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The PMNS matrix is then given by

UPMNS = UeLU
†
⇥L

. (31)

We use a standard parameterization UPMNS = Rl
23U

l
13R

l
12P

l in terms of slij = sin(⌃lij),
clij = cos(⌃lij), the Dirac CP violating phase ⇤l and further Majorana phases contained

in P l = diag(ei
⇥l1
2 , ei

⇥l2
2 , 1). The standard PDG parameterization [24] di�ers slightly due

to the definition of Majorana phases which are by given by P l
PDG = diag(1, ei

�21
2 , ei

�31
2 ).

Evidently the PDG Majorana phases are related to those in our convention by �21 =
⇥l
2 � ⇥l

1 and �31 = �⇥l
1, after an overall unphysical phase is absorbed by UeL .

Using the see-saw formula in Eq.29, with the neutrino Yukawa matrix Y ⇥ in Eq.15
and the right-handed Majorana mass matrix MR in Eq.22, we find the neutrino mass
matrix m⇥ , up to an overall irrelevant phase which may be taken to be real, can be
written as

m⇥ = ma
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where ma = |a|2v2u/|M̃1|, mb = |b|2v2u/|M̃2|, mc = |c|2v2u/(9|M̃3|) are real parameter com-
binations which determine the three physical neutrino masses m3,m2,m1, respectively.
Note that m1 is suppressed by a factor of 9 compared to the other neutrino masses due
to the Clebsch-Gordan factor of 1/3 in the third family Dirac neutrino mass. We written
the relative phase di�erence between the first two two terms as 2⇧. As shown recently
[7], fixing ⇧ = �2�/5, using the phases of the singlet flavon VEVs ⇤⌥i⌅, then determines
all the lepton mixing angles and phases in terms of the ratio ⌅⇥ = mb/ma. Since this
phase is crucial to the predictions in the lepton sector, it is worthwhile discussing the
origin of this phase in more detail.

In order to understand the origin of phases which enter the neutrino mass matrixm⇥ ,
it is worth recalling that the operators responsible for the neutrino Yukawa and Majorana
masses are those given in Eqs.14 and 21. Implementing the see-saw mechanism, the
e�ective neutrino mass matrix m⇥ in Eq. 32 emerges from the flavon combinations,

m⇥ ⇥ ⇤ atm⌅⇤ atm⌅T

⇤⌥atm⌅
+

⇤ sol⌅⇤ sol⌅T

⇤⌥sol⌅
+

⇤ dec⌅⇤ dec⌅T

⇤⌥dec⌅
. (33)

Notice that the powers of ⌅ cancel in the see-saw mechanism, leading to a rather mild
hierarchy in the neutrino sector. Since we are assuming that the original theory respects
CP, the only source of phases can be the VEVs of flavons. The phase ⇧ = �2�/5 then
must arise from the di�erence between flavon VEVs. The phases of flavon VEVs arise
in the context of spontaneous CP violation from discrete symmetries as discussed in
[26], and we shall follow the strategy outlined there. The basic idea is to impose CP
conservation on the theory so that all couplings and masses are real. Note that the
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Figure 4: The mixing angles obtained from the three global fits [56–58]. The upper three panels
correspond to the results for normal neutrino mass ordering (NO), while the lower three panels are
for an inverted mass ordering (IO). Shown are the best fit values (green) as well as the 1σ (red)
and 3σ (blue) intervals. Note that the solar angle is insensitive to the mass ordering.

A few comments are relevant about these angles. Firstly the errors are not linear, since,

for one thing, the global fits are made in terms of the squares of the sines of the angles.

Having said this, in the case of normal neutrino mass ordering, there is a preference for

the atmospheric angle to be in the first octant (i.e. less than 45◦) and hence not maximal

mixing. Secondly, as already noted, the solar angle is still consistent with trimaximal

mixing (i.e. 35.26◦) but there is a preference for it to be slightly smaller.

3. Patterns of lepton mixing and sum rules

3.1 Simple forms of neutrino mixing

Below we give three examples of simple patterns of mixing in the neutrino sector which all

have s13 = 0 and s23 = c23 = 1/
√
2. Inserting these values in Eq. (2.1) we obtain a PMNS

matrix of the form,

U0 =




c12 s12 0

− s12√
2

c12√
2

1√
2

s12√
2

− c12√
2

1√
2



 , (3.1)

where the zero subscript reminds us that this form has θ13 = 0 (and θ23 = 45◦).

For golden ratio (GR) mixing [59], the solar angle is given by tan θ12 = 1/φ, where

φ = (1 +
√
5)/2 is the golden ratio which implies θ12 = 31.7◦. There is an alternative

version where cos θ12 = φ/2 and θ12 = 36◦ [60], which we refer to as GR′ mixing.
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Gonzalez-Garcia et al = Gonzalez-Garcia, Maltoni, Salvado, Schwetz 
Fogli et al = Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo
Forero et al = Forero, Tortola, Valle



Lepton Mixing Angles (approx.)

✓23 = 45o ± 3o

✓13 = 8.5o ± 0.2o

✓12 = 34o ± 1o



Fit QP sample and Qe
sample simultaneously 
by sin2T23,sin2T13,G and 
'm2

Normal MH

Inverted MH

T2K Run1-4 data 
(data till 2013)
Preliminary

68% C.L.
90% C.L.

68% allowed region from 
reactor measurement 
(PDG2013)

Now uncertainty of sin�T�� is 
included. 
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What is the origin of Quark 
and Lepton Mixing?

New physics from flavour Sheldon Stone

1. Introduction: Reasons for physics beyond the Standard Model

Although the Standard Model (SM) of particle physics provides an excellent description of
electroweak and strong interactions, there are many reasons that we expect to observe new forces
giving rise to new particles at larger masses than the known fermions or bosons. One oft noted
source of this belief is the observation of dark matter in the cosmos as evidenced by galactic angular
velocity distributions [1], gravitational lensing [2], and galactic collisions [3]. The existence of dark
energy, believed to cause the accelerating expansion of the Universe, is another source of mystery
[4]. The fine tuning of quantum corrections needed to keep, for example, the Higgs boson mass at
the electroweak scale rather than near the Planck scale is another reason habitually mentioned for
new physics (NP) and is usually called “the hierarchy problem” [5].

It is interesting to note that the above cited reasons are all tied in one way or another to
gravity. Dark matter may or may not have purely gravitational interactions, dark energy may be
explained by a cosmological constant or at least be a purely general relativistic phenomena, and the
Planck scale is defined by gravity; other scales may exist at much lower energies, so the quantum
corrections could be much smaller. There are, however, many observations that are not explained
by the SM, and have nothing to do with gravity, as far as we know. Consider the size of the quark
mixing matrix (CKM) elements [6] and also the neutrino mixing matrix (PMNS) elements [7].
These are shown pictorially in Fig. 1. We do not understand the relative sizes of these values or nor
the relationship between quarks and neutrinos.

d            s            b            

u

c

t

ν          ν          ν            

ν

ν

ν

1                   2                   3

e

μ

τ

CKM                             PMNS

Figure 1: (left) Sizes of the the CKM matrix elements for quark mixing, and (right) the PMNS matrix
elements for neutrino mixing. The area of the squares represents the square of the matrix elements.

We also do not understand the masses of the fundamental matter constituents, the quarks and
leptons. Not only are they not predicted, but also the relationships among them are not understood.
These masses, shown in Fig. 2, span 12 orders of magnitude [7]. There may be a connections
between the mass values and the values of the mixing matrix elements, but thus far no connection
besides simple numerology exists.

What we are seeking is a new theoretical explanation of the above mentioned facts. Of course,
any new model must explain all the data, so that any one measurement could confound a model.
It is not a good plan, however, to try and find only one discrepancy; experiment must determine a

2
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Figure 13: Some possible candidate unified gauge groups.

decompose into multiplets of the SM gauge group SU(3)C×SU(2)L×U(1)Y as F = (dc, L),

corresponding to,

5 = (3,1, 1/3) ⊕ (1,2,−1/2), (9.2)

and T = (uc, Q, ec), corresponding to,

10 = (3,1,−2/3) ⊕ (3,2, 1/6) ⊕ (1,1, 1). (9.3)

Thus a complete quark and lepton SM family (Q,uc, dc, L, ec) is accommodated in the

F = 5 and T = 10 representations, with right-handed neutrinos, whose CP conjugates are

denoted as νc, being singlets of SU(5), νc = 1. The Higgs doublets Hu and Hd which break

electroweak symmetry in a two Higgs doublet model are contained in the SU(5) multiplets

H5 and H
5
.

The Yukawa couplings for one family of quarks and leptons are given by,

yuH5iTjkTlmεijklm + yνH5iF
iνc + ydH

i
5
TijF

j , (9.4)

where εijklm is the totally antisymmetric tensor of SU(5) with i, j, j, k, l = 1, . . . , 5, which

decompose into the SM Yukawa couplings

yuHuQuc + yνHuLν
c + yd(HdQdc +Hde

cL). (9.5)

– 61 –
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Flavour Symmetry (FLASY) 
Escobar, Luhn
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Luhn, Nasri, Ramond



The Klein Symmetry
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Figure 8: A sketch of the direct model building approach. The charged lepton sector is (approxi-
mately) diagonal either due to a remnant (approximate) T symmetry or simply by construction.

Z2 factor arises accidentally. The flavons of semi-direct models appear linearly in the

neutrino mass term, similar to Eq. (6.10), and break G down to one of its Z2 subgroups.

An example of such a model is provided by the famous Altarelli-Feruglio A4 model of tri-

bimaximal mixing [30, 103]. A4 is the group of even permutations on four object, and as

such a subgroup of S4. It can be obtained from S4 by simply dropping the U generator.

Not being a part of the underlying family symmetry, it is therefore evident that the U

symmetry of Eq. (6.8) must arise accidentally.

6.4 The indirect model building approach

In the class of indirect models, no Z2 factor of the Klein symmetry of Eq. (6.6) forms a

subgroup of G. Models of this class are typically based on the type I see-saw mechanism

together with the assumption of sequential dominance, see Subsection 4.3. Here, the main

role of the family symmetry consists in relating the Yukawa couplings d, e, f of Eq. (4.21) as

well as a, b, c of Eq. (4.24) by introducing triplet flavon fields which acquire special vacuum

configurations. The directions of the flavon alignments are determined by the G symmetric

operators of the flavon potential [101].

Working in a basis where both the charged leptons as well as the right-handed neutri-

nos are diagonal, the leptonic flavour structure is encoded in the Dirac neutrino Yukawa

operator. The triplet flavons φν
i of indirect models enter linearly in this term,

Lν ∼
∑

i

φν
i

Λ
LνciHu +Miν

c
i ν

c
i , (6.13)

where Λ is a cut-off scale and the sum is over the number of right-handed neutrinos. The

lepton doublet L with hypercharge −1/2 transforms as a triplet of G, while the right-

handed neutrinos νci and the up-type Higgs doublet with hypercharge +1/2 are all singlets

of G. Adopting the notation of Subsection 4.3, extended to include a third right-handed

neutrino νc1, we obtain the Dirac neutrino Yukawa matrix by inserting the flavon VEVs

– 44 –

Direct Models Klein symmetry S,U and 
T are each identified as 

subgroups of some family 
symmetry

�(6n2)

is the only viable 
symmetry class - 

predicts zero Dirac 
CPV but non-zero 
Majorana phases 

Holthausen,Lim, 
Lindner; 
SK,Neder,Stuart; 
Lavoura,Ludl; 
Fonseca,Grimus



CP violation  
Feruglio,Hagedorn; 
Holthausen,Lindner 

Schmidt; 
Ding,SFK,Luhn,Stuart; 

Nishi,Xing; 
Hagedorn,Meroni, 

Molinaro; 
Ding,SFK,Neder;        
Chen et al... Summary

�Combining-the-flavour symmetry-and-generalised CP--
symmetry-can-predicts-both-mixing-angle-and-CP-phases,-
and-consistency-equation-has-to-be-satisfied.

•Flavour and-CP-symmetry-is-broken-by-the-same-flavons;
•The-number-of-free-parameter-is-reduced,-and-different-mixing--parameters---------
are-usually-correlated.

�S4 and-A4 models-with-CP-symmetry-are-constructed,all the--
possible-cases-following-from-the-modelDindependent-analysis-
can-be-realized.-Dirac&CP&phase&is&predicted&to&be&trivial&or&
maximal.
�Theoretical-predictions-can-be-tested-by-near-future-
neutrino-oscillation-experiments,-and-it-is-intriguing-to-extend-
the-present-scheme-to-quark-sector.
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Equivalently use CP invariants of the Lagrangian

2

CP (like the kinetic terms and gauge interactions 1) while
Lrem includes the CP violating non-gauge interactions
such as the Yukawa couplings. Then one considers the
most general CP transformation that leaves LCP invari-
ant and check if invariance under CP restricts Lrem - only
if this is the case can L violate CP .
In the presence of a family symmetry G, one may check

if a given vacuum leads to spontaneous CP violation,
as follows. Consider a Lagrangian invariant under G
and CP , containing a series of scalars which under
CP transform as (CP)φi(CP)−1 = Uijφ

∗
j . In order for the

vacuum to be CP invariant, the following relation has to
be satisfied: < 0|φi|0 >= Uij < 0|φ∗

j |0 >. The pres-
ence of G usually allows for many choices for U . If (and
only if) no choice of U exists which satisfies the previous
condition, will the vacuum violate CP , leading to spon-
taneous CP violation. In order to prove that no choice of
U exists one can construct CP -odd invariants.
As a brief review of how to derive CP -odd invariants,

consider the Lagrangian of the leptonic part of the SM ex-
tended by Majorana neutrino masses. After electroweak
breaking at low energies, the most general mass terms
are:

− Lm = mleLeR + 1
2mννLν

c
L +H.c. , (2)

where L = (eL, νL) stand for the left-handed neutrino
and charged lepton fields in a weak basis and eR for the
right-handed counterpart. Due to the SU(2)L structure,
the most general CP transformation which leaves the lep-
tonic gauge interactions invariant are:

(CP)L(CP)† = iUγ0CL̄T , (CP)eR(CP)† = iV γ0CēTR .
(3)

In order for Lm to be CP invariant, under Eq.(3) the
terms shown in the Eq.(2) go into the respective H.c.
and vice-versa:

U †mνU
∗ = m∗

ν , U †mlV = m∗
l . (4)

From Eq.(4) one can infer how to build combinations of
the mass matrices that will result in equations where U
and V cancel entirely. For 3 generations we have [4]:

I1 ≡ Tr [Hν , Hl]
3 = 0 , (5)

where Hν ≡ mνm
†
ν and Hl ≡ mlm

†
l . This equation is

a necessary condition for CP invariance, encoding hav-
ing no Dirac-type CP violation. It can also be shown to
be sufficient, which we will do when discussing A4 later.
The low-energy limit of the leptonic sector with 3 Majo-
rana neutrinos has also two Majorana-type CP violating
phases, and it turns out there are 3 necessary and suf-
ficient conditions for low energy leptonic CP invariance:
in addition to Eq.(5), two more CP -odd invariants can
be defined [7], which we shall not consider further here.

1 Pure gauge interactions conserve CP [16].

In this Letter we are interested in applying these ideas
to models of leptons involving discrete family symmetry.
The first point we wish to make is that, once a Lagrangian
is specified, which is invariant under a family symmetry
G and some CP transformation, then the consistency re-
lations [11] are automatically satisfied. In order to prove
this it is sufficient to consider some generic Lagrangian
invariant under a family symmetry transformation, in-
volving some mass term m (Dirac or Majorana), then
define H = mm†. Under some G transformation, ρ(g),
the mass term remains unchanged implying:

ρ(g)†Hρ(g) = H. (6)

Invariance of the Lagrangian under CP transformation U
requires the mass term to swap with its H.c., hence:

U †HU = H∗ (7)

Taking the complex conjugate of Eq.(6) we find,

(ρ(g)†)∗H∗ρ(g)∗ = H∗ = U †HU, (8)

using Eq.(7) for the last equality. Using Eq.(7) again:

(ρ(g)†)∗U †HUρ(g)∗ = U †HU. (9)

Hence by using once more Eq.(6) for a g′, we finish with:

U(ρ(g)†)∗U †HUρ(g)∗U † = H = ρ(g′)†Hρ(g′). (10)

By comparing both sides of Eq.(10) we identify:

Uρ(g)∗U † = ρ(g′) (11)

which is just the consistency relation [11]. In other words,
if we consider Eqs.(6) and (7) we do not need to consider
the consistency condition separately since it always fol-
lows.
We now move onto our first illustrative example, based

on G = A4 (see e.g. [17] for the basis choice and conven-
tions). To proceed with the invariant approach we con-
sider the A4 invariant Yukawa Lagrangian of a leptonic
sector containing fields in all possible representations of
A4: lepton doublets L = (νlL, lL) = 3, where l = e, µ, τ ,
charged leptons ec = 1, µc = 1′′, τc = 1′, Higgs flavons
ϕS = 3, ϕT = 3, ξ = 1, ξ′ = 1′, ξ′′ = 1′′.

LA4
= −ye(LϕT )1 ec − yµ(LϕT )1′ µc − yτ (LϕT )1′′ τc

− y1

2 ϕS(LL)3s −
y2

2 ξ(LL)1 −
y′

3

2 ξ
′(LL)1′′ −

y′′

3

2 ξ′′(LL)1′

+H.c. (12)

Here (· · · )r denotes the A4 contraction into representa-
tion r. The only Higgs which can get a VEV without
breaking A4 is 〈ξ〉. It leads to a very simple neutrino
mass matrix, from the (LL)1 contraction:

m0
ν = β





1 0 0
0 0 1
0 1 0



 , β = (y2〈ξ〉)
∗ . (13)
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CP (like the kinetic terms and gauge interactions 1) while
Lrem includes the CP violating non-gauge interactions
such as the Yukawa couplings. Then one considers the
most general CP transformation that leaves LCP invari-
ant and check if invariance under CP restricts Lrem - only
if this is the case can L violate CP .
In the presence of a family symmetry G, one may check

if a given vacuum leads to spontaneous CP violation,
as follows. Consider a Lagrangian invariant under G
and CP , containing a series of scalars which under
CP transform as (CP)φi(CP)−1 = Uijφ

∗
j . In order for the

vacuum to be CP invariant, the following relation has to
be satisfied: < 0|φi|0 >= Uij < 0|φ∗

j |0 >. The pres-
ence of G usually allows for many choices for U . If (and
only if) no choice of U exists which satisfies the previous
condition, will the vacuum violate CP , leading to spon-
taneous CP violation. In order to prove that no choice of
U exists one can construct CP -odd invariants.
As a brief review of how to derive CP -odd invariants,

consider the Lagrangian of the leptonic part of the SM ex-
tended by Majorana neutrino masses. After electroweak
breaking at low energies, the most general mass terms
are:

− Lm = mleLeR + 1
2mννLν

c
L +H.c. , (2)

where L = (eL, νL) stand for the left-handed neutrino
and charged lepton fields in a weak basis and eR for the
right-handed counterpart. Due to the SU(2)L structure,
the most general CP transformation which leaves the lep-
tonic gauge interactions invariant are:

(CP)L(CP)† = iUγ0CL̄T , (CP)eR(CP)† = iV γ0CēTR .
(3)

In order for Lm to be CP invariant, under Eq.(3) the
terms shown in the Eq.(2) go into the respective H.c.
and vice-versa:

U †mνU
∗ = m∗

ν , U †mlV = m∗
l . (4)

From Eq.(4) one can infer how to build combinations of
the mass matrices that will result in equations where U
and V cancel entirely. For 3 generations we have [4]:

I1 ≡ Tr [Hν , Hl]
3 = 0 , (5)

where Hν ≡ mνm
†
ν and Hl ≡ mlm

†
l . This equation is

a necessary condition for CP invariance, encoding hav-
ing no Dirac-type CP violation. It can also be shown to
be sufficient, which we will do when discussing A4 later.
The low-energy limit of the leptonic sector with 3 Majo-
rana neutrinos has also two Majorana-type CP violating
phases, and it turns out there are 3 necessary and suf-
ficient conditions for low energy leptonic CP invariance:
in addition to Eq.(5), two more CP -odd invariants can
be defined [7], which we shall not consider further here.

1 Pure gauge interactions conserve CP [16].

In this Letter we are interested in applying these ideas
to models of leptons involving discrete family symmetry.
The first point we wish to make is that, once a Lagrangian
is specified, which is invariant under a family symmetry
G and some CP transformation, then the consistency re-
lations [11] are automatically satisfied. In order to prove
this it is sufficient to consider some generic Lagrangian
invariant under a family symmetry transformation, in-
volving some mass term m (Dirac or Majorana), then
define H = mm†. Under some G transformation, ρ(g),
the mass term remains unchanged implying:

ρ(g)†Hρ(g) = H. (6)

Invariance of the Lagrangian under CP transformation U
requires the mass term to swap with its H.c., hence:

U †HU = H∗ (7)

Taking the complex conjugate of Eq.(6) we find,

(ρ(g)†)∗H∗ρ(g)∗ = H∗ = U †HU, (8)

using Eq.(7) for the last equality. Using Eq.(7) again:

(ρ(g)†)∗U †HUρ(g)∗ = U †HU. (9)
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Uρ(g)∗U † = ρ(g′) (11)

which is just the consistency relation [11]. In other words,
if we consider Eqs.(6) and (7) we do not need to consider
the consistency condition separately since it always fol-
lows.
We now move onto our first illustrative example, based

on G = A4 (see e.g. [17] for the basis choice and conven-
tions). To proceed with the invariant approach we con-
sider the A4 invariant Yukawa Lagrangian of a leptonic
sector containing fields in all possible representations of
A4: lepton doublets L = (νlL, lL) = 3, where l = e, µ, τ ,
charged leptons ec = 1, µc = 1′′, τc = 1′, Higgs flavons
ϕS = 3, ϕT = 3, ξ = 1, ξ′ = 1′, ξ′′ = 1′′.

LA4
= −ye(LϕT )1 ec − yµ(LϕT )1′ µc − yτ (LϕT )1′′ τc

− y1
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2 ξ(LL)1 −
y′
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′(LL)1′′ −

y′′

3

2 ξ′′(LL)1′

+H.c. (12)

Here (· · · )r denotes the A4 contraction into representa-
tion r. The only Higgs which can get a VEV without
breaking A4 is 〈ξ〉. It leads to a very simple neutrino
mass matrix, from the (LL)1 contraction:

m0
ν = β





1 0 0
0 0 1
0 1 0



 , β = (y2〈ξ〉)
∗ . (13)
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Figure 10: Possible strategies for constructing direct models after Daya Bay and RENO. Adopting
small family symmetriesG which predict simple leading order (LO) mixing patters with θ13 = 0 (e.g.
S4, A5), requires higher order (HO) corrections. Larger family symmetries can give rise to richer
LO mixing patterns with non-zero θ13 (e.g. ∆(96)). The A4 family symmetry refers to the semi-
direct case as discussed in the text. In this diagram, we have used the acronyms BT=bi-trimaximal,
TB=tri-bimaximal, BM=bimaximal, GR=golden ratio, TM=trimaximal.

can be perturbed by higher order effects (not shown explicitly in Fig. 10). In general,

higher order corrections are guaranteed to perturb the leading order structure by only

small contributions. The breaking of the leading order structure can happen either in the

charged lepton or the neutrino sector. The former entails charged lepton corrections of the

simple leading order mixing patterns, which give rise to solar mixing sum rules as discussed

in Subsection 3.5. If the breaking occurs in the neutrino sector, it is possible to break either

one or both Z2 factors of the leading order Klein symmetry. As the U symmetry typically

enforces θ13 = 0 in these models, it is necessary to break U in either case. Demanding S

to remain a good symmetry at higher order, gives rise to atmospheric mixing sum rules,

see Subsection 3.6, while breaking also S leads to arbitrary and unpredictive higher order

corrections. In Subsection 10.2 we will present a concrete S4×SU(5) model of tri-bimaximal

mixing at leading order, augmented by higher order corrections which break U but not S.

This model yields the trimaximal neutrino mixing pattern TM2, see Eq. (3.32), which can

accommodate a sizable reactor angle.

The second strategy of constructing direct models compatible with a sizable reactor

angle makes use of larger groups such as ∆(96), see left branch of Fig. 10. Such groups are

capable of predicting richer leading order mixing patterns (e.g. bi-trimaximal mixing [31])

as they contain non-standard Klein symmetries, generated by more complicated forms

of the elements S and/or U [108, 109]. As before, higher order effects can correct these
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Minimal Predictive  
Seesaw models
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H(L.�
atm
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+H(L.�
sol

)N c
sol

+M
atm

N c
atm

N c
atm

+M
sol

N c
sol

N c
sol

the CSD(n) relations in Eq. 2, the Yukawa matrices and (charge conjugated) right-handed
mass matrix in this basis are

�⌫ =

0

@
0 b
a nb
a (n� 2)b

1

A , M c =

 
M

1

0

0 M
2

!
, (5)

where we have written M
1

= M
atm

and M
2

= M
sol

, with M
1

< M
2

, in anticipation of
the result that the lightest right-handed neutrino is the dominant one. This is the basis
used for the leptogenesis calculations, which we now review, following the notation and
procedure in [22].

which turns out to be necessary given that we will conclude that the mass of the lightest
right handed neutrino M

1

< (1+tan2 �)⇥109 GeV. This is only true for large tan beta.

In the MSSM the regime where all flavours in the Boltzmann equations are to be treated
separately corresonds to (1+tan2 �)⇥105 GeV ⌧ M

1

⌧ (1+tan2 �)⇥109 GeV. Assuming
the flavour-dependent treatment for seesaw models with SD [22], it will turn out that for
the models of interest M

1

⇠ (40� 100)⇥ 109 GeV. The results therefore post-justify the
flavour-independent treatment for tan � & 10.

[2 OPTIONS]

[Option 1] We now consider the flavour-dependent treatment for seesaw models with
SD [22], which turns out to be necessary given that we will conclude that for tan� & 3
the mass of the lightest right handed neutrino M

1

. (1 + tan2 �)⇥ 109 GeV.

[Option 2]
We now consider the flavour-dependent treatment for seesaw models with SD [22], which
turns out to be necessary given that we will conclude that the mass of the lightest
right handed neutrino M

1

< 1010 � 1011 GeV , and flavour-dependent treatment should
be applied to cases with M

1

< (1 + tan2 �) ⇥ 109 GeV, which is already verified for
tan � > 3� 10.

Following [22], the total BAU is obtained from the individual lepton flavour contributions:

YB =
10

31

X

↵

Y
�↵ , (6)

which in turn are given by
Y
�↵ = ⌘

1,↵[YN1 + Y
˜N1
]✏

1,↵, (7)

where ⌘
1,↵ are washout factors and ✏

1,↵ are the decay asymmetries. In the Boltzmann
approximation for the MSSM:

YN1 ⇡ Y
˜N1

⇡ 45

⇡4g⇤
, g⇤ = 228.75. (8)

In the MSSM, the expression (per flavour index) for the asymmetries is

✏
1,↵ =

1

8⇡

Im
⇥
(�†

⌫)1↵(�
†
⌫�⌫)12(�T

⌫ )2↵
⇤

(�†
⌫�⌫)11

gMSSM

✓
M2

2

M2

1

◆
, (9)

4

where the “+” sign applies to the case M
atm

⌧ M
sol

and the “�” sign holds for the case
M

sol

⌧ M
atm

. Since the observed baryon asymmetry YB is positive, it follows that, for
M

atm

⌧ M
sol

, we must have positive sin ⌘, while for M
sol

⌧ M
atm

we must have negative
sin ⌘. From the analysis in [20], for CSD(n) positive ⌘ is associated with negative �

CP

and vice versa. Although the global fits do not distinguish the sign of ⌘, the present hint
that �

CP

⇠ �⇡/2 would require positive ⌘, then in order to achieve positive YB we require
M

atm

⌧ M
sol

, corresponding to “light sequential dominance”, as considered in the two
right-handed neutrino analysis in [28].

In this paper we estimate the baryon asymmetry arising from leptogenesis within CSD(n)
for two right-handed neutrinos. In the flavour basis, for each n, the neutrino Yukawa ma-
trix is therefore characterised by just two real proportionality constants plus one relative
phase which controls both leptogenesis and the PMNS mixing matrix. The single phase
appearing in the neutrino mass matrix is identified as the leptogenesis phase, providing
a direct link between CP violation in neutrino physics and in cosmology. We use the
observed baryon asymmetry to constrain the mass spectrum of the two right-handed
neutrinos within this class of models. As an example, we apply our results to a successful
A

4

⇥ SU(5) SUSY GUT model based on CSD(3) with two right-handed neutrinos [19].

The layout of the reminder of this paper is as follows. In Section 2 we review how
leptogenesis applies to seesaw models and apply it to CSD(n). In Section 3 we show how
low energy data constrains leptogenesis in these models, and derive bounds on the lightest
RH neutrino mass. In Section 4 review a GUT model that predicts CSD(3) mixing angles
and reinterpret the bound imposed by the baryon asymmetry by expressing it in terms
of the model’s parameters. Finally we conclude in Section 5.

2 Leptogenesis in seesaw models with CSD(n)

In a Supersymmetric (SUSY) model, the relevant terms in the superpotential giving
neutrino masses are, in the diagonal charged lepton basis,

W⌫ = yi
atm

HLiN
c
atm

+ yi
sol

HLiN
c
sol

+ M
atm

N c
atm

N c
atm

+ M
sol

N c
sol

N c
sol

, (4)

where Li are three families of lepton doublets and the (CP conjugated) right-handed
neutrinos N c

atm

and N c
sol

with real positive masses M
atm

and M
sol

do not mix. Assuming
the CSD(n) relations in Eq. 2, the Yukawa matrices and (charge conjugated) right-handed
mass matrix in this basis are

�⌫ =

0

@
0 b
a nb
a (n � 2)b

1

A , M c =

 
M

1

0

0 M
2

!
, (5)

where we have M
1

= M
atm

and M
2

= M
sol

, in anticipation of the result that the lightest
right-handed neutrino is the dominant one. This is the basis used for the leptogenesis
calculations.

3

Meanwhile ⌘ is constrained only up to a sign – the two minima then correspond to equal
and opposite values of ⌘. Refining the input parameter space by allowing only ⌘ 2 (0, ⇡)
leaves a single global minimum region. This minimum is well-defined and generally stable,
meaning our �2 statistic is a good test for goodness-of-fit over this space; this is true for all
CSD(n). For more details on the behaviour of �2 near the global minimum, see Appendix
B. Once the single global minimum is confirmed, numerical minimisation is performed in
Mathematica by the method of di↵erential evolution.

4. Results

This section details results for the properties of general CSD(n) vacuum alignments,
wherein we have simplified the analysis by considering only two planes of fixed ⇠, i.e. the
cases where ⇠ = 0 (phase aligned with dominant mass matrix) or ⇠ = ⌘ (phase aligned
with subdominant mass matrix). This simplification is predicated on the underlying
assumption from CSD that the contribution from the mc term in Eq. 2.2 is small; indeed,
a stable minimum of the same order in �2 can be found for any value of ⇠. Such a
constraint on ⇠ may also arise directly from a model, such as in [18].

In all subsequent plots, a thick solid gridline corresponds to a best fit value of a mixing
angle or neutrino mass, while thin solid gridlines show the 1� limits, and thin dashed
gridlines show the 3� range.

4.1. CSD(n) with two right-handed neutrinos

Models with only two right-handed neutrinos are compelling as they are typically highly
predictive. In a CSD(n) framework, the neutrino mass matrix in Eq. 2.4 simplifies in the
two right-handed neutrino case to

m⌫
(n) = ma

0

@
0 0 0
0 1 1
0 1 1

1

A+mbe
i⌘

0

@
1 n n� 2
n n2 n(n� 2)

n� 2 n(n� 2) (n� 2)2

1

A , (4.1)

where we have defined ⌘ = � � ↵ and removed an overall unphysical phase ↵. This case
immediately predicts the lightest physical neutrino mass to be zero, m

1

= 0. For a given
choice of alignment n, there are three real input parameters ma, mb and ⌘ from which
two light physical neutrino masses m

2

, m
3

, three lepton mixing angles, the CP-violating
phase �

CP

and two Majorana phases are derived; a total of nine physical parameters from
three input parameters, i.e. six predictions for each value of n. As the Majorana phases
are not known and �

CP

is only tentatively constrained by experiment, this leaves five
presently measured observables, namely the two neutrino mass squared di↵erences and
the three lepton mixing angles, from only three input parameters.
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meaning our �2 statistic is a good test for goodness-of-fit over this space; this is true for all
CSD(n). For more details on the behaviour of �2 near the global minimum, see Appendix
B. Once the single global minimum is confirmed, numerical minimisation is performed in
Mathematica by the method of di↵erential evolution.

4. Results

This section details results for the properties of general CSD(n) vacuum alignments,
wherein we have simplified the analysis by considering only two planes of fixed ⇠, i.e. the
cases where ⇠ = 0 (phase aligned with dominant mass matrix) or ⇠ = ⌘ (phase aligned
with subdominant mass matrix). This simplification is predicated on the underlying
assumption from CSD that the contribution from the mc term in Eq. 2.2 is small; indeed,
a stable minimum of the same order in �2 can be found for any value of ⇠. Such a
constraint on ⇠ may also arise directly from a model, such as in [18].

In all subsequent plots, a thick solid gridline corresponds to a best fit value of a mixing
angle or neutrino mass, while thin solid gridlines show the 1� limits, and thin dashed
gridlines show the 3� range.

4.1. CSD(n) with two right-handed neutrinos

Models with only two right-handed neutrinos are compelling as they are typically highly
predictive. In a CSD(n) framework, the neutrino mass matrix in Eq. 2.4 simplifies in the
two right-handed neutrino case to
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where we have defined ⌘ = � � ↵ and removed an overall unphysical phase ↵. This case
immediately predicts the lightest physical neutrino mass to be zero, m

1

= 0. For a given
choice of alignment n, there are three real input parameters ma, mb and ⌘ from which
two light physical neutrino masses m

2

, m
3

, three lepton mixing angles, the CP-violating
phase �

CP

and two Majorana phases are derived; a total of nine physical parameters from
three input parameters, i.e. six predictions for each value of n. As the Majorana phases
are not known and �

CP

is only tentatively constrained by experiment, this leaves five
presently measured observables, namely the two neutrino mass squared di↵erences and
the three lepton mixing angles, from only three input parameters.
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4. Results

This section details results for the properties of general CSD(n) vacuum alignments,
wherein we have simplified the analysis by considering only two planes of fixed ⇠, i.e. the
cases where ⇠ = 0 (phase aligned with dominant mass matrix) or ⇠ = ⌘ (phase aligned
with subdominant mass matrix). This simplification is predicated on the underlying
assumption from CSD that the contribution from the mc term in Eq. 2.2 is small; indeed,
a stable minimum of the same order in �2 can be found for any value of ⇠. Such a
constraint on ⇠ may also arise directly from a model, such as in [18].

In all subsequent plots, a thick solid gridline corresponds to a best fit value of a mixing
angle or neutrino mass, while thin solid gridlines show the 1� limits, and thin dashed
gridlines show the 3� range.

4.1. CSD(n) with two right-handed neutrinos

Models with only two right-handed neutrinos are compelling as they are typically highly
predictive. In a CSD(n) framework, the neutrino mass matrix in Eq. 2.4 simplifies in the
two right-handed neutrino case to
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where we have defined ⌘ = � � ↵ and removed an overall unphysical phase ↵. This case
immediately predicts the lightest physical neutrino mass to be zero, m

1

= 0. For a given
choice of alignment n, there are three real input parameters ma, mb and ⌘ from which
two light physical neutrino masses m

2

, m
3

, three lepton mixing angles, the CP-violating
phase �

CP

and two Majorana phases are derived; a total of nine physical parameters from
three input parameters, i.e. six predictions for each value of n. As the Majorana phases
are not known and �
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Meanwhile ⌘ is constrained only up to a sign – the two minima then correspond to equal
and opposite values of ⌘. Refining the input parameter space by allowing only ⌘ 2 (0, ⇡)
leaves a single global minimum region. This minimum is well-defined and generally stable,
meaning our �2 statistic is a good test for goodness-of-fit over this space; this is true for all
CSD(n). For more details on the behaviour of �2 near the global minimum, see Appendix
B. Once the single global minimum is confirmed, numerical minimisation is performed in
Mathematica by the method of di↵erential evolution.

4. Results

This section details results for the properties of general CSD(n) vacuum alignments,
wherein we have simplified the analysis by considering only two planes of fixed ⇠, i.e. the
cases where ⇠ = 0 (phase aligned with dominant mass matrix) or ⇠ = ⌘ (phase aligned
with subdominant mass matrix). This simplification is predicated on the underlying
assumption from CSD that the contribution from the mc term in Eq. 2.2 is small; indeed,
a stable minimum of the same order in �2 can be found for any value of ⇠. Such a
constraint on ⇠ may also arise directly from a model, such as in [18].

In all subsequent plots, a thick solid gridline corresponds to a best fit value of a mixing
angle or neutrino mass, while thin solid gridlines show the 1� limits, and thin dashed
gridlines show the 3� range.

4.1. CSD(n) with two right-handed neutrinos

Models with only two right-handed neutrinos are compelling as they are typically highly
predictive. In a CSD(n) framework, the neutrino mass matrix in Eq. 2.4 simplifies in the
two right-handed neutrino case to
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1
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where we have defined ⌘ = � � ↵ and removed an overall unphysical phase ↵. This case
immediately predicts the lightest physical neutrino mass to be zero, m

1

= 0. For a given
choice of alignment n, there are three real input parameters ma, mb and ⌘ from which
two light physical neutrino masses m

2

, m
3

, three lepton mixing angles, the CP-violating
phase �

CP

and two Majorana phases are derived; a total of nine physical parameters from
three input parameters, i.e. six predictions for each value of n. As the Majorana phases
are not known and �

CP

is only tentatively constrained by experiment, this leaves five
presently measured observables, namely the two neutrino mass squared di↵erences and
the three lepton mixing angles, from only three input parameters.
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◦ Renormalisable at GUT scale, SU(5) breaking potential, spontaneously broken CP. 

◦ The MSSM is reproduced with R-parity emerging from a discrete Z4R . 

◦ Doublet-triplet splitting is achieved through the Missing Partner mechanism. 

◦ mu term is generated at the correct scale. 

◦ Proton decay is sufficiently suppressed. 

◦ It solves the strong CP problem through the Nelson-Barr mechanism . 

◦ Explains quark mass hierarchies, mixing angles and the CP phase.

◦ Reproduces minimal predictive seesaw model with CSD(3) alignment.

◦ Two right-handed neutrinos, lighter one dominantly giving atmospheric neutrino mass. 

◦ Z9 flavour symmetry fixes the phase η to be one of ninth roots of unity, choose 2pi/3 



A4xSU(5) SUSY GUT

Field
Representation

A
4

SU(5) Z
9

Z
6

ZR
4

F 3 5̄ 0 0 1
T
1

1 10 5 0 1
T
2

1 10 7 0 1
T
3

1 10 0 0 1

Nc
atm

1 1 7 3 1
Nc

sol

1 1 8 3 1

� 1 1 0 3 1

Field
Representation

A
4

SU(5) Z
9

Z
6

ZR
4

H
5

1 5 0 0 0
H

¯

5

1 5̄ 2 0 0
H

45

1 45 4 0 2
H

45

1 45 5 0 0

⇠ 1 1 2 0 0
✓
2

1 1 1 4 0
�
atm

3 1 3 1 0
�
sol

3 1 2 1 0

Table 1: Superfields containing SM fermions, the Higgses and relevant flavons.

The SM fermions are contained within superfields F and Ti. The MSSM Higgs doubletHu originates
from a combination of H5 and H45, and Hd from a combination of H5 and H45. Having the Higgs
doublets inside these di↵erent representations generates the correct relations between down-type
quarks and charged leptons. Doublet-triplet splitting is achieved by the Missing Partner mechanism
[89].

The field ⇠ which gains a VEV v⇠ ⇠ 0.06MGUT generates a hierarchical fermion mass structure
in the up-type quark sector through terms like vuTiTj(v⇠/M)6�i�j , where vu is the VEV of Hu.
It also partially contributes to the mass hierarchy for down-type quarks and charged leptons and
provides the mass scales for the right-handed neutrinos as discussed later. It further produces a
highly suppressed µ term ⇠ (v⇠/M)8MGUT. The resulting symmetric Yukawa matrix for up-type
quarks is

Y u
ij = uij

✓h⇠i
M

◆nij

⇠
0

@
⇠̃4 ⇠̃3 ⇠̃2

⇠̃2 ⇠̃
1

1

A (101)

where ⇠̃ = h⇠i /M ⇠ 0.1. The up-type Yukawa matrix Y u is highly nondiagonal while the down-type
and charged lepton Yukawa matrices Y d ⇠ Y e, derived from terms like F�TH, are nearly diagonal,
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where ve,µ,⌧ are charged lepton flavon VEVs as in Eq.86, while v⇤
24

and vH
24

are the respective
VEVs of heavy Higgs ⇤24 and H24, and we include the subscripts LR to emphasise the role of the
o↵-diagonal term to left-handed mixing from Y d. The o↵-diagonal term in Y e also provides a tiny
contribution to left-handed charged lepton mixing ✓e12 ⇠ me/mµ which may safely be neglected. It
also introduces CP violation to the CKM matrix via the phase of h⇠i.

The relevant terms in the superpotential giving neutrino masses are,
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numerical estimates. We emphasise that the successful predictions of the model in the
lepton sector (namely predicting the PMNS matrix) is independent of the specific values
of these mass parameters.

2.1 Up quarks

Apart from the top quark mass, which originates from a lowest order Yukawa coupling,
the remaining up-type quark Yukawa couplings appear from higher order terms that
result from combining several renormalisable terms involving ⌃i messengers and the GUT
singlet superfield ⇠. To be precise, the up-type quark Yukawa couplings arise from ⌃i

messenger tower diagrams shown in Fig. 1. For example, the most suppressed coupling
arises from the first diagram in Fig. 1. Other less suppressed couplings arise from the
diagrams where at the base one has the respective TiTj, with a shorter tower leading up
to H

5

. The least suppressed coupling, the renormalisable H
5

T
3

T
3

operator responsible
for the top quark mass, is the last diagram in Fig. 1.

The e↵ective superpotential responsible for the up-type Yukawa couplings is

W
up

= uijH5

TiTj

✓
⇠

M

◆nij

. (2.1)

The resulting symmetric Yukawa matrix for up-type quarks is

Y u
ij = uij

✓h⇠i
M

◆nij

⇠
0

@
⇠̃4 ⇠̃3 ⇠̃2

⇠̃2 ⇠̃
1

1

A (2.2)

where ⇠̃ = h⇠i /M ⇠ 0.1. The explicit form of Y u is given in Eq. 2.16 and includes the
coe�cients uij, which are O(1) and, by enforcing CP conservation at the GUT scale,
necessarily real. Thus, the hierarchy of the up quark masses as well as the CKM mixing
angles are given by powers of ⇠̃. Due to the structure of this matrix, any phase introduced
by h⇠i can be reabsorbed by appropriate redefinition of the three Ti fields, so Y u does
not contain a source of CP violation.

2.2 Down quarks, charged leptons and flavons

When considering the Yukawa structures of down quarks and charged leptons we must
inevitably discuss A

4

triplet flavons.6 The assignments of all the flavons under the family
symmetries appear in Table 1. Indeed, since the three families of F transform as a triplet
of A

4

(see Table 1), all TiH¯

5

F terms require a contraction with at least one A
4

triplet
flavon to be invariant.

6As a point of terminology, we refer to as “flavons” any superfields that are GUT singlets transforming
non-trivially under the family symmetry and that get VEVs. In particular not only A

4

but strictly
speaking also Z

9

and Z
6

are family symmetries, so we also refer to ⇠ as a “flavon”.
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Figure 1: Diagrams responsible for the masses and mixings of the up-type quarks.
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Figure 2: Diagrams responsible for the masses of the down-type quarks and charged leptons.

From the diagrams shown in Fig. 2, integrating out the fermion messengers X, which
acquire large masses as a result of either explicit mass terms or GUT scale Higgs VEVs,
we obtain e↵ective operators of the form

W
down

= d
33

T
3

H
¯

5

�⌧

M
F + d

22

T
2

H
45

H
24

�µ

M2
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h⇤
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i2

F + d
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T
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H
¯
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⇠�µ
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24

i hH
24

iF (2.3)

where dij are O(1) couplings. The light MSSM doublet Hd is a combination of the
doublets inside H

¯

5

and H
45

, as discussed in Section 4.2, hence the d
22

term also leads
to a relevant Yukawa coupling. The alignment of the respective flavon VEVs of �e,µ,⌧

(discussed in Section 3) is

h�ei = ve

0

@
1
0
0

1

A h�µi = vµ

0

@
0
1
0

1

A h�⌧ i = v⌧

0

@
0
0
1

1

A (2.4)

such that, apart from d
12

, the contraction appearing with T
1,2,3 isolates the respective

F
1,2,3 family. This would lead to diagonal Yukawa structures if not for the additional

term connecting T
1

(�µF ) (see Fig. 2d).
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Table 2: Superfield messengers for the quark
and lepton Yukawa couplings (and other GUT
breaking couplings discussed in Section 4.2).

in a viable way (i.e. addressing doublet-triplet splitting, the origin of the µ term and
proton decay). In Section 5 we discuss the link between leptogenesis and the oscillation
phase in this model. Finally in Section 6 we summarise our main results and conclude.
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The resulting e↵ective Yukawa matrices are, schematically:

Y d
LR ⇠ Y e

RL ⇠

0

BBBBB@

h⇠i ve

v2

⇤24

h⇠i vµ

v
⇤24vH24

0

0
vH24vµ

M2

0

0 0
v⌧
M

1

CCCCCA
(2.5)

where v
⇤24 and vH24 are the respective VEVs of ⇤

24

and H
24

(given in Eq. 2.6), and we
include the subscripts LR to emphasise the role of the o↵-diagonal term to left-handed
mixing from Y d. The o↵-diagonal term in Y e also provides a tiny contribution to left-
handed charged lepton mixing ✓e

12

⇠ me/mµ which may safely be neglected. It also
introduces CP violation to the CKM matrix via the phase of h⇠i.

Furthermore, because the underlying renormalisable theory is known, the diagrams in
Fig. 2 are the only contributions for each family. The SU(5) contractions and associated
CG coe�cients appearing for each family are unique [13, 14]. With the GUT scale sym-
metry breaking as discussed in Section 4, each of the scalars here get a VEV with the
group structure:

hH
¯

5

ia = �a
5

vd/
p

2

hH
45

iab
c = (�[a

c � �[a|
5

�5

c � 4�[a|
4

�4

c )�b]

5

vd/
p

2

hH
24

ia
b = diag(2, 2, 2,�3,�3) vH24

h⇤
24

ia
b = diag(2, 2, 2,�3,�3) v

⇤24

(2.6)

where the indices run a, b, c = 1, ..., 5. This leads to the GUT scale prediction:

Y e
33

Y d
33

= 1,
Y e

22

Y d
22

=
9

2
,

Y e
11

Y d
11

=
Y e

21

Y d
12

=
4

9
. (2.7)

The explicit forms of Y d and Y e, including CG and dij coe�cients, are given later in
Eq. 2.17 and Eq. 2.18, respectively.

2.3 Neutrinos and CSD3

In order to obtain the CSD3 vacuum alignment in this model we couple the neutrinos to
a set of flavons distinguished by the Z

6

symmetry. Of the superfields in Table 1, only
the right-handed neutrinos and some of the flavons are charged under this symmetry.
For clarity, we relabel two of the flavon fields as �

atm

⌘ �
3

and �
sol

⌘ �
4

, to highlight
their role in producing neutrino mixing. We also write N c

atm

⌘ N c
1

to denote the right-
handed neutrino that dominantly leads to the atmospheric neutrino mass, and N c

sol

⌘ N c
2

as that which contributes mainly to the solar neutrino mass. The relevant terms in the
superpotential giving neutrino masses are thus

W⌫ = y
1

H
5

F
�

atm

h✓
2

i N c
atm

+ y
2

H
5

F
�

sol

h✓
2

iN c
sol

+ y
3

⇠2

M
N c

atm

N c
atm

+ y
4

⇠N c
sol

N c
sol

. (2.8)

7

Björkeroth, de Anda, de Medieoros Varzielas and S.F.K. 1503.03306

Asymmetric matrix  
-small e mixing
- Nelson-Barr det Y=real

Clebsch 
relations

strong hierarchy of 
up quark masses

Fermions Higgs Flavons



Field
Representation

A
4

SU(5) Z
9

Z
6

ZR
4

F 3 5̄ 0 0 1
T
1

1 10 5 0 1
T
2

1 10 7 0 1
T
3

1 10 0 0 1

N c
atm

1 1 7 3 1
N c

sol

1 1 8 3 1

� 1 1 0 3 1

Field
Representation

A
4

SU(5) Z
9

Z
6

ZR
4

H
5

1 5 0 0 0
H

¯

5

1 5̄ 2 0 0
H

45

1 45 4 0 2
H

45

1 45 5 0 0

⇠ 1 1 2 0 0
✓
2

1 1 1 4 0
�
atm

3 1 3 1 0
�
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Table 2: Superfields containing SM fermions, the Higgses and relevant flavons.

4 A SUSY GUT Example

In this section we describe a fairly complete A
4

⇥ SU(5) SUSY GUT model which im-
plements CSD(3) with two right-handed neutrinos [20]. This model has the following
virtues:

� It is fully renormalisable at the GUT scale, with an explicit SU(5) breaking sector
and a spontaneously broken CP symmetry.

� The MSSM is reproduced with R-parity emerging from a discrete ZR
4

.
� Doublet-triplet splitting is achieved through the Missing Partner mechanism [33].
� A µ term is generated at the correct scale.
� Proton decay is su�ciently suppressed.
� It solves the strong CP problem through the Nelson-Barr mechanism [34,35].
� It explains the hierarchies in the quark sector, and successfully fits all of the quark

masses, mixing angles and the CP phase, using only O(1) parameters.
� It justifies the CSD(3) alignment which accurately predicts the leptonic mixing

angles, as well as a normal neutrino mass hierarchy.
� It involves two right-handed neutrinos with the lighter one dominantly responsible

for the atmospheric neutrino mass.
� A Z

9

flavour symmetry fixes the phase ⌘ to be one of ninth roots of unity [36].

Apart from A
4

⇥SU(5) the model also involves the discrete symmetries Z
9

⇥Z
6

⇥ZR
4

. It is
renormalisable at the GUT scale, but many e↵ects, including most fermion masses, come
from non-renormalisable terms that arise when heavy messenger fields are integrated
out. Unwanted or potentially dangerous terms are forbidden by the symmetries and the
prescribed messenger sector, including any terms that would generate proton decay or
strong CP violation. Such terms may arise from Planck scale suppressed terms, but prove
to be su�ciently small. Due to the completeness of the model, the field content is too
big to be listed here, but the superfields relevant to leptogenesis are in Table 2.

The SM fermions are contained within superfields F and Ti. The MSSM Higgs doublet
Hu originates from a combination of H

5

and H
45

, and Hd from a combination of H
5

9

and H
45

. Having the Higgs doublets inside these di↵erent representations generates the
correct relations between down-type quarks and charged leptons. Doublet-triplet splitting
is achieved by the Missing Partner mechanism [33].

The field ⇠ which gains a VEV v⇠ ⇠ 0.06M
GUT

generates a hierarchical fermion mass
structure in the up-type quark sector through terms like vuTiTj(v⇠/M)6�i�j, where vu

is the VEV of Hu. It also partially contributes to the mass hierarchy for down-type
quarks and charged leptons and provides the mass scales for the right-handed neutrinos
as discussed later. It further produces a highly suppressed µ term ⇠ (v⇠/M)8M

GUT

.

The up-type Yukawa matrix Y u is highly nondiagonal while the down-type and charged
lepton Yukawa matrices Y d ⇠ Y e, derived from terms like F�TH, are nearly diagonal. A
small o↵-diagonal element in Y d/e sources the quark CP phase. Even though the charged
lepton Yukawa matrix is not diagonal, this induces negligible corrections (of O(1%)) to
the CSD(3) alignment.

The relevant terms in the superpotential giving neutrino masses are thus

W⌫ = y
1

H
5

F
�

atm

h✓
2

i N c
atm

+ y
2

H
5

F
�

sol

h✓
2

iN c
sol

+ y
3

⇠2

M
�

N c
atm

N c
atm

+ y
4

⇠N c
sol

N c
sol

, (27)

where the yi are dimensionless couplings, expected to be O(1). The alignment of the
flavon vacuum is fixed by the form of the superpotential, with �

atm

and �
sol

gaining
VEVs according to CSD(3):

h�
atm

i = v
atm

0

@
0
1
1

1

A , h�
sol

i = v
sol

0

@
1
3
1

1

A . (28)

Note that the above superpotential resembles that in Eq. 4. By the same method as
outlined previously, we can then obtain leptogenesis estimates. Indeed, we can iden-
tify the parameters a, b, M

1

and M
2

in terms of the fundamental parameters from the
superpotential:

a = y
1

v
atm

h✓
2

i , b = y
2

v
sol

h✓
2

i ,

M
1

= y
3

(v⇠)2

M
�

, M
2

= y
4

v⇠.
(29)

For convenience we can also specify:

ma =
v2

u|a|2
M

1

=

�����
y2

1

v2

uv2

atm

M
�

y
3

h✓
2

i2 v2

⇠

����� , mb =
v2

u|b|2
M

2

=

�����
y2

2

v2

uv2

sol

y
4

h✓
2

i2 v⇠

����� . (30)

The Abelian flavour symmetry Z
9

fixes the leptogenesis phase ⌘ to be one of the ninth
roots of unity, through a variant of the mechanism used in [36]. The particular choice
⌘ = 2⇡/3 can give the neutrino mixing angles with great accuracy. Furthermore, this
phase corresponds to �

CP

⇡ �87�, consistent with hints from experimental data.
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where the “+” sign applies to the case M
atm

⌧ M
sol

and the “�” sign holds for the case
M

sol

⌧ M
atm

. Since the observed baryon asymmetry YB is positive, it follows that, for
M

atm

⌧ M
sol

, we must have positive sin ⌘, while for M
sol

⌧ M
atm

we must have negative
sin ⌘. From the analysis in [20], for CSD(n) positive ⌘ is associated with negative �

CP

and vice versa. Although the global fits do not distinguish the sign of ⌘, the present hint
that �

CP

⇠ �⇡/2 would require positive ⌘, then in order to achieve positive YB we require
M

atm

⌧ M
sol

, corresponding to “light sequential dominance”, as considered in the two
right-handed neutrino analysis in [28].

In this paper we estimate the baryon asymmetry arising from leptogenesis within CSD(n)
for two right-handed neutrinos. In the flavour basis, for each n, the neutrino Yukawa ma-
trix is therefore characterised by just two real proportionality constants plus one relative
phase which controls both leptogenesis and the PMNS mixing matrix. The single phase
appearing in the neutrino mass matrix is identified as the leptogenesis phase, providing
a direct link between CP violation in neutrino physics and in cosmology. We use the
observed baryon asymmetry to constrain the mass spectrum of the two right-handed
neutrinos within this class of models. As an example, we apply our results to a successful
A

4

⇥ SU(5) SUSY GUT model based on CSD(3) with two right-handed neutrinos [19].

The layout of the reminder of this paper is as follows. In Section 2 we review how
leptogenesis applies to seesaw models and apply it to CSD(n). In Section 3 we show how
low energy data constrains leptogenesis in these models, and derive bounds on the lightest
RH neutrino mass. In Section 4 review a GUT model that predicts CSD(3) mixing angles
and reinterpret the bound imposed by the baryon asymmetry by expressing it in terms
of the model’s parameters. Finally we conclude in Section 5.

2 Leptogenesis in seesaw models with CSD(n)

In a Supersymmetric (SUSY) model, the relevant terms in the superpotential giving
neutrino masses are, in the diagonal charged lepton basis,

W⌫ = yi
atm

HLiN
c
atm

+ yi
sol

HLiN
c
sol

+ M
atm

N c
atm

N c
atm

+ M
sol

N c
sol

N c
sol

, (4)

where Li are three families of lepton doublets and the (CP conjugated) right-handed
neutrinos N c

atm

and N c
sol

with real positive masses M
atm

and M
sol

do not mix. Assuming
the CSD(n) relations in Eq. 2, the Yukawa matrices and (charge conjugated) right-handed
mass matrix in this basis are

�⌫ =

0

@
0 b
a nb
a (n � 2)b

1

A , M c =

 
M

1

0

0 M
2

!
, (5)

where we have M
1

= M
atm

and M
2

= M
sol

, in anticipation of the result that the lightest
right-handed neutrino is the dominant one. This is the basis used for the leptogenesis
calculations.
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. Having the Higgs doublets inside these di↵erent representations generates the
correct relations between down-type quarks and charged leptons. Doublet-triplet splitting
is achieved by the Missing Partner mechanism [33].
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lepton Yukawa matrices Y d ⇠ Y e, derived from terms like F�TH, are nearly diagonal. A
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flavon vacuum is fixed by the form of the superpotential, with �
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Note that the above superpotential resembles that in Eq. 4. By the same method as
outlined previously, we can then obtain leptogenesis estimates. Indeed, we can iden-
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For convenience we can also specify:
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The Abelian flavour symmetry Z
9

fixes the leptogenesis phase ⌘ to be one of the ninth
roots of unity, through a variant of the mechanism used in [36]. The particular choice
⌘ = 2⇡/3 can give the neutrino mixing angles with great accuracy. Furthermore, this
phase corresponds to �

CP

⇡ �87�, consistent with hints from experimental data.
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where the yi are dimensionless couplings, expected to be O(1). The alignment of the flavon vacuum
is fixed by the form of the superpotential, with �atm and �sol gaining VEVs according to CSD(3)
in Eq.78:

h�atmi = vatm

0

@
0
1
1

1

A , h�soli = vsol

0

@
1
3
1

1

A . (104)

This results in a low energy e↵ective Majorana mass matrix of the form in Eq.41 for n = 3, namely,

m⌫ = ma

0

@
0 0 0
0 1 1
0 1 1

1

A + mbe
i⌘

0

@
1 3 1
3 9 3
1 3 1

1

A , (105)

where ⌘ is the only physically important phase, which depends on the relative phase between the
first and second column of the Dirac mass matrix in the flavour basis. The phase ⌘ is responsible
for CP violation in both leptogenesis and neutrino oscillations. We identify,

ma =

�����
y2

1v2
uv2

atmM�

y3 h✓2i2 v2
⇠

����� , mb =

�����
y2

2v2
uv2

sol

y4 h✓2i2 v⇠

����� . (106)

The Abelian flavour symmetry Z9 fixes the phase ⌘ to be one of the ninth roots of unity, through a
variant of the mechanism used in [92]. The particular choice ⌘ = 2⇡/3 can give the neutrino mixing
angles with great accuracy. Furthermore, this phase corresponds to �CP ⇡ �⇡/2, consistent with
hints from experimental data.

n
ma

(meV)

mb

(meV)

⌘
(rad)

✓12

(�)

✓13

(�)

✓23

(�)

�CP

(�)

m2

(meV)

m3

(meV)

3 26.57 2.684
2⇡

3
34.3 8.67 45.8 -86.7 8.59 49.8

Table 2: Best fit parameters and predictions for an A
4

⇥ SU(5) SUSY GUT with CSD(3) and a fixed
phase ⌘ = 2⇡/3, as described in [88]. The spectrum is NO with lightest neutrino mass m

1

= 0 and hence
the remaining Majorana phase (predicted but not indicated) will be practically impossible to measure.

The relevant best fit parameters from our model are given in Table 2, along with the model pre-
dictions for the leptonic mixing angles and neutrino masses, for tan� = 5.

Using the above estimates, in [93] we estimated the baryon asymmetry of the Universe (BAU) for
this model resulting from N1 leptogenesis:

YB ⇡ 2.5 ⇥ 10�11 sin ⌘


M1

1010 GeV

�
. (107)

Using ⌘ = 2⇡/3 and the observed value of YB fixes the lightest right-handed neutrino mass:

M1 ⇡ 3.9 ⇥ 1010 GeV. (108)
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is fixed by the form of the superpotential, with �atm and �sol gaining VEVs according to CSD(3)
in Eq.78:
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This results in a low energy e↵ective Majorana mass matrix of the form in Eq.41 for n = 3, namely,
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where ⌘ is the only physically important phase, which depends on the relative phase between the
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The Abelian flavour symmetry Z9 fixes the phase ⌘ to be one of the ninth roots of unity, through a
variant of the mechanism used in [92]. The particular choice ⌘ = 2⇡/3 can give the neutrino mixing
angles with great accuracy. Furthermore, this phase corresponds to �CP ⇡ �⇡/2, consistent with
hints from experimental data.
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where �⌫ is the neutrino Dirac Yukawa matrix in the basis when charged lepton and
right-handed neutrino Yukawa matrices are diagonal, as in Eq. 5. Assuming M

1

⌧ M
2

we have:

gMSSM

✓
M2

2

M2

1

◆
⇡ �3

M
1

M
2

. (10)

For the CSD(n) neutrino Yukawa matrix �⌫ in Eq. 5, the flavour dependent asymmetries
are

✏
1,e = 0

✏
1,µ = � 3

8⇡

M
1

M
2

(n � 1)n
Im[a⇤2b2]

|a|2

✏
1,⌧ = � 3

8⇡

M
1

M
2

(n � 1)(n � 2)
Im[a⇤2b2]

|a|2 .

(11)

Note that

✏
1,⌧ =

✓
n � 2

n

◆
✏

1,µ. (12)

We now define the phase ⌘ that is relevant for leptogenesis as

⌘ ⌘ � arg[a⇤2b2]. (13)

Having established the factor YN1 +Y
˜N1

and the ✏
1,↵ asymmetries, it remains to determine

the (flavour-dependent) washout factors ⌘
1,↵. These arise from solutions to the Boltzmann

equations given in [23] wherein ⌘
1,↵ is plotted as a function of log

10

|A↵↵K↵|, in terms of
parameters K↵ and a numerical 3 ⇥ 3 matrix A, given below,

A =

0
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CA . (14)

The parameters K↵ are themselves functions of mass parameters m̃
1,↵, such that

K↵ =
m̃

1,↵

m⇤
MSSM

,
⇣

K =
X

↵

K↵

⌘

m⇤
MSSM

⇡ (1.58 ⇥ 10�3 eV) sin2 �

m̃
1,↵ = (�†

⌫)
1↵(�⌫)↵1

v2

u

M
1

.

(15)

With �⌫ given in Eq. 5, and identifying vu = v sin �, the mass parameters are

m̃
1,e = 0, m̃

1,µ = m̃
1,⌧ = |a|2 v2 sin2 �

M
1

. (16)

Because m̃
1,µ = m̃

1,⌧ we also obtain Kµ = K⌧ . From Eq. 14 we obtain Aµµ = A⌧⌧ =
�19/30. Thus we conclude that ⌘

1,µ = ⌘
1,⌧ . We note that the combination of parameters

5

ma =
|a|2v2

M1
, mb =

|b|2v2

M2

✴The phase eta is the only source of CP violation in neutrino oscillations and leptogenesis

✴Positive eta is associated with positive baryon asymmetry and negative oscillation phase 
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present the flavour structure of the low energy �s in terms of their � suppression, which

should be compared to Eqs. (7.6-7.8),
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8 Numerical analysis

8.1 Parameter range

Numerical results for the running quark and charged lepton masses as well as for the

quark mixing angles at the GUT scale can be found in [43]. The matching conditions

from the SM to the MSSM are imposed at the SUSY scale and read:

ySM
u,c,t ⇡ yMSSM

u,c,t sin �̄,

ySM
d,s ⇡ (1 + ⌘̄q) yMSSM

d,s cos �̄,

ySM
e,µ ⇡ (1 + ⌘̄l) yMSSM

e,µ cos �̄,

ySM
b ⇡ (1 + ⌘̄b) yMSSM

b cos �̄,

ySM
⌧ ⇡ yMSSM

⌧ cos �̄ (8.1)

and

✓q,SM
i3 ⇡ 1 + ⌘̄q

1 + ⌘̄b

✓q,MSSM
i3 , ✓q,SM

12

⇡ ✓q,MSSM
12

, �q,SM ⇡ �q,MSSM , (8.2)

where:

⌘̄b = ⌘0
q + ⌘A � ⌘0

l, ⌘̄q = ⌘q � ⌘0
l, ⌘̄l = ⌘l � ⌘0

l (8.3)
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Table 4. The charge assignments of the matter, Higgs and flavon superfields in the S4 × SU(5) model of [139]. The U(1) shaping symmetry
constrains the set of operators allowed in the superpotential.

Matter fields Higgs fields Flavon fields

T3 T F νc H5 H5 H45 φu
2 φ̃u

2 φd
3 φ̃d

3 φd
2 φν

3′ φν
2 φν

1 η

SU(5) 10 10 5 1 5 5 45 1 1 1 1 1 1 1 1 1
S4 1 2 3 3 1 1 1 2 2 3 3 2 3′ 2 1 1
U(1) 0 5 4 −4 0 0 1 −10 0 −4 −11 1 8 8 8 7

provides the source of the higher order correction to the right-
handed neutrino mass matrix which is essential in generating
a large reactor angle. In principle, all independent invariant
products of the S4 representations have to be considered for
each of these terms; in practice, there is often only one possible
choice. In our example, the second and the third term of
equation (10.12) would give rise to several independent terms.
However, the contractions specified by the subscripts 1 and 3
single out a unique choice. Within a given UV completion, the
existence and non-existence of certain messenger fields can
justify such a construction.

The Yukawa matrices are generated when the flavon fields
acquire their VEVs. The explicit form of these matrices
depends on the S4 basis which we choose as given in
appendix C. Adopting the F -term alignment mechanism
which requires to introduce a U(1)R symmetry as well as new
driving fields, see section 7.2, is has been shown in [139, 144]
that the following alignments can be obtained,

〈φu
2 〉 = ϕu

2

(
0
1

)
, 〈φ̃u

2 〉 = ϕ̃u
2

(
0
1

)
, (10.14)

〈φd
3 〉 = ϕd

3




0
1
0



 , 〈φ̃d
3 〉 = ϕ̃d

3




0
−1
1



 , 〈φd
2 〉 = ϕd

2

(
1
0

)
,

(10.15)

〈φν
3′ 〉 = ϕν

3′




1
1
1



 , 〈φν
2 〉 = ϕν

2

(
1
1

)
, 〈φν

1 〉 = ϕν
1 . (10.16)

Inserting these vacuum alignments and the Higgs VEVs vu

and vd yields a diagonal up-type quark mass matrix Mu ≈
diag (ϕu

2 ϕ̃u
2 /M2, ϕu

2 /M , 1) vu as well as down-type quark and
charged lepton mass matrices

Md ≈





0 (ϕd
2 )2ϕ̃d

3 /M3 −(ϕd
2 )2ϕ̃d

3 /M3

−(ϕd
2 )2ϕ̃d

3 /M3 ϕd
2 ϕ̃d

3 /M2 −ϕd
2 ϕ̃d

3 /M2

+(ϕd
2 )2ϕ̃d

3 /M3

0 0 ϕd
3 /M




vd,

(10.17)

Me ≈





0 −(ϕd
2 )2ϕ̃d

3 /M3 0

(ϕd
2 )2ϕ̃d

3 /M3 −3 ϕd
2 ϕ̃d

3 /M2 0

−(ϕd
2 )2ϕ̃d

3 /M3 3 ϕd
2 ϕ̃d

3 /M2 ϕd
3 /M

+(ϕd
2 )2ϕ̃d

3 /M3




vd.

(10.18)

The factors of −3 in Me originate from the second term of
equation (10.12) involving the Georgi-Jarlskog Higgs field
H45 [120]. Note that the 1-2 and 2-1 entries, which originate
from the same superpotential term, have identical absolute

values; together with the zero texture in the 1-1 entry, this
allows for a simple realization of the GST relation in the
S4 × SU(5) model. In the neutrino sector we find the Dirac
neutrino mass matrix and the right-handed neutrino mass
matrix

mLR ≈




1 0 0
0 0 1
0 1 0



 vu,

MRR ≈




ϕν

1 + 2ϕν
3′ ϕν

2 − ϕν
3′+

ϕd
2 〈η〉
M

ϕν
2 − ϕν

3′

ϕν
2 − ϕν

3′+
ϕd

2 〈η〉
M

ϕν
2 + 2ϕν

3′ ϕν
1 − ϕν

3′

ϕν
2 − ϕν

3′ ϕν
1 − ϕν

3′ ϕν
2 + 2ϕν

3′+
ϕd

2 〈η〉
M



 .

(10.19)

It is clear from equations (10.17)–(10.19) that the fermion
masses and mixings are solely determined by the scales of the
flavon VEVs. In order to achieve viable GUT scale hierarchies
of the quark masses and mixing angles [121], we have to
assume

ϕu
2 ∼ ϕ̃u

2 ∼ λ4M,

ϕd
3 ∼ λ2M, ϕ̃d

3 ∼ λ3M, ϕd
2 ∼ λM, (10.20)

where λ denotes the Wolfenstein parameter. With these
magnitudes, the charged fermion mass matrices are fixed
completely,

Mu ∼




λ8 0 0
0 λ4 0
0 0 1



 vu, Md ∼




0 λ5 λ5

λ5 λ4 λ4

0 0 λ2



 vd,

Me ∼




0 λ5 0
λ5 3λ4 0
λ5 3λ4 λ2



 vd. (10.21)

Due to the GJ factor of −3 and the texture zero in the 1-1 entry,
we obtain viable charged lepton masses. With the vanishing
off-diagonals in the third column of Me, there is only a non-
trivial 12 mixing in the left-handed charged lepton mixing VeL

,
see section 3.4. This mixing, θ e

12 ≈ λ/3, will contribute to the
total PMNS mixing as a charged lepton correction.

Turning to the neutrino sector, we first observe that the
Dirac neutrino Yukawa term does not involve any flavon field.
As the family symmetry S4 remains unbroken by mLR , the
mixing pattern of the effective light neutrino mass matrix mν

LL

(obtained from the type I see-saw mechanism) is exclusively
determined by the structure of MRR . Dropping the higher
order terms which are written in red, we note that the leading
order structure of MRR , and with it mν

LL, is of tri-bimaximal
form22. This can be easily seen by verifying that the flavon

22 Similar to the A4 × SU(5) model of section 10.1, the masses of the light
neutrinos are not related by any mass sum rule as the right-handed neutrino
mass matrix MRR is generated from the VEVs of three independent flavon
fields.
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7 Mass insertion parameters

In supersymmetry, flavour changing processes are induced by the mismatch of fermion

and sfermion mass eigenstates. Having changed the basis of the superfields to the SCKM

basis, the Yukawa matrices are diagonal. Thus, the o↵-diagonal entries of the scalar mass

matrices determine the size of the resulting FCNCs. As both the left- and the right-handed

fermions have their own scalar partners, there are three types of scalar mass matrices

m2

˜f
LL

= (m̃2

f )LL + Ỹf Ỹ †
f �2

u,d , (7.1)

m2

˜f
RR

= (m̃2

f )RR + Ỹ †
f Ỹf�

2

u,d , (7.2)

m2

˜f
LR

= Ãf�u,d � µỸf�d,u . (7.3)

In these expressions, the first contribution originates from the soft breaking Lagrangian,

while the second term is the supersymmetric F -term contribution to the scalar masses.

We note that it is formally possible to define m2

˜f
RL

⌘ (m2

˜f
LR

)†.

From the model building perspective, a convenient measure of flavour violation is

provided by a set of dimensionless parameters, known as the mass insertion parameters.

These are defined as [7]

(�f
LL)ij =

(m2

˜f
LL

)ij

hm
˜fi2

LL

, (�f
RR)ij =

(m2
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)ij
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, (�f
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)ij
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, (7.4)
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7 Mass insertion parameters

In supersymmetry, flavour changing processes are induced by the mismatch of fermion

and sfermion mass eigenstates. Having changed the basis of the superfields to the SCKM

basis, the Yukawa matrices are diagonal. Thus, the o↵-diagonal entries of the scalar mass

matrices determine the size of the resulting FCNCs. As both the left- and the right-handed

fermions have their own scalar partners, there are three types of scalar mass matrices

m2

˜f
LL

= (m̃2

f )LL + Ỹf Ỹ †
f �2

u,d , (7.1)

m2

˜f
RR

= (m̃2

f )RR + Ỹ †
f Ỹf�

2

u,d , (7.2)

m2

˜f
LR

= Ãf�u,d � µỸf�d,u . (7.3)

In these expressions, the first contribution originates from the soft breaking Lagrangian,

while the second term is the supersymmetric F -term contribution to the scalar masses.

We note that it is formally possible to define m2

˜f
RL

⌘ (m2

˜f
LR

)†.

From the model building perspective, a convenient measure of flavour violation is

provided by a set of dimensionless parameters, known as the mass insertion parameters.

These are defined as [7]

(�f
LL)ij =

(m2

˜f
LL

)ij

hm
˜fi2

LL

, (�f
RR)ij =

(m2

˜f
RR

)ij

hm
˜fi2

RR

, (�f
LR)ij =

(m2

˜f
LR

)ij

hm
˜fi2

LR

, (7.4)
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Dimou, Hagedorn, S.F.K., Luhn (to appear)

to the trilinear terms) have di↵erent phases than their corresponding scalar components

(which contribute to both the tilinear and the Yukawa terms). The SUSY contribution

to the edm in that case is shown in Figure 6 with green points.

As described in [22], there are mechanisms to suppress such contributions to the A-

terms and if they are suppressed enough so that they could be ignored, the the phases

within Eq.(C.8) cancel. Then the next dominant imaginary part comes from (�e
LR)

11

at

NLO (as the SCKM rotation that renders the Yukawas real does not do the same to the

A-terms beyond the LO), as a linear combination of sin(✓d
2

) and sin(4✓d
2

+ ✓d
3

). This case

is shown in Figure 6 with blue points. Finally, setting ✓d
2

= ⇡/2, as preferred by Jq
CP , we

see that for ✓d
3

= 0, de/e would be suppressed by one more order of �.

Concerning the double amd triple insertions in Eq.(9.4), they come in at orders

(�e
LR)

12

(�e
RR)

21

⇠ �8, (�e
LR)

13

(�e
RR)

31

⇠ �10 and (�e
LL)

12

(�e
LR)

21

, (�e
LL)

13

(�e
LR)

31

⇠ �9. In

the case corresponding to the blue set of points, the first two terms are real, while the

contributions of the latter two cancel against each other. Finally, the contributions of the

triple insertions are further suppressed, with the largest one (�e
LL)

13

(�e
LR)

33

(�e
RR)

31

⇠ �10

being real in the blue set of points, while all the rest lie below the experimental limit.

Figure 6: Prediction for the SUSY contribution versus
p

ẽLẽR =
p

(mẽLL
)
11

(mẽRR
)
11

(left)
and x = (M

1/2

/m
0

)2 (right). The red dotted line represents the current experimental limit
from the ACME collaboration: |de/e| ⇡ 8.7 ⇥ 10�29cm⇡ 4.41 ⇥ 10�15GeV�1 [38], while
the black dotted line corresponds to their expected future limit: |de/e| ⇡ 3 ⇥ 10�31cm⇡
1.52 ⇥ 10�17GeV�1.
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Figure 7: Supersymmetric contribution to the branching ratio of µ ! e �, versus
p

ẽLẽR =
p

(mẽLL
)

11

(mẽRR
)

11

(left) and x = (M
1/2

/m
0

)2 (right). The red dotted line represents the
current experimatal limit from MEG collaboration: BR(µ ! e �) ⇡ 5.7 ⇥ 10�13 [56] and
the black one their expected future limit: BR(µ ! e �) ⇡ 6 ⇥ 10�14 [57]. The ligher and
darker shades correspond to t� 2 [5, 10] and t� 2 [20, 25] respectively.

9.3 Meson mixing

Turning to �F = 2 transitions, we study the SUSY contributions to meson mixing. The

dispersive part of the mixing for a meson P can be parametrised as [42]:

MP
12

= MP,SM
12

+ MP,NP
12

= MP,SM
12

�

1 + hP e2i�P
�

, (9.6)

with the mass di↵erence are given by:

�MP = 2|MP
12

|. (9.7)
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BR(Bq ! µ+µ�) =
⌧Bq F 2
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32⇡
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⇥ (9.43)

⇥
 

�

�

�

�

�

ABq

1

(

ABq

2

� ↵s

↵
2

f
3

(y)
�

(�d
i3)LL � (�d

i3)RR

�

)

�

�

�

�

�

2

 

1 � 4
m2

µ

M2

Bq

!

+

�

�

�

�

�

2
mµ

MBq

CSM
10

+ ABq

1

(

ABq

2

� ↵s

↵
2

f
3

(yµ)
�

(�d
i3)LL + (�d

i3)RR

�

)

�

�

�

�

�

2

!

,

with:

ABq

1

= ↵2

2

t3

�

MBq mµ

4M2

W

mg̃ µ

M2

A m2

q̃

, ABq

2

=
m2

t

M2

W

At

mg̃

VtbV
⇤

tqf1

(yµ) +
M

2

mg̃

(�u
i3)LL f

4

(y
2

, yµ),

CSM
10

=
↵

2

4⇡

4GFp
2

VtbV
⇤

tqY0

(xt), Y
0

(x) =
x

8

✓

x � 4

x � 1
+

3x

(x � 1)2

log(x)

◆

, xt =
m2

t

M2

W

(9.44)

and the loop functions f
1

(yµ), f
3

(y) and f
4

(y
2

, yµ) being the same ones that appeared in

the double penguin contributions to Bq-mixing. For that reason, we expect a correlarion

between �MBq and BR(Bq ! µ+µ�).

Figure 14:
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In the Bd sector, (�d
13

)LL and (�d
13

)RR are already complex at LO in � (c.f. Eqs.

(D.53),(D.55)), whereas in the Bs sector, (�d
23

)LL and (�d
23

)RR are real at LO (c.f. Eqs.

(D.54),(D.56)) and only receive phase factors at the order of �5. Taking these higher

order corrections into account, in Figure 11 we plot our predicted values for Sf , by using

the central values of Eqs.(9.14),(9.28) as the SM contributions. We find that deviations

from the SM expectations when x << 1, reach 10% for SJ � and 5% for S KS
when

t4

� µ2/(M2

A m2

q̃) < 1, while for t4

� µ2/(M2

A m2

q̃) > 1 the deviations reach the level of 50%

and 30% respectively.

Figure 11: Predicted S � and S KS
versus x = (M

1/2

/m
0

)2. The central values of
Eqs.(9.14),(9.28) have been used as the SM contributions. The green points correspond
to gluino-box contributions alone, while the orange (blue) points correspond to double
penguin (DP) plus gluino contributions with t4

� µ2/(M2

A m2

q̃) larger (smaller) than one.

9.3.2 K � K̄ mixing

For the Kaon mixing, SM contribution reads [44]:

MK,SM
12

=
G2

F MBK

12⇡2

M2

W

⇣

(VcsV
⇤

cd)2⌘ccS0

(xc) + (VtsV
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td)2⌘ttS0

(xt) +

+ 2VcsV
⇤

cdVtsV
⇤

td⌘ctS0

(xc, xt)
⌘

f 2

KB̂K , (9.29)

where ⌘i are QCD factors, B̂K a perturbative parameter and S
0

(xi ⌘ m̄i(m̄i)/MW )2 the

Inami-Lim loop functions. The SM numerical value for the Kaon mass di↵erence is [65]:

�M (SM)

K = 3.30(34) ⇥ 10�15 GeV (9.30)
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electron EDM µ ! e�

Bs ! µ+µ�

Since for most of our parameter space the dominating mass insertion parameter is

(�d
i3)RR, we would not expect any excessive contributions to �MBs , as our (�d

23

)RR lies

below its limit in Table 4. However, non of the benchmark scenarios within the alalysis

that set those limits corresponds to t4

� µ2/(M2

A m2

q̃) > 1 (c.f. our orange points); MA

in particular is always kept above 500 GeV. Concerning �MBd
on the other hand, the

alalysis setting the limits on the associated �s only considers guino-box diagrams, whose

contributions we indeed find to be negligible (c.f. our green points).

The e↵ects of the complex mass insertions of our model can be studied through the

mixing induced time dependent CP-asymmetries, associated with the Bs ! J/ � and

Bd ! J/ KS decays. They are defined as:

Sf =
2Im(�f )

|�f |2 + 1
, (9.24)

where:

� � = e�i�s , �s = �2�s + arg
�

1 + hse
2i�s

�

,

� KS
= �e�i�d , �d = 2�d + arg

�

1 + hde2i�d
�

, (9.25)

such that:

S � = � sin(�s), S KS
= sin(�d). (9.26)

The current measurements are:

S � = 0.015 ± 0.035 [62], S KS
= 0.691 ± 0.017 [63] (9.27)

and the SM expectations:

SSM
 � = sin(2�s) = 0.0363+0.0014

�0.0012

[?], SSM
 KS

= sin(2�d) = 0.771+0.017

�0.041

[64]. (9.28)

Note that the pure SM contribution depends strongly on the values on Vub and Vcb

which in turn di↵er significantly when inclusive or exclusive decays are studied [44]. The

data prefer lower values Vub, measured from exclusive decays. The SM value given in

Eqs.(9.28) has been derived by the CKMfitter group, by using the semileptonic deter-

minations of the relevant CKM elements as well as the value of ✏K amongst the input

parameters but not the measurement of sin(2�d) itself.
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Testing SUSY flavour models 
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E8 ! SU(5)GUT ⇥ SU(5)?

Conventionally

SU(5)? ! U(1)4
?

New possibilities

SU(5)? ! S4 ⇥ U(1)?
SU(5)? ! A4 ⇥ U(1)?
SU(5)? ! D4 ⇥ U(1)?

S4, A4, D4

Identified as discrete 
family symmetries

Heckman 
and Vafa

Karozas, S.F.K.,Leontaris 
and Meadowcroft,
1505.00937, 1406.6290 

GUT

SU(5)?F-theory SU(5) 
with flavour 
symmetry 

Antoniadis and 
Leontaris

G.K.Leontaris,
  ``The origin of discrete 
symmetries in F-theory models,''
  arXiv:1501.06499 [hep-th].



Conclusions
GUT x Discrete Family Symmetry very predictive framework

Direct models: Klein and T from Delta(6n2), zero Dirac phase

Semi-direct models: partial symmetry S or SU, allows 
smaller groups, lepton mixing sum rules, CP  predictions

Indirect models: allows A4 broken by orthogonal CSD(n) 
alignments, gives minimal predictive seesaw

A4xSU(5) SUSY GUT based on CSD(3), predictive, complete 

SUSY flavour models mimic MFV with testable deviations

SU(5) with discrete flavour symmetry from F-theory


