CALIBRATABLE STANDARD CANDLES

Jeppe Trøst Nielsen

NBIA, Niels Bohr Institute

17th September, 2015

Based on arxiv/1506.01354, 1508.07850 work in collaboration with Alberto Guffanti & Subir Sarkar

Corfu Summer Institute 2015

MLE

Outline

The perfect standard candle

$\min \chi^2 \equiv \, {\rm MLE}$

The standard candle by MLE

Calibrated standard candles by MLE

CALIBRATABLE STANDARD CANDLES

Corfu, particles and cosmology 2015

イロト イポト イヨト イヨト

THE PERFECT STANDARD CANDLE

Imagine placing lightbulbs of the exact same luminosity $L_{SN}\approx 10^{9.5}L_{\odot}$ in the universe.

THE PERFECT STANDARD CANDLE

Imagine placing lightbulbs of the exact same luminosity $L_{SN}\approx 10^{9.5}L_{\odot}$ in the universe.

Given some experimental noise σ_{exp} on the measurement of the distance modulus $\mu = m - M(\sim \log \text{flux} - \log \text{luminosity})$ of the SNe, we can now construct a χ^2 , which we minimise to find the cosmological parameters:

$$\chi^2 = \sum_{SNe} \left(\frac{m_{SN} - M_0 - \mu_{cosmo}(z_{SN}, \Omega_m, \Omega_\Lambda)}{\sigma_{exp}} \right)^2$$

Calibratable standard candles

$$\min \chi^2 \equiv MLE$$

"why do we construct and minimise χ^2 s?"

Calibratable standard candles

$$\min \chi^2 \equiv MLE$$

"why do we construct and minimise χ^2 s?"

 $\mathcal{L} =$ probability density(data | model)

CALIBRATABLE STANDARD CANDLES

Corfu, particles and cosmology 2015

3

イロト イポト イヨト イヨト

$$\min \chi^2 \equiv MLE$$

Simple case: gaussian noise on the measurement of μ ,

$$\mathcal{L} = \prod_{SNe} (2\pi\sigma_{exp}^2)^{-1/2} \exp\left[-\frac{1}{2} \left(\frac{m_{SN} - M_0 - \mu_{cosmo}(z_{SN}, \Omega_m, \Omega_\Lambda)}{\sigma_{exp}}\right)^2\right]$$

$$\Rightarrow \chi^2 = const - 2\log \mathcal{L}$$

CALIBRATABLE STANDARD CANDLES

Corfu, particles and cosmology 2015

э

イロト イポト イヨト イヨト

What happens if the the candle is not perfect, but has an unknown intrinsic dispersion σ_{int} ? The immediate answer is of course "add the errors in quadrature!" (and fit σ_{int} somehow...) I suggest: *formulate the problem properly*, and see if we can write down the likelihood

We have an unmeasured distance modulus, μ of the SN, drawn from a gaussian with mean $\mu_0(z)$ and unknown variance σ_{int}^2 . The observed data $\hat{\mu}$ (which has a hat) is contaminated by noise with variance σ_{exp}^2 :

CALIBRATABLE STANDARD CANDLES

By using the *identity* $p(A) = \int p(A|B)p(B)dB$,

< ロ > < 同 > < 回 > < 回 > < 回 >

Calibratable standard candles

Corfu, particles and cosmology 2015

э.

By using the *identity* $p(A) = \int p(A|B)p(B)dB$, incorporate the unknown variable μ into our construction of the likelihood:

$$\begin{aligned} \mathcal{L} &= \prod_{SNe} p(\hat{\mu}) = \prod_{SNe} \int \underbrace{p(\hat{\mu}|\mu)}_{noise} \underbrace{p(\mu)}_{intrinsic} d\mu \\ &= \prod_{SNe} \int (2\pi\sigma_{int}\sigma_{exp})^{-1} \exp\left[-\frac{1}{2}\left(\frac{\hat{\mu}-\mu}{\sigma_{exp}}\right)^2 - \frac{1}{2}\left(\frac{\mu-\mu_0}{\sigma_{int}}\right)^2\right] d\mu \\ &= \prod_{SNe} (2\pi[\sigma_{int}^2 + \sigma_{exp}^2])^{-1/2} \exp\left[-\frac{1}{2}\frac{(\hat{\mu}-\mu_0)^2}{\sigma_{int}^2 + \sigma_{exp}^2}\right] \end{aligned}$$

CALIBRATABLE STANDARD CANDLES

Corfu, particles and cosmology 2015

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$-2\log \mathcal{L} = const + \sum_{SNe} \left\{ \underbrace{\frac{(\hat{\mu} - \mu_0(\Omega_m, \Omega_\Lambda))^2}{\sigma_{exp}^2 + \sigma_{int}^2}}_{\text{à la eg. Astier et al., 2006}} + \log(\sigma_{int}^2 + \sigma_{exp}^2) \right\}$$

Minimisation over cosmological parameters is as before — and we have an extra parameter, σ_{int} , for which we also find the minimum (enforcing " χ^{2} " $\approx \#$ SNe – # parameters)

Bottomline is: what we guessed was $\mathcal{O}(right answer)!$ Now, we know exactly why!

< A >

CALIBRATED STANDARD CANDLES BY MLE

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Calibratable standard candles

The measurement is now not just the distance modulus, it is also an (empirically motivated) correction parameter, x_1 . The data: μ and x_1 — a priori one is not priviledged!

The measurement is now not just the distance modulus, it is also an (empirically motivated) correction parameter, x_1 . The data: μ and x_1 — a priori one is not priviledged! Calibration of our prediction (linear!):

 $\mu_{corrected} = \mu_{cosmo} + \alpha x_1$

 α is some unspecified constant (to be fitted)

As before; what we have are 'true' values contaminated by noise:

$$p(x_1) \to x_1 \to \hat{x}_1$$

$$\underbrace{p(\mu)}_{\mu \to \mu} \to \mu \to \hat{\mu}$$

corrected by x_1

Calibratable standard candles

Corfu, particles and cosmology 2015

- 4 同 6 4 日 6 4 日 6

as before, we can write that explicitly in the likelihood:

$$\mathcal{L} = \prod_{SNe} p(\hat{\mu}, \hat{x}) = \prod_{SNe} \int d\mu \ dx \ \underbrace{p(\hat{\mu}, \hat{x} | \mu, x)}_{\text{noise}} \ \underbrace{p(\mu) \ p(x)}_{\text{modelling}}$$

noise, $p(\hat{\mu}, \hat{x} | \mu, x)$ is taken as gaussian as before, $p(\mu)$ gaussian as before.

— what about p(x) ???

(4 同) (4 回) (4 回)

Outline Standard candle MLE Standard candle by MLE Calibrated standard candle

Calibrated standard candles by MLE

As a prototype, I propose another gaussian: (as used in eg. Kowalski et al 2008, although see eg. Howell et al 2007) Count

CALIBRATABLE STANDARD CANDLES

Corfu, particles and cosmology 2015

We continue as before: construct likelihood!

$$\mathcal{L} = \prod_{SNe} p(\hat{\mu}, \hat{x}) = \prod_{SNe} \int d\mu \ dx \ \underbrace{p(\hat{\mu}, \hat{x} | \mu, x)}_{\text{noise}} \ \underbrace{p(\mu) \ p(x)}_{\text{modelling}}$$

noise, $p(\hat{\mu}, \hat{x} | \mu, x)$ is taken as gaussian as before, $p(\mu)$ gaussian as before.

— what about p(x) ? \rightarrow gaussian! \rightarrow analytic integral! (we fit the parameters of the new gaussian too!)

adding a colour term in the same fashion we get to the analysis as is today:

$$\mathcal{L} = |2\pi(\Sigma_{\mathsf{d}} + A^{\mathsf{T}}\Sigma_{l}A)|^{-1/2}$$
$$\times \exp\left[-\frac{1}{2}(\hat{Z} - Y_{0}A)(\Sigma_{\mathsf{d}} + A^{\mathsf{T}}\Sigma_{l}A)^{-1}(\hat{Z} - Y_{0}A)^{\mathsf{T}}\right]$$

(where $\hat{Z} = \{\hat{m}_B - \mu, \hat{x}_1, \hat{c}...\}$ etc.)

adding a colour term in the same fashion we get to the analysis as is today:

$$\mathcal{L} = |2\pi(\Sigma_{\mathsf{d}} + A^{\mathsf{T}}\Sigma_{l}A)|^{-1/2}$$
$$\times \exp\left[-\frac{1}{2}(\hat{Z} - Y_{0}A)(\Sigma_{\mathsf{d}} + A^{\mathsf{T}}\Sigma_{l}A)^{-1}(\hat{Z} - Y_{0}A)^{\mathsf{T}}\right]$$

(where $\hat{Z} = \{\hat{m}_B - \mu, \hat{x}_1, \hat{c}...\}$ etc.) fits both μ and x_1 and c distributions!

Outline Standard candle MLE Standard candle by MLE Calibrated standard candle

Calibrated standard candles by MLE

figure: Dashed red line: our MLE fit $(1, 2, 3\sigma)$, solid blue: JLA result $(1, 2\sigma)$. [full blue line: 10d projection $(1, 2\sigma)$]

IN CONCLUSION

- ▶ We are still learning about the shape/colour/etc.- corrections,
- our proposed method allows us explicitly to study the nature of these
- the cosmological parameters are very sensitive to our treatment and modelling of the corrections