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Outline

What | will explain

Monte Carlo simulations on fuzzy space:
How do we implement them?
What are our results?
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Outline

What | will explain

Monte Carlo simulations on fuzzy space:
How do we implement them?
What are our results?

Why are we doing this?

» Path integral of fuzzy space
» Quantum Non commutative geometry (see Johns talk)
» Quantum gravity through fuzzy space
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(87 H’ A7 ]‘—‘7 J7 D)

v

H=V®Mn,C)

where V is a (p, ¢)-Clifford module

p-times ()2 =1 and ¢-times (y*)? = -1

» Ais a x— algebra M(n,C)

s =(q—p) mod8

I'(v ® m) = yv ® m with ~ the chirality operator on V
J(v®m) = Cv®m* where C is charge conjugation on V

v

v

v
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In general

Dv@m)=)Y wv® (Km+mK;)
5
w® is a product of ~¢
» if w' = w' then K; = K
» if w' = —w' then K; = —K}
so that D = D*
¢ = +1 depending on s
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In general

D(v®m) = Zwiv @ (Kim + € mK;")

(]

For the example of a (1,1) geometry
D=~"@{H, -} +7°®[L, ]

With H hermitian and L anti-hermitian and traceless
Remark:

The trace of L decouples, since these matrices always
contribute in commutators, so only the traceless part is

physical & we can ignore the traceless condition for
convenience.
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ff zS('D dD

{f) = Te ’S(D)dD
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[f(D)eSP)dD

()= fe—SD)dD
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Jf(D)e"SP)dD
Je 3 (®)dD

{f) =

What action S should we use?
Which functions f should we measure, and what do they

tell us?

How do we choose the measure dD on the space of
geometries?
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One slide on Monte Carlo

ZDf(D)efs(D)
Ype S

Generate statistically independent Dirac operators D,, w.
probability distribution

(f) =

eiS(Dn)

P(Dn) = s

Then

N
Z_: f(Dn) —— (f(D))
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The action

What do we want from an action?

physical motivation

bounded from below
need to be able to implement it
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The action

S =g4Tr (D4) + g Tr (Dz)

What do we want from an action?

physical motivation = lowest order

bounded from below = for some g9, g4
need to be able to implement it = Yes, we did
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Type (1,0) & (0, 1)

DY = {H, -}

D(O“l) _ [H, }
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Type (1,0) & (0,1)

=1, H-HT I,

E.v. of D10 /DO are sum/ diff of e.v. of H

7/ 16



8 | The University of

Simplest cases for § = Tr (D?) ) gt

UNITED KINGDOM - CHINA - MALAYSIA

Type (1,0) & (0, 1)

S(DM) = gp (2nTr (#2) + 2Tr (H)?)

The action for H is close to a random matrix model.
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S =Tr(D?)
Hist(Ev(H)) n=15 Hist(Ev(H))
200 runs .

P()

6
4
2

6
4
2

A

T15°10-05 = 05 10 is -15-1.0-05 05 10 15

The eigenvalues of H follow the Wigner Semi circle law

We find this is also true for all further H, L with quadratic
actions.
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E.V. of H,D for (1,0) and (0,1) I Notingham
S =Tr (D?
Hist(Ev(H)) n =15 Hist(Ev(H))

. 200 runs .
6

. 4

2 2

T15-10-05 © 05 10 15 * T15.10.05 05 10 18
Hist(Bv(D10))) Hist(Ev(DOD))
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Type (2,0) Type (1,1)
P P()
12
10|
6
4
2
—.5—1.0—0.5 05 1.0 1 A -15-1.0-05 ’ 05 10 15 A
Type (0,2)
P(1)

» shoulders + central peak
» 2n e.v. 0 for (0,2)

» slight gap around 0 for
(2,0),(1,1)

. . ! . . 1
-15-10-05 05 10 15
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Type (2,0) Type (1,1)
P(2) P(2)
4 4
3
2 2
1
-010 -005 005 o01d -010 -005 005 016
Type (0,2)
P(1)

» shoulders + central peak
» 2n e.v. 0 for (0,2)

» slight gap around 0 for
(2,0),(1,1)

. . ! . . 1
-15-10-05 05 10 15
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) n n [ . .
-15-1.0-05 05 1.0 15 20 -10 -05 05 10
P()
0.8

0.6

Not much changed.

-10 -05 05 1.0
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S =Tr(D?) S =Tr (D%)

P(1) P()

— — A
~15 -10 -05 05 10 15
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P(A)

15}

10§

2 -1 1 2
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S = ¢Tr (D?) + Tr (DY)

Type (1,0)
PQQ)

g o
Type (0,3)
PO
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Type (2,0)
PV
8

e
:;—-—'_-_-_-‘l.#| =

TN

Interesting change as ¢,

N

NV

becomes more negative
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Type (1,0) Type (2,0)
__200. 04 - __400. 08
A 150. 03 0 G 300. 06 0
= 100. 02 = &= 200. 04 &
50 01 = = 100. 02 =
O'—s -4 -3 -2 —10‘ O'—s -4 -3 -2 —10‘
92 92
Type (0,3)
12. [
P 10,8 Interesting change as ¢
2 200 o = becomes more negative
~ 100 31 = Also in the order parameter
-5 -4 -3 -2 -1°

Tr (D?)
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Type (0,1) Type (0,2)

P(A)

P(A)
25

120 0.05 0.25
300.
<o 100 0.04 N < 250. 02 <&
o o 03 © 0 200. 015 ©
= 002 = = 150 01 F
e o 01 = ~ 750, 0.05 >
0. 0.
5 —4 -3 -2 -1 i5 -4 -3 -2 -1
92 92
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Type (1,0) Type (2,0)
Tr(H)2 Tr(H)?
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
24 3 2 a® 4 3 2 %
Type (0,3)
Tr(H)?
038 H is the reason
zj Tr(H) developes a non-zero
02 expectation value.
4 -3 2 a*
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Fuzzy sphere Type (1,1) at g = -3
P(1) P(1)
0.10 6
0.08 5
4
0.06
3
0.04
2
.02 1
A A
-10 -5 5 -15 -1.0 -05 0.5 1.0 15
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What did we do?

Monte Carlo simulation on fuzzy geometry
Examined type (1,0), (0,1), (2,0), (1,1),(0,2), (0,3)

What did we find

» We can explain the eigenvalue density
» Phase transition depending on g,
» Possible continuum behavior?
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What did we do?

Monte Carlo simulation on fuzzy geometry
Examined type (1,0), (0,1), (2,0), (1,1),(0,2), (0,3)

What are we looking for

» S that peaks around the fuzzy 52
» Other observables to look at
» A better computer to run with 96 x 96 matrices ©
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Can we hear the geometry? it Nottingham
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YES!
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YES!

Thank you for your attention!
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Diracs we studied

For this project we have examined the simplest cases
DO —(H, .} DOV — [H, ]
DRO =y o {Hy, Y+ @ {H, -}
DU =t @ {H,  }++*®[L, ]
DO =t @ [Ly, -]+ 7 ® L, -]

3
DO = 3" 309k @ Ly, -] + 472 ® {Higs, -}
j<k=1

3
+7°®{Lo, }+ > 7' ®[Li, -]
=1
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