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Motivation - why Fedosov construction?

• Noncommutative versions of GR should behave well and

follow some rules of classical general relativity. At least they

should be coordinate covariant.

• Fedosov defromation quantization provides quite

straightforward framework for such approach.



Fedosov construction

• On symplectic manifold (M, ω) with symplectic connection

∂S there exists canonical coordinate covariant Fedosov

∗-product of functions.

• But we have much more. Let E be a vector bundle over M,

with a connection ∂E . Let End(E) be corresponding bundle of

endomorphisms. Fedosov ∗-product can be covariantly

generalized to sections of End(E).



Fedosov product of endomorphisms

A ∗ B = AB − ih
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Trace functional

• Importantly, Fedosov algebras come with the trace functional.

• There is only one (up to normalizing constant) family of

functionals satisfying

• tr∗(A ∗ B) = tr∗(B ∗ A)

• tr∗1(F ) = tr∗2(M(F )) where M is arbitrary ∗-isomorphism

between ∗1 and ∗2.



Trace functional

tr∗(A) =

∫
M

Tr
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Fedosov construction and NCFT

These structures allow for the following geometric (global,

coordinate and gauge covariant) deformation scheme of classical

field theories:

• take an action functional,

• represent Lagrangian as a trace of some endomorphism (or

product of endomorphisms),

• replace product of endomorphisms by ∗-product of

endomorphisms,

• replace integral by the trace functional.

Problem – volume form incompatibility.



Fedosov construction and SW map

• Important point - we are not inventing something radically

different from known theories.

• Seiberg-Witten map can be understood as a ∗-isomorphism

[Jurčo, Schupp 2000]. In fact, it can be understood as a local

consequence of global Fedosov quantization of End(E) [MD

2011].

• Our approach guarantees that the deformed theory can be

locally interpreted in terms of Seiberg-Witten map.

• This fact comes from ∗-isomorphism invariance of the trace

functional and the ∗-isomorphism interpretation of SW map.



Example – Einstein-Hilbert action for GR

• Consider Einstein-Hilbert action SEH =
∫
M R volM .

• Rewrite it as

SEH =

∫
M

Tr R̆
ωn

n!
,

where R denotes endomorphism of TM given by Ricci tensor,

i.e. (RX )i = R i
jX

j .

• Here Ă := vA, with v :M→ R defined by volM = v volS .



Example – Einstein-Hilbert action for GR

After deformation [MD 2011], the action reads

ŜEH = tr∗(R̆) =

=

∫
M
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Example – deformed field equations

Variation of the metric yields field equations

Rab − 1
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Example – deformed solutions

Write a metric as a formal series gab =
(0)

gab + h
(1)

gab + h2
(2)

gab + . . .

and put it into field equations.

•
(0)

gab is just classical Ricci-flat metric.

•
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gab is just classical first order perturbation of
(0)
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Problems

One can identify number of (related) problems with such approach:

• incompatible volume forms,

• unrelated structures – metric and symplectic,

• fixed background of symplectic geometry: ω,∂S .



(Slightly) generalized Fedosov theory

• Idea: to put fields into deformation quantization.

• Generic Fedosov ∗-product is prototyped by Moyal product in

the fibers of TM. But one can consider different prototypes

[MD 2015].

• Among other, one can consider symmetric part of

noncommutativity tensor

a
∼◦ b =
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2

)m 1

m!

∂ma
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where s ij = ωij + g ij
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(Slightly) generalized Fedosov theory

Message: you can covariantly put a metric inside Fedosov’s theory,

if you really want.



Incompatibility of volume forms

Let us have a look at the Einstein-Hilbert action

1

16πG

∫
M

R i
i

√
−gd4x + Smatter

The deformation would go smoothly if it is like

1

16πG

∫
M

R i
i

ωn

n!
+ Smatter (1)

because then, we would just write

1

16πG
tr∗ R + Ŝmatter

Interpret (1) positively - it is the correct action integral but there

are some constraints.



Incompatibility of volume forms

Let us have a look at the Einstein-Hilbert action

1

16πG

∫
M

R i
i

√
−gd4x + Smatter

The deformation would go smoothly if it is like

1

16πG

∫
M

R i
i

ωn

n!
+ Smatter (1)

because then, we would just write

1

16πG
tr∗ R + Ŝmatter
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Yet another action for GR

Our variational problem is now given by the integral

1

16πG

∫
M

R i
i

ωn

n!
+ Smatter

together with the set of constraints

1 ∂Si ωjk = 0 (there is symplectic connection)

2 T i
jk =

S

Γi
jk −

S

Γi
kj = 0 (which is torsionfree)

3 ∆Γi
ik = Γi

ik −
S

Γi
ij = 0 (and generates correct volume form)

Everything is dynamical here: metric, symplectic form and

symplectic connection.

Condition 3 yields that ωn

n! =
√

detωd4x = α
√
−gd4x because

Γi
ik = ∂ log

√
−g

∂xk
and

S

Γi
ik = ∂ log

√
detω

∂xk
.
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Yet another action for GR

Using Lagrange multipliers method one can derive field equations

Rab − 1

2
Rgab + λ(x)gab = 8πGT ab

Using Bianchi identity and energetic condition ∇aT
ab = 0 we get

λ(x) = const. Thus, we have obtained GR with cosmological

constant.

Now, one can use the same variational procedure for the

noncommutative case with the action

1

16πG
tr∗ R + Ŝmatter

Again – everything, including noncommutativity, is dynamical.

Field equations – work in progres...
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