Dark Matter searches in ATLAS: Run 1 results and Run 2 prospects

Lashkar Kashif

University of Wisconsin

Summer School and Workshop on the Standard Model and Beyond

Corfu, Greece, September 8, 2015

Outline

- Motivation and theories of dark matter production
- Collider searches for dark matter
- Dark matter searches in mono-object channels:
 - \circ Jet + E_T^{miss}
 - \circ Photon + E_T^{miss}
 - $\circ \quad H \rightarrow \gamma \gamma + \mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}$
 - \circ Heavy flavor + E_T^{miss}
 - $\circ W/Z + E_T^{miss}$
- Dark matter searches in invisible Higgs decays
 - \circ VH, VBF
 - Combination
- Run 2 prospects
- Conclusion & outlook

Dark Matter exists...

Galactic rotation curves

NASA, ESA, and M.J. Jee (Johns Hopkins University)

STScI-PRC07-17a

Gravitational lensing

...and there's a lot of it

- But what is it?
- Nothing in the Standard Model of particle physics
- Weakly Interacting Massive Particles (WIMPs) good candidates
 - mass O(GeV) to O(TeV)
 - falls in well with Standard Model of cosmology (ΛCDM)

...and there's a lot of it

- But what is it?
- Nothing in the Standard Model of particle physics
- Weakly Interacting Massive Particles (WIMPs) good candidates
 - mass O(GeV) to O(TeV)
 - falls in well with Standard Model of cosmology (ΛCDM)
- *Many* promising theoretical scenarios
- No one type of detection strategy can be robust over entire mass range of WIMPs
 - but we have complementary methods!

Indirect, direct & collider searches for dark matter

- Collider search: DM escapes detector, leading to events with large transverse momentum imbalance (E_T^{miss})
- In absence of any other interesting particle, difficult to trigger on event
- But what if there is an energetic jet, or γ, or W/Z boson, or even a Higgs in the event?
 - \rightarrow these constitute mono-X + E_T^{miss} channels for DM search

Models of dark matter production @ colliders

- Effective Field Theories (EFTs) traditionally used to interpret DM searches
 - searches can then be largely model-independent
 - easy to compare results with those from direct detection experiments
- But EFTs suffer from validity issues at LHC energies
 - mediator can be produced on-shell or close
- Simplified models using explicit mediators becoming popular
 - searches more model-dependent, but models valid at all energies
- ATLAS searches using Run 1 data interpreted in both types of models

Mono-X dark matter searches in ATLAS

$Jet + E_T^{miss}$

EPJC 75 (2015) 299

- Most sensitive of the mono-X channels
- > Selection:
- Events categorized in 9 E_T^{miss} bins: E_T^{miss} > 150, ..., 700 GeV
- Leading jet p_T: p_T(j^{lead}) > 120 GeV
- Jet recoils against DM pair
 → ratio p_T(j^{lead})/E_T^{miss} expected to be close to 1
 - require $p_T(j^{\text{lead}}) / E_T^{\text{miss}} > 0.5$
- Azimuthal separation b/w jet and E_T^{miss} : $\Delta \phi(p_T, E_T^{miss}) > 1.0$
- Veto events with leptons and isolated tracks

Jet + E_T^{miss}: backgrounds EPJC 75 (2015) 299

- Main backgrounds are EW processes with intrinsic E_T^{miss}, accompanied by jets
- Z(vv) + jet/s: irreducible bkg
- *W*(*Iv*) + jet/s with unreconstructed or unidentified lepton
- Both estimated from data using leptonic
 Z or W control regions (CRs)
- In this case, CRs are Z(//) + jets and W(/v) + jets events with identified leptons
- Event count from CR extrapolated to signal regions (SRs) using transfer factors
- Major advantage: many theoretical and most experimental uncertainties cancel out in transfer factor

- Limits on number of DM events can be translated to limits on cross section of DM-nucleon scattering
 - convenient for comparing with results of direct detection searches
- ATLAS limits shown by dashed lines
- CMS, direct (DD) and indirect (InD) detection results shown by solid lines and contours

- ATLAS limits shown for several EFT operators
- Spin-independent case (left): collider limits better than DD limits at low DM masses, where the latter have little sensitivity
 - great complementarity!
- Spin-dependent case (right): collider limits significantly better than DD, InD limits over ~full mass range

Photon + E_T^{miss}

- Sensitive channel because of well-measured γ and mostly EW bkgs
- Selection:
- At least 1 isolated γ : $p_T(\gamma) > 125 \text{ GeV}$
- $\Delta \phi(p_T(\gamma^{\text{lead}}), E_T^{\text{miss}}) > 0.4$
- 1 jet allowed: if $N_{jet} > 1$ or $\Delta \phi(p_T(jet), E_T^{miss}) > 0.4$, event vetoed
- Also veto events with leptons
- E_T^{miss} > 150 GeV
- Major backgrounds:
- $Z(\nu\nu) + \gamma$, $W(/\nu) + \gamma$: estimated in data control regions
- W/Z + jets: estimated using datadriven jet → γ misID factor

No excess observed in signal region L Kashif

Photon + E_T^{miss}: results PRD 91, 012008 (2015)

- Limit on suppression scale *M*_{*} *vs* DM mass in EFT (D5 operator)
- M_* : mass of mediator / $\sqrt{\text{(product)}}$ of its couplings to SM and DM)
- 'truncated' refers to truncation of phase space because of EFT validity

- Limit on $M_* vs$ mediator mass in a model with vector mediator
- Curves correspond to various DM masses and mediator widths
- For very high mediator mass, limits should approach EFT limits (green dashed lines)

 $Higgs(\gamma\gamma) + E_{T}^{miss}$

- Following Higgs discovery, mono-Higgs production in association with dark matter provides very interesting final states
- Higgs not emitted from initial-state quarks, but from physics related to DM production

 \rightarrow observation of such events can probe new physics directly

> $H \rightarrow \gamma \gamma$ branching fraction small (2.3 * 10⁻³ @ 125 GeV), but very clean signature owing to good mass resolution

10

ATLAS

Number of events

arXiv:1506.01081 Accepted by PRL

γ+ iets

Selection

- 2 isolated, well-identified γ 's
- $p_T(\gamma^{\text{lead}})/m_{\gamma\gamma} > 0.35,$ $p_T(\gamma^{\text{sublead}})/m_{\gamma\gamma} > 0.25$
- p_T^{γγ} > 90 GeV
- $E_T^{miss} > 90 \text{ GeV}$
- Major backgrounds:
- Non-resonant γγ, Vγγ production
- γ +jet with jet misidentified as γ
- $W(ev)\gamma$, $Z(ee)\gamma$, e misID'd as γ
- *Z(vv)H*, *W(lv)H*, *ttH*

estimated from sidebands in $m_{\gamma\gamma}$ distribution

estimated from simulation

Corfu2015, 09/08/2015

Higgs($\gamma\gamma$) + E_T^{miss}: results

- Observed upper limit on fiducial cross section of $H \rightarrow \gamma\gamma + E_T^{miss}$ events: 0.70 fb
- Small excess: 1.4σ deviation from bkg-only hypothesis

Higgs($\gamma\gamma$) + E_T^{miss}: results

- Observed upper limit on fiducial cross section of $H \rightarrow \gamma\gamma + E_T^{miss}$ events: 0.70 fb
- Small excess: 1.4σ deviation from bkg-only hypothesis

Interpretation in Z' mediator model

- Limits on mediator-quark coupling as function of m_{DM}
- Region above curves
 excluded
- Significant constraint on models for $m_{DM} < \sim 5 \text{ GeV}$

Heavy flavor + E_T^{miss}

EPJC 75 (2015) 92

In effective scalar-mediated interactions, DM couplings largest to massive quarks

b-flavored DM (*b*-FDM) model, motivated by Fermi-LAT excess

- DM search in final states with heavy flavor motivated on a variety of grounds
- Analysis uses 4 signal regions defined to target DM production with:
 - 1 or 2 *b* quarks
 - tt pair with all-hadronic or semi-leptonic decays
- Selection in each region optimized *wrt* targeted final state and bkgs

Heavy flavor + E_T^{miss}

EPJC 75 (2015) 92

Heavy flavor + E_T^{miss}: results

Exclusion contour in *b*-FDM model:

- Fermi-LAT interpretation suggests $m_{DM} \sim 35 \text{ GeV}$
- For this m_{DM}, mediator masses in range [~300, ~500] GeV excluded by this analysis

W/Z (hadronic) + E_T^{miss}

- 'Boosted' analysis: W/Z have large enough p_T that decay jets merge into a large-radius jet J (*fat jet*)
- Mass of fat jet required to be broadly consistent with W/Z mass: $50 < m_J < 120 \text{ GeV}$
- p_T(J) > 150 GeV
- Veto events with:
 - lepton or photon
 - narrow jet of $p_T > 40$ GeV that does not overlap with fat jet
- 2 signal regions defined using E_T^{miss} > 350, 500 GeV
- Main backgrounds:
- Z(νν) + jets, W/Z(e/μ/τ) + jet
- Estimated from data control region

W/Z(hadronic) + E_T^{miss}: results

- When up-type and down-type couplings of W have opposite signs, rate of mono-W >> rate of all other mono-boson production
 → strong limits
- EFT validity not taken into account in these results

Dark matter searches in Higgs boson decays

Higgs decays into invisible final states

- If Higgs couples to dark matter (Higgs Portal models), Higgs can decay into DM pair provided that m_{DM} < m_H/2
- This would be an invisible decay of Higgs
- Conversely, limits on branching fraction of Higgs into invisible final states can be interpreted as limits on DM production

- ATLAS has searched for invisible Higgs decays in
- Assoc production with a *Z* boson, *Z*(*II*)*H*
- Assoc production with a *W/Z* boson, *V(j)* H
- Vector boson fusion (VBF) production

PRL112, 201802 (2014)

EPJC (2015) 75:337

arXiv:1508.07869 Submitted to JHEP

26

Constraints on DM production

Z(H) H: BR(H \rightarrow inv) < 75% at 95% CL VBF: BR(H \rightarrow inv) < 28% at 95% CL

V(jj) H: BR(H \rightarrow inv) < 78% at 95% CL

Constraints on DM production

Z(H) H: BR(H \rightarrow inv) < 75% at 95% CL VBF: BR(H \rightarrow inv) < 28% at 95% CL

V(jj)H: BR(*H* → inv) < 78% at 95% CL

 Combination of all visible and invisible Higgs decay channels in ATLAS yields strong constraint:

 $BR(H \rightarrow inv) < 23\%$ at 95% CL

arXiv:1509.00672 Submitted to JHEP

Onstraints on DM production: Higgs combination

- Likelihood scan as a function of BR(*H*→ inv)
- $-2\ln\Lambda = 3.84$ gives 95% CL upper limit on BR($H \rightarrow$ inv)

arXiv:1509.00672, submitted to JHEP

- Interpretation as limits on WIMP nucleon scattering cross section
- Dominated by VBF H → inv channel

Toward LHC Run 2

Run 2 is underway

Benchmark models for dark matter search in Run 2

 Models for early DM searches in Run 2 set out in the LHC Dark Matter Forum report:

http://arxiv.org/pdf/1507.00966.pdf

 Trend is to move away from EFTs, focus on simplified models as much as possible

Early dark matter analysis plots from Run 2

- E_T^{miss} in $W \rightarrow \mu v$ control region
- 68 pb⁻¹ of data at 13 TeV
- Prediction normalized to data

- E_T^{miss} in 1*e* control region
- 68 pb⁻¹ of data at 13 TeV
- Prediction normalized to data

Conclusion & outlook

- Dark matter searches in ATLAS using LHC Run 1 data has been very successful!
 - to the extent that you can call non-discovery a success ③
- The workhorses have been mono-object channels and constraints on invisible Higgs decays
- Significant regions of parameter space of many models excluded
- Excellent complementarity b/w ATLAS results and those from direct and indirect dark matter search experiments

Conclusion & outlook

- Dark matter searches in ATLAS using LHC Run 1 data has been very successful!
 - to the extent that you can call non-discovery a success ③
- The workhorses have been mono-object channels and constraints on invisible Higgs decays
- Significant regions of parameter space of many models excluded
- Excellent complementarity b/w ATLAS results and those from direct and indirect dark matter search experiments
- And now Run 2 is upon us
- Some channels will overtake Run 1 sensitivity with 1 5 fb⁻¹ of data
- We will keep climbing those stairs, hopefully finding dark matter at the top

So let's keep our fingers crossed. Thank you!

Extra slides

$Z(I) + E_T^{miss}$

PRD 90, 012004 (2014)

- Complements hadronic Z decay channel
- 76 < *m*_{//} < 106 GeV
- $\Delta \phi(p_T^{II}, E_T^{miss}) > 2.5$
- Veto events with more *l*'s or jets
- 4 signal regions defined with $E_T^{miss} > 150, 250, 350, 450 \text{ GeV}$

Interpretation in model with scalar mediator $\boldsymbol{\eta}$

- Limits on coupling fb/w DM and η
- White region: model invalid
- Region above black line: lower limit from relic abundance > upper limit from this analysis

$W(/v) + E_{T}^{miss}$

Cross

JHEP 09 (2014) 037

Strategy: look for excess in transverse mass distribution, defined as

$$m_{T} = \sqrt{2 \, \rho_{T} E_{T}^{miss} (1 - \cos \varphi_{lv})}$$

- **Electron channel:** $p_T(e) > 125 \text{ GeV}, E_T^{miss} > 125 \text{ GeV}$
- Muon channel: ۲ $p_T(\mu) > 45 \text{ GeV}, E_T^{miss} > 45 \text{ GeV}$
- Backgrounds:
- Multijet: estimated from data using matrix method
- Top and diboson: estimated from simulation
- No excess seen in data

