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Motivation - why Fedosov construction?

e Noncommutative versions of GR should behave well and
follow some rules of classical general relativity. At least they

should be coordinate covariant.

e Fedosov defromation quantization provides quite

straightforward framework for such approach.



Fedosov construction

e On symplectic manifold (M, w) with symplectic connection
9° there exists canonical coordinate covariant Fedosov

x-product of functions.

e But we have much more. Let £ be a vector bundle over M,
with a connection 9¢. Let End(&) be corresponding bundle of
endomorphisms. Fedosov #-product can be covariantly

generalized to sections of End(&).



Fedosov product of endomorphisms
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Trace functional

e Importantly, Fedosov algebras come with the trace functional.
e There is only one (up to normalizing constant) family of
functionals satisfying
o tro(Ax B) =tr.(B=xA)
o tr, (F) =tr.,(M(F)) where M is arbitrary %-isomorphism

between x; and 5.



Trace functional
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Fedosov construction and NCFT

These structures allow for the following geometric (global,
coordinate and gauge covariant) deformation scheme of classical

field theories:
e take an action functional,

e represent Lagrangian as a trace of some endomorphism (or

product of endomorphisms),

e replace product of endomorphisms by *-product of

endomorphisms,

e replace integral by the trace functional.

Problem — volume form incompatibility.



Fedosov construction and SW map

Important point - we are not inventing something radically

different from known theories.

Seiberg-Witten map can be understood as a *-isomorphism
[Juréo, Schupp 2000]. In fact, it can be understood as a local
consequence of global Fedosov quantization of End(€) [MD
2011].

Our approach guarantees that the deformed theory can be

locally interpreted in terms of Seiberg-Witten map.

This fact comes from x-isomorphism invariance of the trace

functional and the *-isomorphism interpretation of SW map.



Example — Einstein-Hilbert action for GR

o Consider Einstein-Hilbert action Sgyy = [, Rvoly.

e Rewrite it as
n

Sen = / TR
M n!
where R denotes endomorphism of T M given by Ricci tensor,
ie. (RX) = R"J-XJ'.

e Here A := vA, with v : M — R defined by voly, = v vols.



Example — Einstein-Hilbert action for GR

After deformation [MD 2011], the action reads
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3
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Example — deformed field equations

Variation of the metric yields field equations
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Example — deformed solutions

. . . (0) (1) (2)
Write a metric as a formal series g,p, = gap + hgap + h? Gab +
and put it into field equations.

() . . . .
e g.p is just classical Ricci-flat metric.

(1 . . . . . (0)
e g.p is just classical first order perturbation of g,

1 . . .
e for (g)ab = 0 (no classical first order perturbation)
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Problems

One can identify number of (related) problems with such approach:

e incompatible volume forms,
e unrelated structures — metric and symplectic,

e fixed background of symplectic geometry: w,d°.



(Slightly) generalized Fedosov theory

e ldea: to put fields into deformation quantization.

e Generic Fedosov *-product is prototyped by Moyal product in
the fibers of T M. But one can consider different prototypes
[MD 2015].

e Among other, one can consider symmetric part of

noncommutativity tensor
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(Slightly) generalized Fedosov theory

Message: you can covariantly put a metric inside Fedosov's theory,

if you really want.



Incompatibility of volume forms

Let us have a look at the Einstein-Hilbert action
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Incompatibility of volume forms

Let us have a look at the Einstein-Hilbert action

1
167G

/ Bii V _gd4X + Smatter
M

The deformation would go smoothly if it is like

1 s w
167G /M Bliﬁ *+ Smaiter

because then, we would just write

1 -~
167G tr. R+ Smatter

Interpret (1) positively - it is the correct action integral but there

are some constraints.



Yet another action for GR

Our variational problem is now given by the integral
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together with the set of constraints

® OPwjx = 0 (there is symplectic connection)
. S. S.
® T =T — T, =0 (which is torsionfree)
. . S.
© Ar'y =T', —T"; =0 (and generates correct volume form)

Everything is dynamical here: metric, symplectic form and

symplectic connection.
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® OPwjx = 0 (there is symplectic connection)
. S. S.
® T =T — T, =0 (which is torsionfree)

. . S.
© Ar'y =T', —T"; =0 (and generates correct volume form)

Everything is dynamical here: metric, symplectic form and
symplectic connection.

Condition 3 yields that “" = Vdetwd*x = ay/—gd*x because
riik 8Iog\/7 and r, alogaxx/zjetw.



Yet another action for GR
Using Lagrange multipliers method one can derive field equations
1
R — SRg™ + A(x)g™ = 8rGT*

Using Bianchi identity and energetic condition V,T2” = 0 we get
A(x) = const. Thus, we have obtained GR with cosmological

constant.



Yet another action for GR

Using Lagrange multipliers method one can derive field equations
1
R — SRe™ + \(x)g™ = 8rGT™

Using Bianchi identity and energetic condition V,T2” = 0 we get
A(x) = const. Thus, we have obtained GR with cosmological
constant.

Now, one can use the same variational procedure for the

noncommutative case with the action

tre R+ Smatter

1
167G
Again — everything, including noncommutativity, is dynamical.

Field equations — work in progres...
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