^0 \rightarrow K^* \mu^+ \mu^-$

- Goal: express differential decay rate in terms of parameters that are less sensitive to the hadronic matrix element uncertainty ⇔ prevent NP from hiding under strong interaction effects.
- Same 3 fb⁻¹ 7/8 TeV dataset
- Angular differential distribution given by:

JHEP 08 (2013) 131 : 1 fb⁻¹ LHCb-CONF-2015-002 : 3 fb⁻¹

$$\frac{1}{\Gamma} \frac{\mathrm{d}^{3}(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}\cos\theta_{K}\,\mathrm{d}\phi} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1 - F_{\mathrm{L}})\sin^{2}\theta_{K} + F_{\mathrm{L}}\cos^{2}\theta_{K} + \frac{1}{4}(1 - F_{\mathrm{L}})\sin^{2}\theta_{K}\cos2\theta_{\ell} \\ &- F_{\mathrm{L}}\cos^{2}\theta_{K}\cos2\theta_{\ell} + \frac{1}{2}(1 - F_{\mathrm{L}})A_{\mathrm{T}}^{(2)}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos2\phi + \\ &\sqrt{F_{L}(1 - F_{\mathrm{L}})}P_{4}'\sin2\theta_{K}\sin2\theta_{\ell}\cos\phi + \sqrt{F_{\mathrm{L}}(1 - F_{\mathrm{L}})}P_{5}'\sin2\theta_{K}\sin\theta_{\ell}\cos\phi + \\ &(1 - F_{\mathrm{L}})A_{Re}^{\mathrm{T}}\sin^{2}\theta_{K}\cos\theta_{\ell} + \sqrt{F_{\mathrm{L}}(1 - F_{\mathrm{L}})}P_{6}'\sin2\theta_{K}\sin\theta_{\ell}\sin\phi + \\ &\sqrt{F_{\mathrm{L}}(1 - F_{\mathrm{L}})}P_{8}'\sin2\theta_{K}\sin2\theta_{\ell}\sin\phi + (S/A)_{9}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\sin2\phi \end{bmatrix}$$

Corfu Summer Institute

2 September 2015

New observables in $B^0 \rightarrow K^* \mu^+ \mu^-$ cont'

 Local discrepancy of 3.7σ in 2 bins of P₅' (SM prediction J.Mathias et al, JHEP 05 (2013) 137)

LHCb-CONF-2015-002

Lepton universality test in $B^+ \rightarrow K^+ l^+ l^-$

Due to lepton universality, the $B^+ \rightarrow K^+ \mu^+ \mu^-$ and $B^+ \rightarrow K^+ e^+ e^-$ decays should have same BF to within a factor 10⁻³

The ratio

 $R_{K} = rac{\mathcal{B}(B^{+}
ightarrow K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+}
ightarrow K^{+} e^{+} e^{-})}$

is sensitive to lepton flavour violating NP

 The electron mode is a challenge for LHCb

Lepton universality test in $B^+ \rightarrow K^+ l^+ l^-$

• Define
$$R_K$$
 as: $R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} = 1 \pm \mathcal{O}(10^{-3})$ in SM

- To cancel systematics, form double ratios with $B^{+} \rightarrow K^{+} J/\psi(\rightarrow l^{+} l^{-})$ (assuming lepton universality for $J/\psi \rightarrow l^{+} l^{-}$)
 - The result for R_K differs from SM at 2.6 sigma level. This is using the 3 fb⁻¹ of data.
 - This is the most precise measurement of R_K to date.

$$R_{K} = 0.745^{+0.090}_{-0.074} \, ({
m stat}) \pm 0.036 \, ({
m syst})$$

2 September 2015

Selected physics highlights

Parameters of the CKM matrix

Rare B decays

□ Studies of CPV in the B_s system

• CP violation in charm

Pentaquarks

Corfu Summer Institute

\boldsymbol{B}_{s} weak mixing phase $\boldsymbol{\varphi}_{s}$ in $\boldsymbol{B}_{s} \rightarrow \boldsymbol{J}/\psi \; \boldsymbol{\varphi}$

• Golden mode for this study is $B_s \rightarrow J/\psi \phi$

3 fb⁻¹ arXiv:1411.3104

- Analogue of 2β (phase of B⁰ mixing) but in the B_s system
- Interference between B⁰ decay to J/ψφ directly and via B⁰ B⁰ oscillation gives rise to a CP violating phase φ = φ_{Mixing} 2 φ_{Decay} = 2φ_s
 φ_s is expected to be very small in the SM and precisely predicted: φ_s = -0.036 ± 0.002

(see eg Charles et al PRD84 (2011) 033005)

Corfu Summer Institute

2 September 2015

N.Harnew

5300

5400

 $m(J/\psi K^{+}K^{-}) [MeV/c^{2}]$

5350

$\mathbf{B}_{s} \rightarrow \mathbf{J}/\psi \phi$ angular analysis

- \$\overline{\overlin}\overlin{\overline{\overline{\overline{\overline{\overline{\overlin}\overlin{\overlin}\overlin{\overlin}\overlin{
- Vector-vector final state: mixture of CP-odd and CP-even components

Need to perform $B_s \rightarrow J/\Psi \phi$ angular analysis

- LHCb 7 & 8TeV, 3fb⁻¹: 95,690 ± 350 candidates
- Tagging: Opposite side tagging power 2.55% (+15% w.r.t. 2011)
 Same Side Kaon Tagger 1.25% (+40% w.r.t. 2011)

"Visualizing" the effect of ϕ_s in $\mathbf{B}_s \rightarrow \mathbf{J}/\psi \phi$

- Amplitude of asymmetry $\propto \sin \phi_s$
- Frequency is the same as in B_s mixing

$\mathbf{B}_{s} \rightarrow \mathbf{J}/\psi \phi$: fit projections

3 fb⁻¹ arXiv:1411.3104

• Results correlated with $\Delta\Gamma_s$ = width diff. of the B_s mass eigenstates \rightarrow plot as contours in ($\phi_s vs \Delta\Gamma_s$) plane

$$\Gamma_{\rm S} = 0.6603 \pm 0.0027 \pm 0.0015 \, {\rm ps}^{-1}$$

$$\Delta \Gamma_{\rm S} = 0.0805 \pm 0.0091 \pm 0.0033 \, \rm ps^{-1}$$

CP-violating phase:

$$\phi_{\rm S} = -0.058 \pm 0.049 \pm 0.006$$
 rad

World's most significant direct measurement of ϕ_S & $\Delta\Gamma_S$

Selected physics highlights

- Parameters of the CKM matrix
- Rare B decays
- Studies of CPV in the B_s system

CP violation in charm

Pentaquarks

Corfu Summer Institute

Long Range

LHC reveals hints of 'new physics' in particle decays

By Jason Palmer

Science and technology reporter, BBC News

Large Hadron Collider researchers have shown off what may be the facility's first "new physics" outside our current understanding of the Universe.

Particles called D-mesons seem to decay slightly differently from their antiparticles, LHCb physicist Matthew Charles told the HCP 2011 meeting on Monday.

The result may help explain why we see so much more matter than antimatter.

Mixing in charm decays

- Charm mixing was confirmed by BaBar, Belle & CDF, but LHCb shows clear observation in a single experiment.
- LHCb measures the time-dependent ratio of D⁰ decays to Wrong Sign over Right Sign (will have contribution from mixing)

$$R(t) = \frac{N(D^{0} \to K^{+} \pi^{-})}{N(D^{0} \to K^{-} \pi^{+})}$$

• Use the sign of the slow pion from $D^{*+} \rightarrow D^{\circ} \pi^{+}_{s}$ and $D^{*-} \rightarrow \overline{D}^{\circ} \pi^{-}_{s}$ to tag the initial D^{0} flavour.

Charm mixing measurement

- New analysis uses 3 fb⁻¹ of data (results coming soon)
- Huge samples of D candidates: 230kWS and 54M RS

Charm mixing measurement (2011 data)

The no mixing hypothesis is excluded at the 9.1σ level in a single experiment

PRL 110, 101802 (2013)

Corfu Summer Institute

2 September 2015

CP violation in charm

Selected physics highlights

- Parameters of the CKM matrix
- □ Rare B decays
- Studies of CPV in the B_s system
- CP violation in charm

Pentaquarks

Corfu Summer Institute

2 September 2015

NEW ... pentaquarks !

PRL 115 (2015) 072001

Pentaquarks – full amplitude analysis

Corfu Summer Institute

2 September 2015

Pentaquarks J^P assignments

- The preferred J^P assignments are of opposite parity, with $P_c^+(4380)$ having $3/2^-$ and the $P_c^+(4450)$ having $5/2^+$
- Good evidence for the resonant character of P_c⁺(4450)
 Too large errors for P_c⁺(4380) : hard to make a definitive conclusion

PRL 115 (2015) 072001

Corfu Summer Institute

2 September 2015

Summary and Outlook

The LHCb experiment is performing spectacularly well

- So far all is in good agreement with the Standard Model

 → New physics is becoming constrained in the flavour sector
 → Hints of new physics await more data
- Up to 2017 we expect 7-8 fb⁻¹ of data in total, much of this at nearly double the beam energy (now √s =13 TeV) giving ~twice the 8 TeV heavy-flavour production cross-section
- Still much room for new physics, higher precision required ...

 → preparing for LHCb Upgrade beyond 2020 !

Corfu Summer Institute

2 September 2015

Looking to the future ...

Charm from the first July 2015 run

 $D^0 \rightarrow K^-\pi^+$

 $D^+ \rightarrow K^- \pi^+ \pi^+$

 $D_s^{\ +} \to K^+ K^- \pi^+$

Corfu Summer Institute

2 September 2015

Spare slides from here on

Corfu Summer Institute

2 September 2015

LHCb 2012 data-taking in numbers

Quantity	Unit	TDR	2011	2012	2012/TDR
Peak Luminosity	μb ⁻¹ /s	280	400	400	142%
Average Luminosity	μb ⁻¹ /s	200	265	390	195%
Seconds of running t	10 ⁷ s	1	0.46	0.63	63%
Integrated lumi ∫Ldt	fb-1	2.0	1.2	2.1	105%
Bunches		2600	1300	1300	50%
CM energy	TeV	14	7	8	57%
Inelastic cross sec σ_{inel}	mb	80	64	67	84%
bb(bar) cross sec $\sigma_{\rm bb(bar)}$	μb	500	284	~330	58%
pp interactions/BeamX		0.55	1.15	1.65	272%
Average min bias rate	MHz	16	17	22	131%
bb(bar) yield: σ _{bb(bar)} ∫Ldt	1012	I	0.35	0.63	63%
HLT rate λ_{HLT}	kHz	2	2.45	4.I	205%
Stored events $\lambda_{\text{HLT}}t$	109	20	П	26	130%

Corfu Summer Institute

2 September 2015

Flavour tagging

- Tagging of production flavour (B or B) important for mixing and CP analyses.
 Performance calibrated using control channels such as B⁺ → J/ψ K⁺
- Current opposite side tagging power:
 ε (1-w)² = (2.10 ± 0.08 ± 0.24)%

CP violation in $\mathbf{B} \rightarrow \mathbf{K}\pi$ and $\mathbf{B}_{s} \rightarrow \mathbf{K}\pi$

$$\begin{split} A_{CP}(B^{0} \to K\pi) &= \frac{\Gamma(\bar{B}^{0} \to K^{-}\pi^{+}) - \Gamma(B^{0} \to K^{+}\pi^{-})}{\Gamma(\bar{B}^{0} \to K^{-}\pi^{+}) + \Gamma(B^{0} \to K^{+}\pi^{-})} \\ A_{CP}(B^{0}_{s} \to \pi K) &= \frac{\Gamma(\bar{B}^{0}_{s} \to \pi^{-}K^{+}) - \Gamma(B^{0}_{s} \to \pi^{+}K^{-})}{\Gamma(\bar{B}^{0}_{s} \to \pi^{-}K^{+}) + \Gamma(B^{0}_{s} \to \pi^{+}K^{-})} \end{split}$$

• Using 1/fb (2011) @ $\sqrt{s} = 7$ TeV.

Charm mixing formulism

mass difference <u>x</u> :	decay width difference y:
$x\equivrac{m_2-m_1}{\Gamma}=rac{\Delta m}{\Gamma}$	$y\equivrac{\Gamma_2-\Gamma_1}{2\Gamma}=rac{\Delta\Gamma}{2\Gamma}$

In the limit of small mixing $|x|, |y| \le 1$ and assuming negligible CPV:

 δ is a strong phase difference between DCS and CF amplitudes

Corfu Summer Institute

2 September 2015

W/Z production

LHCb's unique forward and low p_T acceptance equips it to perform EW / QCD measurements which are highly complementary to those of mid-rapididty GPDs

Isospin asymmetry in $B^0 \rightarrow K^{0(*)}\mu^+\mu^-$

Corfu Summer Institute

CP-violating asymmetry a^s_{sl} in **B**_s decays

- CPV in mixing $P(B \to \overline{B}) \neq P(\overline{B} \to B)$
- $D0.9 \text{ fb}^{-1}$ di-muon asymmetry anomaly. 10.4 fb Phys. Rev. D 84, 052007 (2011), Phys. Rev. D 86, 072009 (2012) **\$**M LHCb 1 fb 0 LHCb I fb⁻¹ result for a^ssl D0 10.4 fb⁻¹ $a_{sl}^{s} = \frac{\Gamma(B_{s}^{0} \to D_{s}^{-}\mu^{+}) - \Gamma(\overline{B}_{s}^{0} \to D_{s}^{+}\mu^{-})}{\Gamma(B_{s}^{0} \to D_{s}^{-}\mu^{+}) + \Gamma(\overline{B}_{s}^{0} \to D_{s}^{+}\mu^{-})}$ -0.02 $a_{\rm sl}^{s}[{
 m LHCb}] = (-0.06 \pm 0.50 \pm 0.36)\%$ LHCb -0.04Y(4\$ arxiv: 1308.1048 HFAG D0 result not confirmed nor ruled out. -0.04-0.020.02 0

Standard Model
predictions
Corfu Summer Institute
$$a_{sl}^{s} = (1.9 \pm 0.3) \times 10^{-5}$$
$$a_{sl}^{d} = (-4.1 \pm 0.6) \times 10^{-4}$$

ad

The Z(4430) tetraquark

- First observed by Belle (but not seen by Babar)
- LHCb: use very clean sample of 25,200 B⁰ $\rightarrow \psi$ ' K⁺ π ⁻, (ψ ' $\rightarrow \mu$ ⁺ μ ⁻) decays observed in 3 fb⁻¹ of data (7 and 8 TeV).
- Z(4430)⁻ peak seen in ψ' π⁻ mass with significance of the signal 13.9σ
- Spin-parity J^P = I⁺ at 9.7σ
- Being charged, it cannot be a cc(bar) state. The minimal quark content of the Z(4430) is cc(bar)du(bar). It is therefore a two-quark plus two-antiquark state

2

$$\begin{split} m &= 4475 \pm 7 \, {}^{+\,15}_{-\,25} \,\, \mathrm{MeV}/c^2 \\ \Gamma &= 172 \pm 13 \, {}^{+\,37}_{-\,34} \,\, \mathrm{MeV}/c^2. \end{split}$$

Corfu Summer Institute

• Combination is 3.9σ from the SM expectation: $R(D) = 0.297 \pm 0.017$, $R(D^*) = 0.252 \pm 0.003$

[Kamenik et al. Phys. Rev. D78 014003 (2008), S. Jajfer et al. Phys. Rev. D85 094025 (2012)]

Corfu Summer Institute

2 September 2015

Possible anomaly in $B_s^0 \rightarrow \phi \mu^+ \mu^-$ **decays?**

Detector performance – VELO

- Vertex Locator (VELO):
 21 modules of back-to-back silicon sensor disks, *R*-\$\$\$ strip geometry
- Silicon is only 8 mm from beams. Must be retracted for safety during beam injection
- 300 μm-thick silicon
 2048 strips/sensor, 40 μm inner pitch

Corfu Summer Institute

Vertex reconstruction performance

- Impact parameter resolution = 12 μ m for high p_T tracks from VELO detector.
- Proper-time resolution: $\sigma_t = 45$ fs for eg. $B_s \rightarrow J/\psi \phi$

Prompt J/ψ

2 September 2015

Tracking performance

Particle identification

- Charged particles identified with two Ring-Imaging Cherenkov detectors covering 2
- Cherenkov angle resolution
 0.66 mrad per photon achieved (in RICH 2)

Corfu Summer Institute

2 September 2015

PID performance

 Kaon identification efficiency > 90% for pion misidentification < 5% over a large momentum range (2

arXiv:1211.6759

Allows strong suppression of combinatorial background eg for $\phi \rightarrow K^+K^-$

The LHCb trigger performance

arXiv:1211.3055

Hardware level (L0):

- 4 µs latency @ 40MHz
 - high- $p_T \mu$, e, γ , hadron candidates, typically $p_T(\mu) > 1.4$; $E_T(e/\gamma) > 2.7$; $E_T(hadron) > 3.6$ [GeV]

Software level (HLT):

~30000 tasks in parallel on ~1500 nodes

Combined efficiency (L0+HLT):

- ~90 % for di-muon channels
- ~30 % for multi-body hadronic final states

Offline processing:

- ~10¹⁰ events, 700 TB recorded per year
- ~800 "stripping" selections to reduce to samples with 0(10⁷) events for analyses

tember 2015

Outlook: LHCb Upgrade

- Main limitation that prevents exploiting higher luminosity is the Level-0 (hardware) trigger
- To keep output rate < I MHz requires raising thresholds → hadronic yields reach plateau
- Proposed upgrade is to *remove* hardware trigger: read out detector at 40 MHz (bunch crossing rate). Trigger fully in software in CPU farm. Requires replacing all front-end electronics
- Will allow to increase luminosity by factor ~ 10 to $1-2 \times 10^{33}$ cm⁻² s⁻¹
- TDRs being approved by CERN : Physics case enthusiastically endorsed, detector R&D underway

Upgrade of LHCb detector planned for 2019 to take at least 10× more data: 50 fb⁻¹

Upgrade sensitivities 50 fb⁻¹

LHCb-PUB-2012-009

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [24]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 26	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	6.4×10^{-3} [41]	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	_	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	—	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.17 41	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$ au^{\mathrm{eff}}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	—	5%	1%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [42]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% 42	6%	2%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.25 9	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% 43	8%	2.5%	$\sim 10\%$
Higgs	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	1.5×10^{-9} [4]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	—	$\sim 100 \%$	$\sim 35\%$	$\sim 5~\%$
Unitarity	$\gamma \ (B \to D^{(*)}K^{(*)})$	$\sim 10 - 12^{\circ}$ [28, 29]	4°	0.9°	negligible
$\operatorname{triangle}$	$\gamma \ (B_s^0 \to D_s K)$	—	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K^0_S)$	0.8° [41]	0.6°	0.2°	$\operatorname{negligible}$
Charm	A_{Γ}	2.3×10^{-3} [41]	0.40×10^{-3}	0.07×10^{-3}	_
CP violation	ΔA_{CP}	2.1×10^{-3} 8	0.65×10^{-3}	0.12×10^{-3}	_

Corfu Summer Institute

2 September 2015