

UNITED KINGDOM · CHINA · MALAYSIA

Exploring fuzzy space through Monte Carlo Methods

📥 Lisa Glaser 🚽

University of Nottingham

September 26, 2015

What I will explain

Monte Carlo simulations on fuzzy space:

- How do we implement them?
- What are our results?

What I will explain

- Monte Carlo simulations on fuzzy space:
 - How do we implement them?
 - What are our results?

Why are we doing this?

- Path integral of fuzzy space
- Quantum Non commutative geometry (see Johns talk)
- Quantum gravity through fuzzy space

Fuzzy geometry (p, q)

$$(s, \mathcal{H}, \mathcal{A}, \Gamma, J, \mathcal{D})$$

►
$$\mathcal{H} = V \otimes M(n, \mathbb{C})$$

where V is a (p, q) -Clifford module
p-times $(\gamma^i)^2 = 1$ and q-times $(\gamma^i)^2 = -1$

•
$$\mathcal{A}$$
 is a $*-$ algebra $M(n, \mathbb{C})$

- $\blacktriangleright \ s = (q p) \bmod 8$
- $\Gamma(v \otimes m) = \gamma v \otimes m$ with γ the chirality operator on V
- $J(v \otimes m) = Cv \otimes m^*$ where C is charge conjugation on V

Dirac operators

In general

$$\mathcal{D}(v \otimes m) = \sum_{i} \omega^{i} v \otimes (K_{i}m + \epsilon' m K_{i}^{*})$$

 ω^i is a product of γ^i

• if
$$\omega^i = \omega^i$$
 then $K_i = K_i^*$

• if
$$\omega^i = -\omega^i$$
 then $K_i = -K_i^*$

so that $\mathcal{D}=\mathcal{D}^*$

 $\epsilon' = \pm 1$ depending on s

Dirac operators

In general

$$\mathcal{D}(v \otimes m) = \sum_{i} \omega^{i} v \otimes (K_{i}m + \epsilon' m K_{i}^{*})$$

For the example of a (1,1) geometry

$$D = \gamma^1 \otimes \{H, \cdot\} + \gamma^2 \otimes [L, \cdot]$$

With H hermitian and L anti-hermitian and traceless

Remark:

The trace of L decouples, since these matrices always contribute in commutators, so only the traceless part is physical & we can ignore the traceless condition for convenience.

The path integral over Fuzzy space

UNITED KINGDOM · CHINA · MALAYSIA

$$\langle f \rangle = \frac{\int f(\mathcal{D}) e^{i\mathcal{S}(\mathcal{D})} \mathrm{d}D}{\int e^{i\mathcal{S}(\mathcal{D})} \mathrm{d}D}$$

The path integral over Fuzzy space

UNITED KINGDOM · CHINA · MALAYSIA

$$\langle f \rangle = \frac{\int f(\mathcal{D}) e^{-\mathcal{S}(\mathcal{D})} \mathrm{d}D}{\int e^{-\mathcal{S}(\mathcal{D})} \mathrm{d}D}$$

The path integral over Fuzzy space

UNITED KINGDOM · CHINA · MALAYSIA

$$\langle f \rangle = \frac{\int f(\mathcal{D}) e^{-\mathcal{S}(\mathcal{D})} \mathrm{d}D}{\int e^{-\mathcal{S}(\mathcal{D})} \mathrm{d}D}$$

- What action S should we use?
- Which functions f should we measure, and what do they tell us?
- How do we choose the measure dD on the space of geometries?

One slide on Monte Carlo

$$\langle f \rangle = \frac{\sum_{\mathcal{D}} f(\mathcal{D}) e^{-\mathcal{S}(\mathcal{D})}}{\sum_{\mathcal{D}} e^{-\mathcal{S}(\mathcal{D})}}$$

Generate statistically independent Dirac operators \mathcal{D}_n w. probability distribution

$$P(\mathcal{D}_n) = \frac{e^{-\mathcal{S}(\mathcal{D}_n)}}{\sum_i e^{-\mathcal{S}(\mathcal{D}_i)}}$$

Then

$$\langle f(\mathcal{D}) \rangle_N = \frac{1}{N} \sum_{n=1}^N f(\mathcal{D}_n) \xrightarrow[N \to \infty]{} \langle f(\mathcal{D}) \rangle$$

The action

$$\mathcal{S} = f(\mathcal{D})$$

What do we want from an action?

- physical motivation
- bounded from below
- need to be able to implement it

The action

$$\mathcal{S} = g_4 \mathrm{Tr}\left(\mathcal{D}^4\right) + g_2 \mathrm{Tr}\left(\mathcal{D}^2\right)$$

What do we want from an action?

- physical motivation \Rightarrow lowest order
- bounded from below \Rightarrow for some g_2, g_4
- need to be able to implement it \Rightarrow Yes, we did

Simplest cases for $\mathcal{S} = \mathsf{Tr}\left(\mathcal{D}^2\right)$

Type (1,0) & (0,1)

 $D^{(1,0)} = \{H, \cdot\}$ $D^{(0,1)} = [H, \cdot]$

Simplest cases for $S = \text{Tr}(D^2)$

Type (1,0) & (0,1)

 $D^{(1,0)} = \{H, \cdot\} = \mathbf{I}_n \otimes H + H^T \otimes \mathbf{I}_n$

 $D^{(0,1)} = [H, \cdot] \qquad \qquad = \mathbf{I}_n \otimes H - H^T \otimes \mathbf{I}_n$

E.v. of $\mathcal{D}^{(1,0)}/\mathcal{D}^{(0,1)}$ are sum/ diff of e.v. of H

Simplest cases for $S = \text{Tr}(D^2)$

Туре (1,0) & (0,1)

$$\mathcal{S}(D^{(1,0)}) = g_2 \left(2n \operatorname{Tr} \left(H^2 \right) + 2 \operatorname{Tr} \left(H \right)^2 \right)$$
$$\mathcal{S}(D^{(0,1)}) = g_2 \left(2n \operatorname{Tr} \left(H^2 \right) - 2 \operatorname{Tr} \left(H \right)^2 \right)$$

The action for *H* is close to a random matrix model.

E.V. of H, \mathcal{D} for (1, 0) and (0, 1)

The eigenvalues of *H* follow the Wigner Semi circle law

We find this is also true for all further H, L with quadratic actions.

E.V. of H, \mathcal{D} for (1, 0) and (0, 1)

2 d cases for $S = \text{Tr}(D^2)$

- shoulders + central peak
- ▶ 2n e.v. 0 for (0,2)
- slight gap around 0 for (2,0),(1,1)

2 d cases for $S = \text{Tr}(D^2)$

- shoulders + central peak
- ▶ 2n e.v. 0 for (0,2)
- slight gap around 0 for (2,0),(1,1)

 $\mathcal{S} = \text{Tr}\left(\mathcal{D}^4\right)$

Not much changed.

The 3d case (0,3)

11/ 16

Туре (1,0)

Interesting change as g_2 becomes more negative

Туре (0,3)

g2

-5 -4 -3 -2

Interesting change as g_2 becomes more negative Also in the order parameter Tr (\mathcal{D}^2)

But some show no phase transition

Type (0,1) $P(\lambda)$ 15 10 λ -22 -1 Type (0,1) 120. $\langle Tr D^2 \rangle$ 20 80 40 -2 - 4 -3 - 1 _ g2

What is the difference?

H is the reason

Tr(H) developes a non-zero expectation value.

Signs of a continuum?

Summary & Conclusion

What did we do?

Monte Carlo simulation on fuzzy geometry Examined type (1,0), (0,1), (2,0), (1,1), (0,2), (0,3)

What did we find

- We can explain the eigenvalue density
- Phase transition depending on g₄
- Possible continuum behavior?

Summary & Conclusion

What did we do?

Monte Carlo simulation on fuzzy geometry Examined type (1,0), (0,1), (2,0), (1,1), (0,2), (0,3)

What are we looking for

- \blacktriangleright S that peaks around the fuzzy S^2
- Other observables to look at
- ▶ A better computer to run with 96 × 96 matrices ☺

Can we hear the geometry?

Can we hear the geometry?

YES!

Can we hear the geometry?

Thank you for your attention!

Diracs we studied

For this project we have examined the simplest cases

$$D^{(1,0)} = \{H, \cdot\} \qquad D^{(0,1)} = [H, \cdot] D^{(2,0)} = \gamma^1 \otimes \{H_1, \cdot\} + \gamma^2 \otimes \{H_2, \cdot\} D^{(1,1)} = \gamma^1 \otimes \{H, \cdot\} + \gamma^2 \otimes [L, \cdot] D^{(0,2)} = \gamma^1 \otimes [L_1, \cdot] + \gamma^2 \otimes [L_2, \cdot] D^{(0,3)} = \sum_{j < k=1}^{3} \gamma^0 \gamma^j \gamma^k \otimes [L_{jk}, \cdot] + \gamma^1 \gamma^2 \gamma^3 \otimes \{H_{123}, \cdot\} + \gamma^0 \otimes \{L_0, \cdot\} + \sum_{i=1}^{3} \gamma^i \otimes [L_i, \cdot]$$