Anisotropic Clustering Measurements using Fourier Space Wedges and the status of the BOSS DR12 analysis

Jan Niklas Grieb

Max-Planck-Institut für extraterrestrische Physik, Garching bei München

Universitäts-Sternwarte München, Ludwig-Maximilians-Universität München

TR33 Corfu Workshop Thursday, September 20th, 2015

collaborators: A. Sánchez, F. Montesano, S. Salazar, R. Scoccimarro, M. Crocce, C. Dalla Vechia, and the Galaxy Clustering working group

Outline

- 2 Anisotropic Clustering in Fourier Space
- Ovariance Matrices for Cubic and Cut-Sky Catalogues
- 4 Verification of the RSD Modelling
- 5 BOSS DR12 status

Jan Grieb (MPE, Garching)

Introduction: BOSS, a large spec-z galaxy survey

Galaxy clustering with BOSS

- spectroscopic redshifts
- dense and robust targets:
 - luminous red galaxies (LOWZ) &
 - *M*_{*}- and volume limited (CMASS)
- $\bar{n} = 3 \cdot 10^{-4} \left(\frac{h}{Mpc}\right)^3$
- large volume: 7.4 Gpc³, 0.2 ≤ z ≤ 0.75
- biased tracer of LSS (b ∼ 2)

source: [lbl.gov]

• rich analysis [Anderson et al. '14, Beutler et al. '14]

DR12 catalogue release

Jan Grieb (MPE, Garching)

Motivation: anisotropic analysis of galaxy clustering

Aim for the BOSS Analysis

 Baryonic Acoustic Oscillations imprint in galaxy clustering signal

source: [F. Montesano]

- BAO serves as standard ruler
- probe of expansion history

Line-of-Sight Decomposition

• *z*-space matter clustering is inherently anisotropic

• constrain separately

$$D_A(z) = \frac{s_\perp}{\Delta \alpha (1+z)}$$

and $H(z) = \frac{c \Delta z}{s_{||}}$

Jan Grieb (MPE, Garching)

Extend clustering wedges to Fourier space

- analysis of config.-space wedges for BOSS DR11 [Sánchez et al. '13a, Sánchez et al. '13b]
- bad $\frac{S}{N}$ for fine μ -bins!

Power Spectrum Wedges

- $P(k,\mu) = \langle \delta(k,\mu) \delta^*(k,\mu) \rangle$
- averaged over wide bins in μ
- $P_{\mu_1,\mu_2}(k) \equiv \frac{1}{\mu_2 \mu_1} \int_{\mu_1}^{\mu_2} P(\mu, k) \, \mathrm{d}\mu$
- harmonized S/N
- simple window function description
- transverse projection
 - $P_{\perp}(k) \equiv P_{0,rac{1}{2}}(k)$
- line-of-sight projection $P_{\parallel}(k) \equiv P_{\frac{1}{2},1}(k)$

Extend clustering wedges to Fourier space

- analysis of config.-space wedges for BOSS DR11 [Sánchez et al. '13a, Sánchez et al. '13b]
- bad $\frac{S}{N}$ for fine μ -bins!

Power Spectrum Wedges

- $P(k,\mu) = \langle \delta(k,\mu) \delta^*(k,\mu) \rangle$
- \bullet averaged over wide bins in μ
- $P_{\mu_1,\mu_2}(k) \equiv \frac{1}{\mu_2 \mu_1} \int_{\mu_1}^{\mu_2} P(\mu, k) \, \mathrm{d}\mu$
- harmonized S/N
- simple window function description
- S/N even high enough for three wedges

•
$$P_{3w,i}(k) \equiv P_{\frac{i-1}{3},\frac{i}{3}}(k)$$

Jan Grieb (MPE, Garching)

Measurements of Anisotropic Fourier-Space Clustering

Yamamoto-Blake estimator

- per-object-LOS approximation instead of pairwise LOS
- single direct sum (slow) [Yamamoto et al. '06, Blake et al. '11]
- wide-angle bias for low-z and $\ell \geq 4$ [Samushia et al. '15]

Jan Grieb (MPE, Garching)

Yamamoto-Blake estimator for Fourier space wedges

Yamamoto-Blake estimator for power spectrum multipoles

- covariance of density field with multipole field
- apply FKP weights to optimize variance [Feldman et al. '94]
- FFT-scheme for $P_{\ell}(\mu)$ developed [Bianchi et al. '15, Scoccimarro '15]
- much better scaling $N_{\rm fft} \log N_{\rm fft}$ instead of $N_k (N_{\rm gal} + N_{\rm rnd})$
- only works for a polynomial μ dependence
- transform $P_{\ell}(k)$ to wedges by

$$P_{\mu_1,\mu_2}(k) = \frac{1}{\mu_2 - \mu_1} \sum_{\ell \in \{0,2,4\}} P_\ell(k) \int_{\mu_1}^{\mu_2} \mathcal{L}_\ell(\mu) \, \mathrm{d}\mu$$

Jan Grieb (MPE, Garching)

FFT-based Clustering Wedges Estimation

• Test on 1000 QPM CMASS mocks (NGC, no fibre collisions)

• similar results for covariance matrix

Jan Grieb (MPE, Garching)

The Effect of the Window Function

• Convolution with wedge window function (assuming isotropy) – in analogy to monopole:

$$P_{a}^{\text{conv}}(k) = \int d^{3}\boldsymbol{k}' \left[P_{a}^{\text{model}}(k') W_{a}^{2}(|k\hat{\boldsymbol{e}}_{z} - \boldsymbol{k}'|) - \frac{W_{a}^{2}(k)}{W_{0}^{2}(0)} P_{0}^{\text{model}}(k') W_{0}^{2}(k') \right].$$

(second term: integral constraint)

Jan Grieb (MPE, Garching)

Covariance estimation for Clustering Wedges

- Estimate for $P_a(k_i)$ -covariance $C_{ab}(k_i, k_j)$ either
 - theoretically derived (smooth, model required) or
 - easured from a large set of synthetic catalogues (noisy)

Full N-body MINERVA simulations

- Verification of covariance estimate (and RSD modelling)
- 100 realizations, $V = 3.37 (Gpc/h)^3$
- HOD galaxies at z = 0.57 mimicking CMASS sample (similar n
 and clustering)

The Covariance Matrix for Fourier-Space Wedges

- Need of a smooth and accurate covariance estimate for verification of RSD modelling
- For a regular cubic simulation, Fourier modes P(k, μ) are uncorrelated on large scales
- Variance can be constructed by a Gaussian model using an RSD power spectrum
- published together with configuration-space covariance [JG et al. '15a (submitted)]

Jan Grieb (MPE, Garching)

Synthetic Catalogues as Covariance Estimate

- noise in covariance propagates to the final constraints [Percival et al. '14]
- accurate constraints require $\mathcal{O}(10^3)$ of synthetic catalogs (mocks)
- quick generation: non-linear evolution w/ fast approximative schemes
- mimicking full survey including veto regions and fibre collisions

Jan Grieb (MPE, Garching)

BOSS DR12 Fourier Space Wedges

11/16

The Covariance Matrix for Fourier-Space Wedges

- the survey geometry introduces correlations on the off-diagonals
- fibre collisions also correlate distant bins
- two sets of mocks: MULTIDARK-PATCHY and QPM

Modelling the Power Spectrum in the trans-linear regime

- new approach for renormalized perturbation theory (gRPT) [Scoccimarro, Crocce et al. '15 (in prep.)]
- linear, non-linear and non-local galaxy bias (b₁, b₂, γ₂, γ₃, σ₈)
- RSD using a new concept for the fingers-of-God (a)
- fit of BAO-AP ($\alpha_{\parallel}, \alpha_{\perp}$), and RSD (*f*, growth of structure)
- same model used in, both, configuration and Fourier space

Jan Grieb (MPE, Garching)

13/16

Verification of the modelling

Validation of the RSD modelling

- Verify the modelling of PS wedges with MINERVA simulations
- Smallest possible modes $-k_{max}$ to get unbiased parameters?

- unbiased α_{\parallel} , $\alpha_{\perp} \in f \sigma_8$ sets limit $k_{\text{max}} = 0.2 \ h/\text{Mpc}$
- varying the shot noise (prepare for cut-sky fits) introduces small $\alpha_{\perp,||}$ bias
- tighter constraints for 3 wedges

Jan Grieb (MPE, Garching)

Introduction and Motivation Anisotropic Clustering Covariance Estimation Model Verification BOSS DR12 status Conclusions

Ready to fit the DR12 galaxy catalog

PS fits not ready for the public yet, but...

- model predictions using Ariel's preliminary 2PCF fits
- good agreement between Fourier and configuration space
- be patient until the release!

Jan Grieb (MPE, Garching)

Conclusions

i) new RSD model for galaxy clustering

- Major improvement, state-of-the art modelling for analysis both in configuration and Fourier space
- Tested and validated with large-scale simulations

ii) BOSS Power Spectrum Wedges

- largest volume probed so far for galaxy clustering analysis, optimized data processing and fitting
- intensive work on final analysis
- highest demands: complementary analysis for multipoles and wedges in conf. and Fourier space

 $\mu = \cos(\theta)$

References I

References II

W. J. Percival, A. J. Ross, A. G. Sánchez, L. Samushia, A. Burden, et al. (BOSS Collaboration), Mon.Not.Roy.Astron.Soc. 439 , 2531 (2014)
L. Samushia, E. Branchini, and W. Percival, (2015), arXiv:1504.02135
A. G. Sánchez, E. A. Kazin, F. Beutler, et al. (BOSS Collaboration) Mon.Not.RoyAstron.Soc. 433 1202 (2013), arXiv:1303.4396
A. G. Sánchez, F. Montesano, E. A. Kazin, et al. (BOSS Collaboration) Mon.Not.RoyAstron.Soc. 440 692 (2013), arXiv:1312.4854
R. Scoccimarro, (2015), arXiv:1506.02729
K. Yamamoto, M. Nakamichi, A. Kamino, B. A. Bassett, H. Nishioka, Publ.Astron.Soc.Jap., 58, 93 (2006), arXiv:astro-ph/0505115

Angular Diameter Distance and the BAO

• Angular Diameter Distance,

$$D_A(z) = c \int_0^z \frac{\mathrm{d}z'}{H(z')}$$

• Sound Horizon,

$$r_s = \int_0^{t_{
m dec}} rac{c_s(t')\,{
m d}t'}{a(t')}$$
 ,
known from CMB measurements

 $(r_s = 147 \; \mathrm{Mpc} \; [\mathrm{Komatsu \; et \; al. \; '11}])$

• From the BAO position, we can get $(r_{AB} = r_s)$ $\theta_{BAO} = \frac{1}{1+z} \frac{r_s}{D_A(z)}$ $\Delta z_{BAO} = \frac{r_s H(z)}{c}$

Jan Grieb (MPE, Garching)

BOSS DR12 Fourier Space Wedges

III/IX

Dependence of Geometry on Cosmology

- Fiducial cosmology of simulations: $w = w_{\text{true}} = -1$
- Assumed cosmology from measurement: $w_{assumed} = w_{true} + \Delta w$
- Mismatch causes geometry of the late universe to be misinterpreted
- Relates to change $\alpha = k_{app}/k_{true}$ [Angulo et al. '08] $\alpha_{\perp} = \frac{D_A(z, w_{assumed})}{D_A(z, w_{true})}, \quad \alpha_{\parallel} = \frac{H(z, w_{true})}{H(z, w_{assumed})}$ $\alpha \approx \alpha_{\perp}^{-2/3} \alpha_{\parallel}^{1/3}$

 D_A angular diameter distance, H Hubble parameter D_A and the BAO

- Goals: $\langle \alpha
 angle = 1$ (no bias), $\langle |\Delta \alpha|
 angle \ll 1$ (high precision)
- $\Delta \alpha$ and Δw of same magnitude

🗣 go back

References

FFT-based Clustering Wedges Estimation – Covariance

((**))

 $(k_i) \sigma_{pet}$ 0.8

 $(k_i,k_i)/(\sigma_{P_i^{(l)}}$

1.0

0.6

0.4

0.0 0.1 0.2 0.0 0.1

0.2 0.0 0.1 0.2 0.3

 $k_i [h/Mpc]$

0.2

0.1

0.0

0.2

0.*

0.2

0.1

÷ 0.0

[h/Mpc]

BOSS DR12 Fourier Space Wedges

◄ qo bacl

References

Estimation of Model Parameters using MCMC

• Likelihood function for *mean* power spectrum wedges $\bar{P}_{\parallel,\perp}(k)$, measured at wavenumber bins k_i : $\mathcal{P}(\bar{P}|\theta) \propto \exp[-\chi^2(\bar{P}|\theta)/2]$, where

$$\chi^{2}(\bar{P}|\theta) = \sum_{x,y,i,j} \left[\bar{P}_{x}(k_{i}) - P_{x,\text{rpt}}(k_{i}) \right] C_{xyij}^{-1} \left[\bar{P}_{y}(k_{j}) - P_{y,\text{rpt}}(k_{j}) \right]$$

• covariance matrix estimated from set of realizations

$$C_{xyij} = \langle \left[P_x(k_i) - \bar{P}_x(k_i) \right] \left[P_y(k_j) - \bar{P}_y(k_j) \right] \rangle$$

- inverse corrected for noise [Hartlap et al. '06]
- step through parameter space using Markov chain Monte Carlo

Jan Grieb (MPE, Garching)

Excursion to Configuration-Space Wedges

• significant correlation because of Fourier transform

• 2PCF variance can be constructed from $\sigma_P^2(k, \mu)$ easily by integration [JG et al. '15a (submitted)] upper diag: data / lower diag: theory

Measurement Noise Level

 high level of noise because #bins ≃ #simulations

Jan Grieb (MPE, Garching)

BOSS DR12 Fourier Space Wedges

VII/IX

QPM Mocks: PS wedges and their covariance

• low-resolution particle mesh + HOD post-processing, 1000 mocks

Jan Grieb (MPE, Garching)

BOSS DR12 Fourier Space Wedges

Corfu, Sep 17th, 2015

VIII/IX

BOSS Mock Challenge

- Model performance compared in a blind challenge
- Blind results handed in and analyzed

- Too optimistic choice of k_{\max}
- Need to vary the shot noise

New Results for Cutsky Mocks