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The issue of point-event according to GR

uneducated approach: point is xµ

educated: a manifold M, a point m ∈ M, coordinates

xµ : M → R

dynamics of GR:

(M, geometry, fields)/Diff

no points

Elie Cartan, the equivalence problem: use coordinates defined
naturally from Rµναβ , ∇δRµναβ , ...

Kijowski, Kuchar, material points: choose 4 dynamical fields

φ1, ..., φ4 : M →M

and use as natural coordinates on M

coordinates defined by distances, geodesics, angles Duch, JL,
Swiezewski, Kaminski, Bodendorfer...,
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Observed spacetime

Observer:

M - a 4-manifold

R 3 τ 7→ γ(τ) ∈ M - a curve

G is the set of the spacetime metric tensors g on M such that

∇γ̇ γ̇ = 0, γ̇ :=
d

dτ
γ(τ)

G 3 g 7→ e0, e1, e2, e3 - a tangent frame along γ

such that
(e1, e2, e3, e4 := γ̇)

is orthonormal, and
∇γ̇eµ = 0
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Metric depending coordinates

For every metric tensor
g ∈ G

we define in a neighborhood of γ (BLACKBOARD):

cylindrical coordinates singular at γ

(r , θ, φ, τ)

and non-singular Cartesian coordinates

(x , y , z , τ)

z = r cos θ, x = cosϕ sin θ, y = sinϕ sin θ

Each coordinate is defined in a way invaruiant the diffeomorhisms.
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Spacetime according to the observer

We have defined a metric g dependent map

O : R4 3 (x , y , z , τ) 7→ m(g ; x , y , z , τ) ∈ M

It endowes R4 with
G := O∗g ,

G is a metric tensor in a neighborhood of the line (0, 0, 0, ∗),

Grr = 1, Grθ = 0 = Grφ (1)

Gµν |γ = ηµν (2)

Gµν,α|γ = 0. (3)

Krr = 0 (4)

where Kijdx
idx j is the extrinsic curvature of τ = const surfaces.

The conditions (1-4) are sufficient for the convers construction
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Gauge and, respectively, active diffeomorphisms

Now, on the observer’s R4 we have the pullback of g , as well as
the pullback of every (covariant) field ψ defined on M,

G = O∗g , Ψ = O∗ψ.

They are all invariant with respect to all the diffeomorphisms of M
preserving the observer (Diffgauge).
Active diffeomorphisms (Diffact(g) ) may be defined by considering

f̃ : R4 → R4

such that the conditions (1-4) are satisfied by the metric f̃ ∗G
(everything locally). That property leads to the following definition:
Given a metric tensor g on M, a diffeomorphism f of M is active if
the Cartesian coordinates of f ∗g coincide with those of g in a
neighborhood of γ;

(x , y , z , τ)(g) = (x , y , z , τ)(f ∗g).
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The group of the active diffeomorphisms

Diffgauge and Diffact(g) for arbitrarily fixed g ∈ G, generate all the
Diff. While Diffgauge are a subgroup of Diff, this is not true for
Diffact(g). Nonetheless they define the group of movements
G → G, in the following way:

G 3 g 7→ fg ∈ Diffact(g)

acts in G naturally
g 7→ (fg )∗g .

Given another
G 3 g 7→ f ′g ∈ Diffact(g)

the composition of the actions coincides with the action of

G 3 g 7→ f ”g := fg ◦ f ′f ∗g ∈ Diffact(g)
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Local characterization of Diffact(g)

Given a metric tensor g , the observer can be characterized by a
point m0 = γ(0), and the frame e1, ..., e4 at m (it determines the
geodesic γ, and the frame eµ along γ) Consider another another
point m′0 ∈ M and an orthonormal frame e ′1, ..., e

′
4. They define

another observer and coordinate chard x ′1, ..., x ′4. And can be
used to define a local diffeomorphism f , such that

x ′µ(f (m)) = xµ(m).

It is easy to check that

f ∈ Diffact(g)

and actually, every element of Diffact(g) can be characterized in
that way. So Diffact(g) is 10 dimensional.
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Infinitesimal (local) characterisation of Diffact(g)

In observer’s R4 fix a pair

(L,T )

a Lorenz transformation and, respectively, a vector. They uniquely
determine a vector field on G

XL,T =

∫
d4xXL,T (g , x)

δ

δgµν

We have: L = Rx ,Ry ,Rz ,Bx ,By ,Bz , T = Tx ,Ty ,Tz . A general
vector field on G, at g , generated by the active diffeomorphisms is

X (g) = ωi (g)XRi ,0 + ai (g)XBi ,0 + l i (g)X0,Ti

[XL1,0,,XL2,0] = X[L1,L2],0

[XL,0,X0,T ] = X[(L,0),(0,T )]

[X0,T ,X0,T ′ ] = XRiem(T ,T ′),0

where
Riem(T ,T ′)αβ = Rαβµν(g ,m0)TµT ′ν
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Observables

Suppose our system consists of: the metric g and a scalar a matter
field ψ. The corresponding observables have been defined:

(g , ψ) 7→ Ψ(r , θ, φ, τ ; g , ψ) = ψ(m(g ; r , θ, φ, τ))

(g , ψ) 7→ Gθθ(r , θ, φ, τ ; g , ψ) = gµν(m(g ; r , θ, φ, τ))
∂mµ

∂θ

∂mν

∂θ

Gθφ,Gφφ,Gτθ,Gτφ,Gτ r = ...

The Poisson bracket:

{Ψ(r , θ, φ, τ),Ψ(r ′, θ′, φ′, τ ′)} = ?
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Canonical structure

M = Σ× R

g , ψ on M ↔ q, p, ψ, π,N,Na on Σ

{qab(σ), pcd(σ′)} = δc(aδ
d)
b δ(σ, σ′), {ψ(σ), π(σ′)} = δ(σ, σ′)

An embedding adjusted to our variables r , θ, φ, τ , ((θA) = (θ, φ)):

τΣ = const, qrr = 1, qrA = 0, pr r − pAA = 0

Given fixed coordinates (r , θA) on Σ, our construction is equivalent
to introducing the above conditions as gauge conditions. For
example

Ψ(r , θA, τ = 0; q, π, ψ) = ψ(r , θA)

Now,

{Ψ(r , θA, 0),Ψ(r ′, θ′A, 0)} = {ψ(r , θA), ψ(r ′, θ′A)}D 6= 0
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