Accurate photometric redshift probability density estimates

Markus Michael Rau SPV. Stella Seitz Ben Hoyle, Kerstin Peach

Accurate photometric redshift probability density estimation - method comparison and application

Markus Michael Rau^{1,2}, Stella Seitz^{1,2}, Fabrice Brimioulle³, Eibe Frank⁴, Oliver Friedrich^{1,2}, Daniel Gruen^{1,2}, Ben Hoyle^{1,5}

MNRAS 2015 452 (4): 3710-3725

arXiv:1503.08215

- What are photometric redshifts (PhotoZs)?
- Why are PhotoZs important?
- Why should you care about modelling of PhotoZ uncertainty (PhotoZ probability density function)?
- How do we estimate PhotoZ probability density functions?
- What are the current problems?

What are photometric redshifts?

Why are PhotoZs important?

- Spectroscopic redshifts expensive (long exposure times especially for faint objects)
- Small datasets
- Insufficient number of objects for many cosmological applications (galaxy clustering, cosmic shear, etc.)

→ Solution: Photometric surveys with spectroscopic overlap

PhotoZs can be obtained for all other galaxies of the photometric survey

Why should you care about the modelling of PhotoZ uncertainty?

How do we estimate PhotoZ probability density functions (PDFs)?

We developed highly accurate and efficient methods

- Efficient representation of individual object redshift PDFs (5 numbers per object)
- Single number per object to estimate the sample redshift distribution
- Efficient sample selection by weighting individual object redshift PDFs by their overlap with redshift bins

Stack individual object
PDFs with weights

 \rightarrow distribution centres in predefined z-range

• Applications like shear tomography

Problem of spectroscopic incompleteness

- Problem of verification
 - Independent on the method no verification of PhotoZ quality!

Spectroscopic follow-up

- Problem of accuracy
 - Too few spectroscopic data \rightarrow bad estimator

Add simulation data/template fitting

Data augmentation for machine learning redshifts applied to SDSS galaxies

Ben Hoyle^{1,2},
Markus Michael Rau^{1,4},Christopher Bonnett³,Stella Seitz^{1,4} Jochen Weller^{1,2,4}

Conclusions

• Efficient and accurate modelling of the uncertainty in photometric redshifts is very important

→ Reduction of systematic biases in angular power spectrum, cosmic shear correlation functions and the critical surface density by a factor of four compared with point estimates

- Spectroscopic incompleteness is a challenge
 - → we are currently working on efficient ways to carry out spectroscopic follow-up

Tuning target selection algorithms to improve galaxy redshift estimates arXiv:1508.06280

Ben Hoyle^{1,2}, Kerstin Paech^{1,2}, Markus Michael Rau^{1,3}, Stella Seitz^{1,3}, Jochen Weller^{1,2,3}

Backup slides

	η	$\sigma(\Delta z)$	$\langle \Delta z \rangle$	σ_{68}
ANNz	1.23%	0.092	-0.001	0.044
PhotoZ	2.27%	0.129	-0.008	0.050

Table 2. Point prediction performance of the Neural Network code ANNz and the template fitting code PhotoZ quantified by the metrics described in §5.1.

