Physical points (events) of spacetime

Jerzy Lewandowski

Uniwersytet Warszawski

Corfu, July 7, 2015

Jerzy Lewandowski Physical points (events) of spacetime

The issue of point-event according to GR

- uneducated approach: point is x^{μ}
- educated: a manifold M, a point $m \in M$, coordinates

 $x^{\mu}: M \to \mathbb{R}$

• dynamics of GR:

(M, geometry, fields)/Diff

no points

- Elie Cartan, the equivalence problem: use coordinates defined naturally from $R_{\mu\nu\alpha\beta}$, $\nabla_{\delta}R_{\mu\nu\alpha\beta}$, ...
- Kijowski, Kuchar, material points: choose 4 dynamical fields

$$\phi_1, ..., \phi_4 : M \to \mathbb{M}$$

and use as natural coordinates on ${\cal M}$

• coordinates defined by distances, geodesics, angles *Duch*, *JL*, *Swiezewski*, *Kaminski*, *Bodendorfer...*,

Observed spacetime

Observer:

- M a 4-manifold
- $\mathbb{R}
 i au \mapsto \gamma(au) \in M$ a curve

 $\mathcal G$ is the set of the spacetime metric tensors g on M such that

$$abla_{\dot\gamma}\dot\gamma ~=~ 0, \qquad \dot\gamma:= rac{d}{d au}\gamma(au)$$

• $\mathcal{G} \ni g \mapsto e_0, e_1, e_2, e_3$ - a tangent frame along γ such that

$$(e_1, e_2, e_3, e_4 := \dot{\gamma})$$

is orthonormal, and

$$abla_{\dot{\gamma}} e_{\mu} = 0$$

For every metric tensor

 $\textbf{g}\in\mathcal{G}$

we define in a neighborhood of γ (BLACKBOARD):

 $\bullet\,$ cylindrical coordinates singular at $\gamma\,$

 (r, θ, ϕ, τ)

• and non-singular Cartesian coordinates

 (x, y, z, τ)

$$z = r \cos \theta$$
, $x = \cos \varphi \sin \theta$, $y = \sin \varphi \sin \theta$

Each coordinate is defined in a way invaruiant the diffeomorhisms.

Spacetime according to the observer

We have defined a metric g dependent map

$$O: \mathbb{R}^4 \ni (x, y, z, \tau) \mapsto m(g; x, y, z, \tau) \in M$$

It endowes \mathbb{R}^4 with

$$G := O^*g,$$

G is a metric tensor in a neighborhood of the line (0, 0, 0, *),

$$G_{rr} = 1, \qquad G_{r\theta} = 0 = G_{r\phi}$$
 (1)

$$G_{\mu\nu}|_{\gamma} = \eta_{\mu\nu} \tag{2}$$

$$G_{\mu\nu,\alpha}|_{\gamma} = 0. \tag{3}$$

$$K_{rr} = 0 \tag{4}$$

where $K_{ij}dx^i dx^j$ is the extrinsic curvature of $\tau = \text{const}$ surfaces. The conditions (1-4) are sufficient for the convers construction

Gauge and, respectively, active diffeomorphisms

Now, on the observer's \mathbb{R}^4 we have the pullback of g, as well as the pullback of every (covariant) field ψ defined on M,

$$G = O^*g, \quad \Psi = O^*\psi.$$

They are all invariant with respect to all the diffeomorphisms of M preserving the observer (Diff_{gauge}).

Active diffeomorphisms ($\operatorname{Diff}_{\operatorname{act}}(g)$) may be defined by considering

$$\tilde{f}: \mathbb{R}^4 \to \mathbb{R}^4$$

such that the conditions (1-4) are satisfied by the metric \tilde{f}^*G (everything locally). That property leads to the following definition: Given a metric tensor g on M, a diffeomorphism f of M is active if the Cartesian coordinates of f^*g coincide with those of g in a neighborhood of γ ;

$$(x, y, z, \tau)(g) = (x, y, z, \tau)(f^*g).$$

The group of the active diffeomorphisms

Diff_{gauge} and Diff_{act}(g) for arbitrarily fixed $g \in \mathcal{G}$, generate all the Diff. While Diff_{gauge} are a subgroup of Diff, this is not true for Diff_{act}(g). Nonetheless they define the group of movements $\mathcal{G} \rightarrow \mathcal{G}$, in the following way:

$$\mathcal{G} \ni g \mapsto f_g \in \mathrm{Diff}_\mathrm{act}(g)$$

acts in \mathcal{G} naturally

$$g\mapsto (f_g)^*g.$$

Given another

$$\mathcal{G} \ni g \mapsto f'_g \in \mathrm{Diff}_\mathrm{act}(g)$$

the composition of the actions coincides with the action of

$$\mathcal{G} \ni g \mapsto f''_g := f_g \circ f'_{f*g} \in \mathrm{Diff}_\mathrm{act}(g)$$

Given a metric tensor g, the observer can be characterized by a point $m_0 = \gamma(0)$, and the frame $e_1, ..., e_4$ at m (it determines the geodesic γ , and the frame e_{μ} along γ) Consider another another point $m'_0 \in M$ and an orthonormal frame $e'_1, ..., e'_4$. They define another observer and coordinate chard $x'^1, ..., x'^4$. And can be used to define a local diffeomorphism f, such that

$$x^{\prime\mu}(f(m)) = x^{\mu}(m).$$

It is easy to check that

$$f \in \operatorname{Diff}_{\operatorname{act}}(g)$$

and actually, every element of $\text{Diff}_{act}(g)$ can be characterized in that way. So $\text{Diff}_{act}(g)$ is 10 dimensional.

Infinitesimal (local) characterisation of $\text{Diff}_{\text{act}}(g)$

In observer's \mathbb{R}^4 fix a pair

(L, T)

a Lorenz transformation and, respectively, a vector. They uniquely determine a vector field on ${\cal G}$

$$X_{L,T} = \int d^4 x X_{L,T}(g,x) rac{\delta}{\delta g_{\mu
u}}$$

We have: $L = R_x, R_y, R_z, B_x, B_y, B_z, T = T_x, T_y, T_z$. A general vector field on \mathcal{G} , at g, generated by the active diffeomorphisms is

$$\begin{split} X(g) &= \omega^{i}(g) X_{R_{i},0} + a^{i}(g) X_{B_{i},0} + l^{i}(g) X_{0,T_{i}} \\ & [X_{L_{1},0,}, X_{L_{2},0}] = X_{[L_{1},L_{2}],0} \\ & [X_{L,0}, X_{0,T}] = X_{[(L,0),(0,T)]} \\ & [X_{0,T}, X_{0,T'}] = X_{\operatorname{Riem}(T,T'),0} \end{split}$$

where

$$\operatorname{Riem}(T, T')^{\alpha}_{\beta} = R^{\alpha}{}_{\beta\mu\nu}(g, m_0)T^{\mu}T'\nu$$

Suppose our system consists of: the metric g and a scalar a matter field ψ . The corresponding observables have been defined:

$$(g,\psi) \mapsto \Psi(r,\theta,\phi,\tau;g,\psi) = \psi(m(g;r,\theta,\phi,\tau))$$
$$(g,\psi) \mapsto G_{\theta\theta}(r,\theta,\phi,\tau;g,\psi) = g_{\mu\nu}(m(g;r,\theta,\phi,\tau))\frac{\partial m^{\mu}}{\partial \theta}\frac{\partial m^{\nu}}{\partial \theta}$$
$$G_{\theta\phi}, G_{\phi\phi}, G_{\tau\theta}, G_{\tau\phi}, G_{\tau r} = \dots$$

The Poisson bracket:

$$\{\Psi(r,\theta,\phi,\tau),\Psi(r',\theta',\phi',\tau')\} = ?$$

$$M = \Sigma imes \mathbb{R}$$

 g, ψ on $M \leftrightarrow q, p, \psi, \pi, N, N^a$ on Σ

 $\{q_{ab}(\sigma), p^{cd}(\sigma')\} = \delta^{c}_{(a}\delta^{d)}_{b}\delta(\sigma, \sigma'), \qquad \{\psi(\sigma), \pi(\sigma')\} = \delta(\sigma, \sigma')$

An embedding adjusted to our variables r, θ, ϕ, τ , $((\theta^A) = (\theta, \phi))$:

$$\tau_{\Sigma} = \text{const}, \ q_{rr} = 1, \ q_{rA} = 0, \ p^{r}{}_{r} - p^{A}{}_{A} = 0$$

Given fixed coordinates (r, θ^A) on Σ , our construction is equivalent to introducing the above conditions as gauge conditions. For example

$$\Psi(\mathbf{r}, \theta^{\mathcal{A}}, \tau = 0; \mathbf{q}, \pi, \psi) = \psi(\mathbf{r}, \theta^{\mathcal{A}})$$

Now,

$$\{\Psi(r,\theta^{A},0),\Psi(r',\theta'^{A},0)\} = \{\psi(r,\theta^{A}),\psi(r',\theta'^{A})\}_{\mathrm{D}} \neq 0$$