Southampton

School of Physics and Astronomy invisibles neutrinos, dark matter & dark energy physics

Unified Models of Neutrinos, Flavour and CP violation

Steve King Corfu Holiday Palace, 2nd September 2015

EISA European Institute for Sciences and Their Applications

Lepton Mixing Matrix

Oscillation phase δ^l Majorana phases $lpha_{21}, lpha_{31}$

з masses + з angles + з phases = 9 new parameters for SM

Lepton Mixing Angles (approx.)

Seesaw motivates Standard Model with right-handed neutrinos $SU(3)_C \times SU(2)_L \times U(1)_Y$

Left-handed quarks and leptons (active neutrinos) Ríght-handed quarks and leptons (steríle neutrínos)

The RH neutrino Spectrum

Classic See-Saw (Leptogenesis) TeV Low Scale See-Saw (LHC) GeV NU-MSM BAU (resonant lepto) MeV WDM keV LSND, Reactor Anomaly,... eV Extra radiation (Planck) meV

 M_R

 $M_{\rm GUT}$

What is the origin of Quark and Lepton Masses?

What is the origin of Quark and Lepton Mixing? **CKM PMNS** d b S v_2 v_1 V_{z} u v_{e} С v_{μ} t v_{τ}

Flavour Symmetry (FLASY)

The Klein Symmetry

Phase symmetry of diagonal charged lepton mass matrix $T^{\dagger}(M_e^{\dagger}M_e)T = M_e^{\dagger}M_e$ $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix}$

Symmetry of Majorana matrix depends on PMNS

$$m_{\nu} = S^T m_{\nu} S \qquad m_{\nu} = U^T m_{\nu} U$$

$$\begin{split} S &= U_{\rm PMNS}^* \, \operatorname{diag}(+1, -1, -1) \, U_{\rm PMNS}^T \\ U &= U_{\rm PMNS}^* \, \operatorname{diag}(-1, +1, -1) \, U_{\rm PMNS}^T \\ SU &= U_{\rm PMNS}^* \, \operatorname{diag}(-1, -1, +1) \, U_{\rm PMNS}^T \end{split}$$

Kléín Symmetry $\mathcal{K} = \{1, S, U, SU\}$

Felix Klein

 $\omega = e^{2i\pi/n}$

 $Z_2 \times Z_2$

Direct Models

Klein symmetry S,U and T are each identified as subgroups of some family symmetry

$$\Delta(6n^2)$$

is the only viable symmetry class predicts zero Dirac CPV but non-zero Majorana phases

Holthausen,Lim, Lindner; SK,Neder,Stuart; Lavoura,Ludl; Fonseca,Grimus

Feruglio,Hagedorn; Holthausen,Lindner Schmidt; Ding,SFK,Luhn,Stuart; Nishi,Xing; Hagedorn,Meroni, Molinaro; Ding,SFK,Neder; Chon ot al

Chen et al... $ho(g')\phi = X
ho(g)^*X^{-1}\phi$

Equivalently use CP invariants of the Lagrangian

 \mathcal{CP}

Consistency

condition

 \mathcal{CP}^{-1}

 $X\phi^*$

g

 $X\rho(g)^*\phi$

 $I_1 \equiv \text{Tr} [H_{\nu}, H_l]^3 = 0$ $H_{\nu} \equiv m_{\nu} m_{\nu}^{\dagger} \text{ and } H_l \equiv m_l m_l^{\dagger}$

Branco, de Medeiros Varzielas and S.F.K., 1502.03105 1505.06165

S₄ and A₄ models with CP symmetry are constructed,all the possible cases following from the model-independent analysis ² can be realized. Dirac CP phase is predicted to be trivial or maximal.

 $\Delta(96), \Delta(6n^2), \Delta(3n^2)$ allows many possible predictions for Dirac CP phase in semidirect models

Semi-Direct Models Klein

Family Generators GSymmetry S,T,U Reviews: Δ (96) **A5 S4** S.F.K.,Luhn 1301.1340; TB (BM) **BT** mixing **GR** mixing S.F.K., Merle, mixing at LO at LO at LO Morisi, Shimizu, Tanimoto, T broken U broken S,U broken 1402.4271 or **A4** Charged General HO TMI or TM2 Lepton mixing corrections corrections No Sum Solar Sum **Atmospheric** Antusch, S.F.K. Sum Rules Rules Rules 0506297/0508044 $\theta_{12} \approx \theta_{12}^{\nu} + \theta_{13} \cos \delta$

Klein symmetry and T are partly preserved as subgroups of some family symmetry

ΤB	=	tri-bimaximal
BM	=	bimaximal
GR	=	golden ratio
BT	=	bi-trimaximal
TM	=	trimaximal

	θ_{13}	θ_{23}	θ_{12}
TB	0°	45°	35.3°
BM	0°	45°	45°
GR	0°	45°	31.7°
BT	12.2°	36.2°	36.2°
TM	$\neq 0^{\circ}$	$\neq 45^{\circ}$	35.3°

Indirect Models

And Vacuum alignments
Symmetry preserving
eigenvectors of group elements

$$\langle \phi \rangle = \begin{pmatrix} 0 \\ 0 \\ v \end{pmatrix} \begin{pmatrix} 0 \\ v \\ 0 \end{pmatrix} \begin{pmatrix} v \\ 0 \\ v \\ 0 \end{pmatrix} \begin{pmatrix} \pm v \\ \pm v \\ \pm v \\ \pm v \end{pmatrix} \langle \phi \rangle = \begin{pmatrix} 0 \\ v \\ v \\ -v \end{pmatrix}, \begin{pmatrix} v \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Firect
New Orthogonal alignments
 $\langle \phi \rangle = \begin{pmatrix} 2v \\ -v \\ v \end{pmatrix} \perp \begin{pmatrix} v \\ v \\ -v \end{pmatrix}, \begin{pmatrix} 0 \\ v \\ \pm v \\ \pm v \end{pmatrix} \langle \phi \rangle = \begin{pmatrix} 0 \\ v \\ v \\ -v \end{pmatrix} \perp \begin{pmatrix} v \\ 0 \\ v \\ -v \end{pmatrix} \downarrow \begin{pmatrix} 2v \\ -v \\ v \end{pmatrix}$

Minimal PredictiveS.F.K. 1304.6264
Björkeroth and S.F.K. 1412.6996
Two right-handed
neutrinos ("minimal")
 $M_1 = M_{\rm atm}$ and $M_2 = M_{\rm sol}$

 $\frac{3.3}{H(L.\phi_{\rm atm})N_{\rm atm}^c} + H(L.\phi_{\rm sol})N_{\rm sol}^c + M_{\rm atm}N_{\rm atm}^cN_{\rm atm}^c + M_{\rm sol}N_{\rm sol}^cN_{\rm sol}^c$

 $\langle \phi_{\text{atm}} \rangle = v_{\text{atm}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \langle \phi_{\text{sol}} \rangle = v_{\text{sol}} \begin{pmatrix} 1 \\ n \\ n-2 \end{pmatrix} \quad \stackrel{\text{*NEW* indirect}}{\text{alignments}} \\ \begin{array}{l} \text{dignments} \\ \text{("predictive")} \end{pmatrix} \\ \lambda^{\nu} = \begin{pmatrix} 0 & b \\ a & nb \\ a & (n-2)b \end{pmatrix}, \quad M^{c} = \begin{pmatrix} M_{1} & 0 \\ 0 & M_{2} \end{pmatrix} \quad \stackrel{\text{Seesaw}}{\text{matrices}} \\ \begin{array}{l} \text{matrices} \end{pmatrix} \\ m_{(n)}^{\nu} = m_{a} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_{b} e^{i\eta} \begin{pmatrix} 1 & n & n-2 \\ n & n^{2} & n(n-2) \\ n-2 & n(n-2) & (n-2)^{2} \end{pmatrix} \quad \stackrel{\text{Neutrino}}{\text{mass}} \\ \begin{array}{l} \text{matrix} \end{pmatrix} \\ m_{n}^{\nu} = m_{n} \left(n - 2 \right) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_{b} e^{i\eta} \begin{pmatrix} 1 & n & n-2 \\ n & n^{2} & n(n-2) \\ n-2 & n(n-2) & (n-2)^{2} \end{pmatrix} \\ \begin{array}{l} \text{matrix} \end{pmatrix} \\ m_{n}^{\nu} = m_{n} \left(n - 2 \right) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \\ \end{array}$

Björkeroth, de Anda, de Medieoros Varzielas and S.F.K. 1503.03306 Towards a complete A4xSU(5) SUSY GUT

- Renormalisable at GUT scale, SU(5) breaking potential, spontaneously broken CP.
- The MSSM is reproduced with R-parity emerging from a discrete Z_4^R .
- Doublet-triplet splitting is achieved through the Missing Partner mechanism.
- mu term is generated at the correct scale.
- Proton decay is sufficiently suppressed.
- It solves the strong CP problem through the Nelson-Barr mechanism.
- Explains quark mass hierarchies, mixing angles and the CP phase.
- Reproduces minimal predictive seesaw model with CSD(3) alignment.
- Two right-handed neutrinos, lighter one dominantly giving atmospheric neutrino mass.
- Z_9 flavour symmetry fixes the phase η to be one of ninth roots of unity, choose 2pi/3

0.0	Ø. Ø.	在最	- 6 A	6.8	\$ B		<u>0</u> B	6.6	4.4	£\$ £1	6.	£ 6	2 6.2		急 私祭	有限	0.0 0	4	6.8	1	新春
		$H_{\bar{5}}$		Λ_{24}		lξ		Λ_{24}		ϕ_e				$H_{\bar{5}}$	ΙΛ	24	$ \xi $		H_{24}		ϕ_{μ}
		1	1					1	1				1		I		1	1			
		' I	Ļ	- 2 1		' 	-] - ·		, ,							17 1		, , ,			l
			B	Jori	kero			Anda,	ae I	Medieo	ros — -	varz	ieias	s an		.K.]		306	3.7		
T_1			X_7		X_8	X	9	X_1	10	F		T_1		X_7	, tl_fysta	X_8	X_9		X_6		
	4).				U								
1	Ferm	íons	Repre	sentat	tion		[Hiac		Repre	sentat	tion			Flavo	ns	Repres	sentat	tion		
	Field	A_4	SU(5)	\mathbb{Z}_9	\mathbb{Z}_6	\mathbb{Z}_4^R		Field		SU(5)	Zo	7.0	\mathbb{Z}^R		Field	A_4	SU(5)	\mathbb{Z}_9	\mathbb{Z}_6	\mathbb{Z}_4^R	
		2				1		TT		50(0)					ξ	1	1	2	0	0	
	$\begin{bmatrix} F \\ T_1 \end{bmatrix}$	э 1	$\frac{5}{10}$	$\begin{bmatrix} 0\\5 \end{bmatrix}$		1		Н ₅ Н=		$\frac{5}{5}$	$\begin{vmatrix} 0\\ 2 \end{vmatrix}$				θ_1	1	1	1	3	0	
	T_2	1	10	7	0	1		H_{24}	1'	24	$\begin{vmatrix} 2\\ 3 \end{vmatrix}$		0		θ_2	1	1	1	4	0	
1	$\begin{bmatrix} T_3 \\ N_1^c \end{bmatrix}$	1	10 1	$\begin{vmatrix} 0\\7 \end{vmatrix}$	$\begin{vmatrix} 0\\ 3 \end{vmatrix}$	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$		Λ_{24}	1'	24	0	0	0		ϕ_e	3	1	0	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	0	
	$\begin{bmatrix} N_1^c \\ N_2^c \end{bmatrix}$	1	1	8	3	1		$H_{45} = H_{}$		$\frac{45}{45}$	$\begin{vmatrix} 4 \\ 5 \end{vmatrix}$	$\begin{vmatrix} 0\\0 \end{vmatrix}$	$\begin{vmatrix} 2\\ 0 \end{vmatrix}$		ϕ_{μ}	$\frac{3}{3}$	1	3 7		0	
	Γ	1	1	0	3	1		$11_{\overline{45}}$	1	40	0	0			$ \qquad \forall \tau$		1			Ū	
š. 8.				H	${\bf E}\phi_{\tau}$	<u></u>		I	$H_{\overline{AE}}I$	$H_{24}\phi_{\mu}$			<i>I</i>	$I_{\bar{s}} \mathcal{E}$	ϕ_{e} _	22		$H_{\bar{s}}$	ξφ.,		
N	dowr	$_{n} =$	$d_{33}T$	$3 - \frac{1}{7}$		F +	$- d_2$	$_{2}T_{2}$ -	40	$\frac{2 + \mu}{\sqrt{2}}$	F +	$-d_{12}$	$_{1}T_{1}-$	1	$\frac{r}{\sqrt{2}}F$ -	$+ d_1$	$_2T_1$		$\frac{5 / \mu}{/ TT}$	$\overline{}$	F
				1	VI				Ν	12	_		ζ.	Λ_{24}	\rangle^{-}		<1	1_{24}	$\langle \Pi_2$	$24\rangle$	
										Asymm	etric I	matri	X	1	$\langle \xi \rangle v_{a}$		$\langle \mathcal{E} \rangle v_{\mu}$		1		
					(5	n_i	j		-smalle - Nelson	-Barr	det Y	r=real	1	$\frac{\langle \mathbf{S} \rangle \circ \mathbf{e}}{2}$		<u>\\$/°µ</u>		0		
И	$V_{\rm up}$ =	= u	$U_{ij}H_5$	$T_i T$	j	$\frac{3}{\Lambda I}$				11000077		1.00	10010	13	$v_{\Lambda_{24}}$	v_{Λ}	$\Lambda_{24} v_{H_{24}}$	1			
						M ,	/			Y	$\mathcal{L}R$	$\sim Y$	$re_{RL} \sim$,	0		$\frac{H_{24} 0 \mu}{\mu}$		0		
					20		12	$\tilde{\epsilon} 4 \tilde{\epsilon}$	ž3	$\tilde{\xi}^2$							M^2				
- -	711.			$\left< \right> \right>$	n_{ij}		15		?	S Z		CIO	han		0		0	_	$\frac{v_{\tau}}{2}$		
Ŷ	ij =	$= u_i$	$j \left(\frac{1}{\sqrt{2}} \right)$	$\overline{\Lambda}$		\sim	\hat{a}	ξ		ξ			ÚSCH		Ũ		Ũ	_	M'		
	ct	KOIA	a hier	VI J		£				1/	Y_{22}^{e}	relut	tions	Y_{22}^e	, 9		Y_{11}^{e}	Y_{21}^{e}	4		
	SU				ig o	(`			/	$\frac{33}{V_{ss}^d}$	= 1	,	$\frac{22}{V_{a}^d}$	$\frac{1}{2}=\frac{1}{2},$		$\frac{11}{V^d} =$	$\frac{21}{V_{10}^d}$	$= \frac{1}{0}$	•	
up quurk musses 133									-		- 22	2		- 11	- 12	5					

A4XSU(5) SUSY GUT Higgs + flavors Representation

Fei	mion	Representation									
	Field	A_4	SU(5)	\mathbb{Z}_9	\mathbb{Z}_6	\mathbb{Z}_4^R					
	F	3	$\overline{5}$	0	0	1					
	T_1	1	10	5	0	1					
	T_2	1	10	7	0	1					
	T_3	1	10	0	0	1					
-	$N_{ m atm}^c$	1	1	7	3	1					
	$N_{ m sol}^c$	1	1	8	3	1					
-17	Г	1	1	0	3	1					

39	s+fla	vons	Ps4.			
	Field	A_4	SU(5)	\mathbb{Z}_9	\mathbb{Z}_6	\mathbb{Z}_4^R
	H_5	1	5	0	0	0
	$H_{\overline{5}}$	1	$\overline{5}$	2	0	0
- -	H_{45}	1	45	4	0	2
	$H_{\overline{45}}$	1	$\overline{45}$	5	0	0
	ξ	1	1	2	0	0
	$ heta_2$	1	1	1	4	0
-	$\phi_{ m atm}$	3	1	3	1	0
	$\phi_{ m sol}$	3	1	2	1	0
		-				

$$W_{\nu} = y_{1}H_{5}F\frac{\phi_{\text{atm}}}{\langle\theta_{2}\rangle}N_{\text{atm}}^{c} + y_{2}H_{5}F\frac{\phi_{\text{sol}}}{\langle\theta_{2}\rangle}N_{\text{sol}}^{c} + y_{3}\frac{\xi^{2}}{M_{\Gamma}}N_{\text{atm}}^{c}N_{\text{atm}}^{c} + y_{4}\xi N_{\text{sol}}^{c}N_{\text{sol}}^{c}$$

$$\langle\phi_{\text{atm}}\rangle = v_{\text{atm}}\begin{pmatrix}0\\1\\1\end{pmatrix}, \text{CSD(3)} \langle\phi_{\text{sol}}\rangle = v_{\text{sol}}\begin{pmatrix}1\\3\\1\end{pmatrix} \qquad \text{Reproduces} \\ minimal \\ predictive seesaw \\ with CSD(3) \\ M_{1} = M_{\text{atm}} \text{ and } M_{2} = M_{\text{sol}} \end{pmatrix}$$

Björkeroth, de Anda, de Medeiros Varzielas and S.F.K. 1505.05504

Leptogenesis in minimal predictive seesaw

*The phase eta is the only source of CP violation in neutrino oscillations and leptogenesis

*Positive eta is associated with positive baryon asymmetry and negative oscillation phase

Testing SUSY flavour models

In the diagonal down quark basis (Super CKM basis) the down squark mass matrix is

Matrix is diagonal corresponds to "minimal flavour violation" we say that SUSY is "flavour blind"

Constraín off-díagonal elements from rare/FC processes

$$(\delta_{ij}^{d})_{LL} = \frac{(\Delta_{ij}^{d})_{LL}}{m_{\tilde{d}_{iL}} m_{\tilde{d}_{jL}}} \qquad (\delta_{ij}^{d})_{RR} = \frac{(\Delta_{ij}^{d})_{RR}}{m_{\tilde{d}_{iR}} m_{\tilde{d}_{jR}}} \qquad (\delta_{ij}^{d})_{LR} = \frac{(\Delta_{ij}^{d})_{LR}}{m_{\tilde{d}_{iL}} m_{\tilde{d}_{jR}}}$$

Dimou, Hagedorn, S.F.K., Luhn (to appear) Testing SUSY flavour models

semi	Ν	Aatter	fiel	ds	Higgs fields			Flavon fields								
direct model	T_3	Т	F	ν^c	H_5	$H_{\overline{5}}$	$H_{\overline{45}}$	$\overline{\phi^u_2}$	$\widetilde{\phi}_2^{\scriptscriptstyle u}$	ϕ_3^d	$\widetilde{\phi}^d_{oldsymbol{3}}$	ϕ^d_2	$\phi^{ u}_{3'}$	$\phi_2^{ u}$	$\phi_1^{ u}$	$-\eta$
$SU(5)$ S_4 $U(1)$	10 1 0	10 2 5	5 3 4	1 3 -4	5 1 0	5 1 0	45 1 1	1 2 -10	1 2 0	1 3 -4	1 3 -11	1 2 1	1 3' 8	1 2 8	1 1 8	1 1 7
δ^u_{LL}	$\sim \begin{pmatrix} 1 \\ \cdot \\ \cdot \\ \cdot \end{pmatrix}$	$\lambda^4 \lambda^6$ 1 λ^4 \cdot 1	$\begin{pmatrix} 6\\5\\ \end{pmatrix}$,	δ^u_{RR} ,	$\sim \begin{pmatrix} 1 \\ \cdot \\ \cdot \\ \cdot \end{pmatrix}$	$egin{array}{ccc} \lambda^4 & \lambda^6 \ 1 & \lambda^5 \ \cdot & 1 \end{array}$	$\Big), \delta$	$\tilde{b}^u_{LR} \sim \left($	$egin{pmatrix} \lambda^8 & 0 \ 0 & \lambda^4 \ 0 & \lambda^7 \ \end{pmatrix}$	$egin{array}{c} \lambda^7 \ \lambda^6 \ 1 \ \end{pmatrix},$	Mím Víolati	ics M ion (r pc	íním NFV) owers d	al Fla due t of λ ?	vour o hígl ≈ 0.2	h 22
$\delta^d_{LL} \sim$	$\left(egin{array}{ccc} 1 \ \lambda^3 \ \cdot \ 1 \ \cdot \ \cdot \end{array} ight)$	$\begin{pmatrix} 3 & \lambda^4 \\ \lambda^2 \\ 1 \end{pmatrix}$,	$\delta^d_{RR} \sim$	$\begin{pmatrix} 1 \ \lambda^4 \\ \cdot \ 1 \\ \cdot \ \cdot \end{pmatrix}$	$\begin{pmatrix} \lambda^4 \\ \lambda^4 \\ 1 \end{pmatrix}$	$, \delta^d_{LR}$	$\sim \begin{pmatrix} \lambda^6 \\ \lambda^5 \\ \lambda^6 \end{pmatrix}$	$egin{array}{ccc} \lambda^5 & \lambda^5 \ \lambda^4 & \lambda^4 \ \lambda^6 & \lambda^2 \end{array}$		$(\delta^f_{LL}$	$)_{ij} = -$	$\frac{(m_{\tilde{f}_{LL}}^2)}{\langle m_{\tilde{f}} \rangle_L^2}$ $(m_{\tilde{f}_{RR}}^2)$	$\frac{ij}{L}$ ij		
$\delta^e_{LL} \sim$	$\left(egin{array}{ccc} 1 \ \lambda^4 \ \cdot \ 1 \ \cdot \ \cdot \end{array} ight)$	$\begin{pmatrix} 4 & \lambda^4 \\ \lambda^4 \\ 1 \end{pmatrix}$,	$\delta^e_{RR} \sim$	$ \begin{pmatrix} 1 & \lambda^3 \\ \cdot & 1 \\ \cdot & \cdot \end{pmatrix} $	$\begin{pmatrix} \lambda^4 \\ \lambda^2 \\ 1 \end{pmatrix}$	$, \delta^e_{LR}$	$\sim \begin{pmatrix} \lambda^6 \\ \lambda^5 \\ \lambda^5 \end{pmatrix}$	$\lambda^5 \ \lambda^6 \ \lambda^4 \ \lambda^6 \ \lambda^4 \ \lambda^2$		(δ^f_{LR})	$(j)_{ij} = -$	$\frac{\langle m_{\tilde{f}} \rangle_{RI}^2}{(m_{\tilde{f}_{LR}}^2)}$ $\frac{\langle m_{\tilde{f}} \rangle_{L}^2}{\langle m_{\tilde{f}} \rangle_{L}^2}$	$\frac{1}{R}$		

- □ GUT x Discrete Family Symmetry very predictive framework
- \Box <u>Direct models</u>: Klein and T from Delta (6n²), zero Dirac phase
- □ <u>Semi-direct models</u>: partial symmetry S or SU, allows smaller groups, lepton mixing sum rules, CP predictions
- Indirect models: allows A₄ broken by orthogonal CSD(n) alignments, gives minimal predictive seesaw
- □ A4XSU(5) SUSY GUT based on CSD(3), predictive, complete
- □ SUSY flavour models mímic MFV with testable deviations
- □ SU(5) with discrete flavour symmetry from F-theory