Matrix model description of gauge theory (and gravity?)

Harold Steinacker

Department of Physics, University of Vienna

Humboldt Kolleg, Corfu 2015

Matrix model description of gauge theory (and gravity?)

Motivation

- aim: guantum theory of fundamental interactions incl. gravity
- classical geometry breaks down at Planck scale, expect quantum structure of space-time

how?

- { quantize gravity d.o.f. quantize other, pre-geometric dof: "emergent gravity"

(this talk)

< ロ > < 同 > < 回 > < 回 >

۲

Dynamical geometry

emergent NC geometry

• need models with $\left\{ \begin{array}{l} \text{admit dynamical geometry} \\ \text{well-behaved under quantization} \\ \approx \text{QFT on quantum geometries} \end{array} \right.$

Matrix Models

NC gauge theory dynamical geometry

simple, far-reaching, pre-geometric

good properties of string theory, clear-cut definition

generic feature: UV/IR mixing

 \rightarrow ONE model singled out: $\mathcal{N} = 4$ SYM \equiv IKKT model

< D > < P > < E > < E</p>

Matrix Models as fundamental theory

<u>1996</u>: BFSS model, IKTT model proposed as non-perturbative definition of M-theory / IIB string theory focus on IKKT: Ishibashi, Kawai, Kitazawa, Tsuchiya 1996

$$\begin{split} S[X,\Psi] &= -\operatorname{Tr}\left([X^{a},X^{b}][X^{a'},X^{b'}]\eta_{aa'}\eta_{bb'} + \bar{\Psi}\gamma_{a}[X^{a},\Psi]\right) \\ X^{a} &= X^{a^{\dagger}} \in \operatorname{Mat}(N,\mathbb{C}), \qquad a = 0,...,9 \qquad (N \to \infty) \end{split}$$

gauge symmetry $X^a \rightarrow UX^aU^{-1}$, SO(9,1), SUSY

 $\begin{cases} 1) \text{ nonpert. def. of IIB string theory (on <math>\mathbb{R}^{10}$) (*IKKT*) 2) $\mathcal{N} = 4$ SUSY Yang-Mills gauge thy. on "*noncommutative*" \mathbb{R}^4_{θ}

governs simultaneously (quantum) space(time) & physics on it geometry, gauge theory, ... emerge no need to invent new math!

quantization of matrix model:

$$Z = \int dX^a d\Psi \, e^{-S[X,\Psi]}$$

$$\langle Tr([X,X]...)Tr(...)\rangle = \frac{1}{Z}\int dX^a d\Psi Tr([X,X]...)Tr(...)e^{-S[X,\Psi]}$$

gauge invariant, non-perturbative

- integral well-def in Euclidean case Krauth, Staudacher 1998
- proposal for regularization in Minkowski case

 \rightarrow "Monte-Carlo" studies: Kim, Nishimura, Tsuchiya arXiv:1108.1540 ff evidence for "expanding universe" behavior, 3+1 dimensions

- includes integral over geometries!
- new techniques:

eigenvalue distribution \leftrightarrow renormalization, phase trans.

H.S. hep-th/0501174, A. Polychronakos arXiv:1306.6645, Tekel arXiv:1407.4061

RG analysis (Grosse-Wulkenhaar), multiscale analysis (Rivasseau, ...) ৩৭৫

Matrix model description of gauge theory (and gravity?)

perturbative approach:

- choose background solution (e.g. \mathbb{R}^4_{θ})
- fluctuations around \mathbb{R}^4_{θ} :
 - $\rightarrow\,$ NC gauge theory, Filk rules, (non-)planar diagrams, ...
- most models: strong UV/IR mixing, non-renormaliz.
- ONE model well-behaved (perturbatively finite ?!):

 $\mathcal{N} = 4$ NC SYM on $\mathbb{R}^4_{\theta} \Leftrightarrow$ (IKKT) model, in 9+1 dimensions

< ロ > < 同 > < 回 > < 回 >

physical meaning of X^a : quantized embedding function

 $X^a \sim x^a : \mathcal{M} \hookrightarrow \mathbb{R}^{10}$

consistent with:

- spectrum of X^a ... possible locations in x^a directions
 [X^a, X^b] ≠ 0 ⇒ non-locality, uncertainty
- $\langle X^a \rangle$ for optimally localized states \cong coherent states

I na ∩

Dynamical geometry

quantized Poisson (symplectic) manifolds

 $(\mathcal{M}, \theta^{\mu\nu}(x)) \dots 2n$ -dimensional manifold with Poisson structure Its quantization \mathcal{M}_{θ} is NC algebra such that

 $\mathcal{Q}: \ \mathcal{C}(\mathcal{M}) \ o \ \mathcal{A} \subset \mathit{End}(\mathcal{H})$

such that

 $\mathcal{Q}(f) \mathcal{Q}(g) = \mathcal{Q}(fg) + O(\theta)$ $[\mathcal{Q}(f), \mathcal{Q}(g)] = \mathcal{Q}(i\{f, g\}) + O(\theta^2)$

 $\Phi = \mathcal{Q}(\phi) \in End(\mathcal{H}) \quad \sim \quad \text{quantized function } \phi(x) \text{ on } \mathcal{M}$

semi-class:

$$(2\pi)^n \operatorname{Tr} \mathcal{Q}(\phi) \sim \int \omega^n \phi(\mathbf{x})$$

in particular:

$$X^a \sim x^a$$
: $\mathcal{M} \hookrightarrow \mathbb{R}^{10}$

э.

Example: the fuzzy sphere S_N^2

$$\frac{\text{classical } S^2:}{x^a x^a} = \begin{pmatrix} x^a : S^2 \hookrightarrow \mathbb{R}^3 \\ x^a x^a &= 1 \end{pmatrix} \Rightarrow \mathcal{A} = \mathcal{C}^{\infty}(S^2)$$

fuzzy sphere S_N^2 :

(Hoppe, Madore)

algebra $\mathcal{A} = Mat(N, \mathbb{C})$... alg. of functions on S_N^2 SO(3) action:

$$\mathfrak{su}(2) imes \mathcal{A} o \mathcal{A} \ (J^a, \phi) \mapsto [\pi_N(J^a), \phi]$$

decompose $\mathcal{A} = Mat(N, \mathbb{C})$ into irreps of SO(3):

$$\mathcal{A} = \operatorname{Mat}(N, \mathbb{C}) \cong (N) \otimes (\overline{N}) = (1) \oplus (3) \oplus ... \oplus (2N-1) \\ = \{\hat{Y}_0^0\} \oplus \{\hat{Y}_m^1\} \oplus ... \oplus \{\hat{Y}_m^{N-1}\}.$$

... fuzzy spherical harmonics; UV cutoff

$$X^a = \pi_N(J^a), \qquad X^a X^a = R^2 \mathbf{1}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

basic solutions of M.M: branes

<u>e.o.m.</u>: $\delta S = 0 \Leftrightarrow$

$$\Box_X X^b \equiv [X_a, [X^a, X^b]] = 0$$

(assume $\Psi = 0$)

<u>basic solutions:</u> (allow $N \to \infty$)

• flat "branes" \mathbb{R}^{2n}_{θ} embedded in \mathbb{R}^{10}

$$X^a = \begin{pmatrix} X^\mu \\ c^i \mathbf{1} \end{pmatrix}$$
, $\mu = 1, ..., 2n$
 $[X^\mu, X^\nu] = i\theta^{\mu\nu} \mathbf{1}$ "Moyal-Weyl quantum plane"

... quantized symplectic space $(\mathbb{R}^{2n}, \omega)$ $\omega = \frac{1}{2} \theta_{\mu\nu}^{-1} dx^{\mu} dx^{\nu}$

... Heisenberg algebra, interpreted as space of functions on \mathbb{R}^4_{θ} uncertainty relations $\Delta X^{\mu} \Delta X^{\nu} \ge |\theta^{\mu\nu}|$

Weyl quantization $e^{ik_{\mu}x^{\mu}} \leftrightarrow e^{ik_{\mu}X^{\mu}}$

H. Steinacker

Matrix model description of gauge theory (and gravity?)

embedding recovered from optimally localized states: coherent states $|p\rangle$

 $\mathcal{M} = \{ x^{a} = \langle \boldsymbol{p} | X^{a} | \boldsymbol{p} \rangle \} = \mathbb{R}^{2n} \subset \mathbb{R}^{10}$ $\langle \boldsymbol{p} | \sum (\Delta X^{\mu})^{2} | \boldsymbol{p} \rangle \approx |\boldsymbol{\theta}| \approx \min$

Matrix model description of gauge theory (and gravity?)

≡ nar

• generic (curved) branes $\mathcal{M}^{2n} =$ "deformed" \mathbb{R}^{2n}_{θ}

$$X^a \sim x^a = \begin{pmatrix} x^\mu \ \phi(x^\mu) \end{pmatrix} : \mathcal{M}^{2n} \hookrightarrow \mathbb{R}^{10}$$

... quantized embedding map

< 同 > < 回 > < 回 > -

э

 $(\mathcal{M}^{2n}, \omega)$... quantized symplectic manifold embedded in \mathbb{R}^{10} $\omega = \frac{1}{2} \theta_{\mu\nu}^{-1}(x) dx^{\mu} dx^{\nu}$

fluctuations

$$X^a = \bar{X}^a + \mathcal{A}^a(X)$$

describe NC gauge theory, dynamical eff. metric

 \sim D-brane with <code>B-field</code> in string thy, open string metric

less trivial examples:

- squashed fuzzy $\mathbb{C}P_N^2$ (self-intersecting brane)
 - $X_a = \pi_{(N,0)}(T_a) \sim x^a : \mathbb{C}P^2 \hookrightarrow \mathbb{R}^8 \xrightarrow{\Pi} \mathbb{R}^6 \quad ... SU(3) \text{ ladder op's}$

H.S., J. Zahn arXiv:1409.1440

H.S, L. Schneiderbauer

quantized symplectic manifold, degenerate embedding

 \Rightarrow strings connecting sheets, stringy geometry

stabilized in M.M. e.g. by cubic potential

H. Steinacker

Matrix model description of gauge theory (and gravity?)

degenerate solutions: fuzzy S⁴_N

 $X_{a} = \hat{\Gamma}_{a} = c_{\alpha}^{\dagger} (\Gamma_{a})_{\beta}^{\alpha} c^{\beta} \quad \text{on} \quad (\mathbb{C}^{4})^{\otimes_{S} N} \qquad (\Gamma_{a} ... SO(5) \text{ Clifford})$ $X_{a} X_{a} = R^{2} \mathbf{1}$

Castellino, Lee, Taylor hep-th/9712105; Ramgoolam, ...

in fact $S_N^4 = \mathbb{C}P_N^3/S^2$ Medina,O'Connor hep-th/0212170

 $[X_a, X_b] = M_{ab}, \qquad [M_{ab}, X_c] = i(\delta_{ac}X_b - \delta_{bc}X_a), \qquad \text{etc.}$

fully covariant under SO(5) (cf. Snyder space) symplectic structure "averaged away" over fiber S^2 (cf. Doplicher Fredenhagen Roberts 1995)

fluctuations

$$X^a = \bar{X}^a + \mathcal{A}^a(X, M)$$

describe NC higher spin theory (?)

< ロ > < 同 > < 回 > < 回 > .

ъ

degenerate solutions: fuzzy S⁴_N

$$\begin{split} X_a &= \hat{\Gamma}_a = c_{\alpha}^{\dagger} (\Gamma_a)_{\beta}^{\alpha} c^{\beta} \quad \text{on} \quad (\mathbb{C}^4)^{\otimes_S N} \qquad (\Gamma_a ... SO(5) \text{ Clifford}) \\ X_a X_a &= R^2 \mathbf{1} \end{split}$$

Castellino, Lee, Taylor hep-th/9712105; Ramgoolam, ...

in fact $S_N^4 = \mathbb{C}P_N^3/S^2$ Medina,O'Connor hep-th/0212170

 $[X_a, X_b] = M_{ab}, \qquad [M_{ab}, X_c] = i(\delta_{ac}X_b - \delta_{bc}X_a), \qquad \text{etc.}$

fully covariant under SO(5)(cf. Snyder space)symplectic structure "averaged away" over fiber S^2

(cf. Doplicher Fredenhagen Roberts 1995)

э.

fluctuations

$$X^a = \bar{X}^a + \mathcal{A}^a(X, M)$$

describe NC higher spin theory (?)

classical manifolds as solution of IKKT:

let $(x^{\mu}, p_{\mu} = \nabla_{\mu})$... phase space

$$X^a = \begin{pmatrix} p^\mu \\ 0 \end{pmatrix}$$

... commutative \mathbb{R}^n solutions:

 $[X^a,X^b]=0$

fluctuations

$$X^a = \bar{X}^a + \mathcal{A}^a(x, p)$$

describes some higher derivative / higher spin theory (?)

Hanada, Kawai, Kimura hep-th/0508211; ...

э.

(\mathbb{R}^{2n} re-appears, unlike for NC branes!)

stacks of branes in M.M.

- assume X^a_(i) ... solutions of e.o.m.
 - \rightarrow new solution: $X^a = \begin{pmatrix} X^a_{(1)} \mathbf{1}_{n_1} & \mathbf{0} \\ \mathbf{0} & X^a_{(2)} \mathbf{1}_{n_2} \end{pmatrix}$

- ... stacks of $n_1 \& n_2$ coincident branes breaks U(N) to $U(n_1) \times U(n_2)$
- fermions may connect different branes

 $\Psi = \begin{pmatrix} 0 & \psi_{(12)} \\ \psi_{(21)} & 0 \end{pmatrix},$

 $\psi_{(12)}$ transform in bifundamental $(n_1) \otimes (\overline{n}_2)$ (= strings!)

- interaction between ℝ²ⁿ_θ branes consistent with IIB SUGRA (quantum effect!) (IKKT 1997, Chepelev,Makeenko, Zarembo 1997,...)
- \rightarrow can get close to particle physics

Chatzistavrakidis, Zoupanos, H.S. arXiv:1107.0265; H.S.: arXiv:1504.05≩03 etc. ∽ < .

Matrix model description of gauge theory (and gravity?)

Dynamical geometry

Part two: fluctuations on noncommutative branes

NC gauge theory $\,\leftrightarrow\,$ geometric fluctuations

Claim A: fluctuations on branes \rightarrow noncommutative gauge fields

Claim B:

U(1) fluctuations on branes \rightarrow fluctuations of geometry, "gravity"

- both claims are correct
- 2nd interpretation more useful, explains UV/IR mixing in M.M.
- consistent with string theory
- physical relevance not yet clear

< ロ > < 同 > < 回 > < 回 > .

claim A:

fluctuations on a stack of *n* coincident \mathbb{R}^4_{θ} branes in IKKT

 \rightarrow noncommutative U(n) $\mathcal{N} = 4$ super-Yang-Mills on \mathbb{R}^4_{θ}

(Aoki, Ishibashi,Iso,Kawai,Kitazawa, Tada 1999)

sketch:

• background solution: stack of *n* coinciding \mathbb{R}^4_{θ} branes

$$X^a = \begin{pmatrix} X^\mu \\ \phi^i \end{pmatrix} = \begin{pmatrix} \bar{X}^\mu \otimes \mathbf{1}_n \\ \mathbf{0} \end{pmatrix}, \qquad \begin{array}{l} \mu = \mathbf{0}, ..., \mathbf{3} \\ i = 4, 5, ..., \mathbf{9} \end{array}$$

 $[\bar{X}^{\mu}, \bar{X}^{\nu}] = i\theta^{\mu\nu}$... Heisenberg algebra, generate $\mathcal{A}_{\theta} \approx End(\mathcal{H})$

add fluctuations:

$$X^{a} = \begin{pmatrix} \bar{X}^{\mu} \otimes \mathbf{1}_{n} + \theta^{\mu\nu} A_{\nu} \\ \phi^{i} \end{pmatrix} \in \mathcal{A}_{\theta} \otimes Mat(n, \mathbb{C})$$
$$A_{\mu} = A_{\mu}(\bar{X}) = A_{\mu,\alpha}(\bar{X})\lambda_{\alpha} \in End(\mathcal{H}^{n}) \cong \mathcal{A}_{\theta} \otimes Mat(n, \mathbb{C})$$

э.

define derivatives as inner derivations:

$$[ar{X}^{\mu},\phi(X)]=:i heta^{\mu
u}\partial_{
u}\phi(X),\qquad [\partial_{\mu},\partial_{
u}]=0$$

thus

$$\begin{split} [X^{\mu}, \phi(X)] &= i\theta^{\mu\nu} D_{\nu} \phi(X), \qquad D_{\mu} = \partial_{\mu} + i[A_{\mu}, .] \\ [X^{\mu}, X^{\nu}] &= i\theta^{\mu\nu} + i\theta^{\mu\mu'} \theta^{\nu\nu'} \left(\partial_{\mu'} A_{\nu'} - \partial_{\nu'} A_{\mu'} + [A_{\mu'}, A_{\nu'}] \right) \\ &= i\theta^{\mu\nu} + i\theta^{\mu\mu'} \theta^{\nu\nu'} F_{\mu'\nu'} \end{split}$$

 $F_{\mu'\nu'}$... Yang-Mills field strength

 $S = Tr([X^a, X^b][X_a, X_b])$ is gauge-invariant: $X^a \rightarrow U^{-1}X^aU$

- $\rightarrow \text{ tangential fluctuations } X^{\mu} = \bar{X}^{\mu} + \theta^{\mu\nu} A_{\nu} \text{ transform as } A_{\mu} \rightarrow U^{-1} A_{\mu} U + i U^{-1} \partial_{\mu} U \dots \mathfrak{u}(n) \text{ gauge fields! }$
- \rightarrow transversal fluctuations $\phi^i \rightarrow U^{-1} \phi^i U$... $\mathfrak{u}(n)$ scalar fields!

insert in IKKT action:

$$S = \Lambda_0^4 \operatorname{Tr} \left([X^a, X^b] [X_a, X_b] + \overline{\Psi} \Gamma_a [X^a, \Psi] \right)$$

=
$$\int d^4 x \sqrt{G} \operatorname{tr}_n \left(\frac{1}{4g^2} (\mathcal{F}\mathcal{F})_G + \frac{1}{2} G^{\mu\nu} D_\mu \Phi^i D_\nu \Phi_i - \frac{1}{4} g^2 [\Phi^i, \Phi^j] [\Phi_i, \Phi_j] \right)$$

+
$$\overline{\psi} \tilde{\gamma}^\mu (i \partial_\mu + [\mathcal{A}_\mu, .]) \psi + g \overline{\psi} \Gamma^i [\Phi_i, \psi] \right) + \int \rho \theta^{ab} \theta_{ab}$$

where

$$\begin{aligned} \mathbf{G}^{\mu\nu} &= \rho \theta^{\mu\nu'} \theta^{\nu\nu'} \eta_{\mu'\nu'}, \qquad \rho = \sqrt{|\theta^{-1}|} \\ \tilde{\gamma}^{\mu} &= \rho^{1/2} \theta^{\nu\mu} \gamma_{\nu}, \\ \frac{1}{4g^2} &= \frac{\Lambda_0^4}{(2\pi)^2} \rho^{-1} \end{aligned}$$

IKKT on stack of *n* branes $\rightarrow U(n) \mathcal{N} = 4$ SYM coupled to $G^{\mu\nu}$

(cf. large N reduction !)

イロト イポト イヨト イヨト

э

very simple & compelling origin of gauge theory however, misleading for U(1) sector:

- deformations of branes are obviously geometrical d.o.f.
- cannot disentangle U(1) from SU(n)

because U(1) is gravity sector!

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

• UV/IR mixing \rightarrow different physics

claim B:

fluctuations on a stack of *n* coincident \mathbb{R}^4_{θ} branes in IKKT $U(1)_{tr} \rightarrow dynamical G^{\mu\nu}(x), SU(n)$ SYM coupled to $G^{\mu\nu}(x)$

H.S., JHEP 0712:049 (2007) (review: JHEP 0902:044,(2009), Class.Quant.Grav. 27 (2010) 133001)

analogous for finite matrix geometries, $\mathcal{A} = Mat(N, \mathbb{C})$

explains UV/IR mixing (quantitatively!)

< ロ > < 同 > < 回 > < 回 > < 回 > <

metric structure on branes:

fluctuations governed by matrix Laplacian

$$S[arphi] = -\operatorname{Tr}[X^a, arphi][X^b, arphi] \eta_{ab} = \operatorname{Tr} arphi \Box arphi$$

 $\Box \varphi \equiv \eta_{ab}[X^a, [X^b, \varphi]]$

encodes metric!

e.g. <u>on S_N^2 :</u> $\Box \phi = \frac{1}{C_N} J^a J^a \phi$ $SO(3) \text{ invariant} \Rightarrow \qquad \Box \hat{Y}'_m = \frac{1}{C_N} I(I+1) \hat{Y}'_m$

spectrum identical with classical case $\Delta_g \phi = rac{1}{\sqrt{|g|}} \partial_\mu (\sqrt{|g|} g^{\mu
u} \partial_
u \phi)$

 \Rightarrow effective metric = round metric on S²

H. Steinacker

Matrix model description of gauge theory (and gravity?)

Lemma:

geometry of generic NC branes:

 $X^a \sim x^a$: $\mathcal{M} \hookrightarrow \mathbb{R}^{10}$

 $\Box f(X) \sim -\eta_{ab}\{x^a, \{x^b, f(x)\}\} = -e^{\sigma} \Box_G f(x)$

... Matrix Laplace- operator, effective metric

assume dim $\mathcal{M} > 2$. Then

$$\begin{aligned} G^{\mu\nu}(x) &= e^{-\sigma}\theta^{\mu\mu'}(x)\theta^{\nu\nu'}(x) \ g_{\mu'\nu'}(x) & \text{effective metric (cf. open string m.)} \\ g_{\mu\nu}(x) &= \partial_{\mu}x^{a}\partial_{\nu}x^{b}\eta_{ab} & \text{induced metric on } \mathcal{M}^{4}_{\theta} \ (\text{cf. closed string m.}) \\ e^{-2\sigma} &= \frac{|\theta^{-1}_{\mu\nu}|}{|g_{\mu\nu}|} & (\text{H.S. Nucl.Phys. B810 (2009)}) \end{aligned}$$

follows by coupling to scalar field φ :

$$S[\varphi] = \operatorname{Tr} [X^{a}, \varphi] [X^{b}, \varphi] g_{ab}$$

$$\sim \int d^{2n} x \sqrt{|G|} G^{\mu\nu}(x) \partial_{\mu} \varphi \partial_{\nu} \varphi = \int d\varphi \wedge \star_{G} d\varphi$$

stack of coincident curved branes $\rightarrow \mathfrak{su}(n)$ gauge thy

generic background branes

$$\mathbf{X}^{\mathbf{a}} = \left(\begin{array}{c} \bar{\mathbf{X}}^{\mu} \otimes \mathbf{1}_{n} \\ \bar{\phi}^{i} \otimes \mathbf{1}_{n} \end{array}\right)$$

general CR
$$[\bar{X}^{\mu}, \bar{X}^{\nu}] = i\theta^{\mu\nu}(\bar{X})$$

fluctuations:

$$X^{a} = \left(\begin{array}{c} \bar{X}^{\mu} \otimes \mathbf{1}_{N} + \mathcal{A}^{\mu} \\ \bar{\phi}^{i} \otimes \mathbf{1}_{N} + \mathbf{\Phi}^{i} \end{array}\right)$$

 $\mathcal{A}^{\mu}, \Phi^{i} \sim \mathbf{1}_{n}$ d.o.f. change background \bar{X}^{a} , geometrical d.o.f. $\theta^{\mu\nu}, g_{\mu\nu}$

write $\mathcal{A}^{\mu} = \theta^{\mu\nu} \mathcal{A}_{\nu}$, note $[\bar{X}^{\mu}, f] \sim i\theta^{\mu\nu} \partial_{\nu} f$

$$\begin{bmatrix} X^{\mu}, X^{\nu} \end{bmatrix} = i\theta^{\mu\nu} + i\theta^{\mu\mu'}\theta^{\nu\nu'} (\partial_{\mu'}A_{\nu'} - \partial_{\nu'}A_{\mu'} + [A_{\mu'}, A_{\nu'}]) \\ = i\theta^{\mu\nu} + i\theta^{\mu\mu'}\theta^{\nu\nu'}F_{\mu'\nu'} \quad \text{field strength}$$

· < = > < = >

 \Rightarrow effective action on \mathcal{M}_{θ}^{4} (semi-classical):

$$S = \Lambda_0^4 \operatorname{Tr} \left([X^a, X^b] [X_a, X_b] + \overline{\Psi} \Gamma_a [X^a, \Psi] \right)$$

$$\sim \int d^4 x \sqrt{G} \operatorname{tr}_n \left(\frac{1}{4g^2} (\mathcal{F}\mathcal{F})_G + \frac{1}{2} (D\Phi^i D\Phi_i)_G - \frac{1}{4} g^2 [\Phi^i, \Phi^j] [\Phi_i, \Phi_j] \right)$$

$$+ \overline{\psi} \widetilde{\gamma}^{\mu} (i\partial_{\mu} + [\mathcal{A}_{\mu}, .]) \psi + g \overline{\psi} \Gamma^i [\Phi_i, \psi] \right) + \int 2\eta (\theta \wedge \theta + \operatorname{tr}_n \mathcal{F} \wedge \mathcal{F})$$

where

$$\begin{array}{ll} G^{\mu\nu}(x) &= \rho \theta^{\mu\nu'}(x) \theta^{\nu\nu'}(x) g_{\mu'\nu'}(x), \qquad \rho = \sqrt{|\theta^{-1}|} \\ \tilde{\gamma}^{\mu}(x) &= \rho^{1/2} \, \theta^{\nu\mu}(x) \gamma_{\nu}, \qquad \eta = Gg \\ \frac{1}{4g^2} &= \frac{\Lambda_0^4}{(2\pi)^2} \rho^{-1} \end{array}$$

IKKT on stack of branes \rightarrow **SU**(*n*) $\mathcal{N} = 4$ SYM coupled to $G^{\mu\nu}$

dynamical $G^{\mu\nu}(x)$! (\rightarrow gravity ?!)

H.S., JHEP 0712:049 (2007), JHEP 0902:044,(2009), Class.Quant.Grav. 27 (2010)

fermions

 $\Psi \dots \mathcal{A}$ - valued Majorana-Weyl spinor of SO(9, 1)

$$\begin{split} \mathcal{S}[\Psi] &= \operatorname{Tr} \overline{\Psi} \Gamma_a[X^a, \Psi] \equiv \operatorname{Tr} \overline{\Psi} \not\!\!\!\! D \Psi \\ &\sim \int d^4 x \sqrt{\theta^{-1}} \, \overline{\Psi} i \tilde{\gamma}^{\mu} (\partial_{\mu} + [\mathcal{A}_{\mu}, .]) \Psi, \end{split}$$

with

$$\tilde{\gamma}^{\mu} =
ho^{1/2} \Gamma_a \theta^{
u\mu} \partial_{
u} x^a$$

 $\{\tilde{\gamma}^{\mu},\tilde{\gamma}^{\nu}\}=2G^{\mu\nu}(x)$

 Ψ decomposes into 4 Weyl fermions $\rightarrow \mathcal{N} = 4$ SYM

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

	_ ynamou goomou y
result:	
• trace- $U(1)$ sector defines geometry $\mathcal{M}^{2n} \subset \mathbb{R}^{10}$	
• $SU(n)$ fluctuations of matrices X^a, Ψ \rightarrow gauge fields, scalar fields, fermions on \mathcal{M}^{2n}	(NOT 10 dim!)
all fields couple to metric $G^{\mu\nu}(x)$ determined by $\theta^{\mu\nu}(x)$, embedding dynamical \Rightarrow ("emergent") gravity	
matrix e.o.m $[X^a, [X^{a'}, X^b]]\eta_{aa'} = 0 \iff$	
$\Box_G x^a = 0, \text{``minimal surface''}$	•
$egin{array}{rcl} abla^\mu(oldsymbol{e}^\sigma heta_{\mu u}^{-1}) &=& oldsymbol{e}^{-\sigma}oldsymbol{G}_{ ho u} heta^{ ho\mu}\partial_\mu\eta\ \eta\simoldsymbol{G}^{\mu u}oldsymbol{g}_{\mu u} \end{array}$	
covariant formulation in semi-classical limit (H.S. Nucl.P	hys. B810 (2009))

NC gauge theory

Dynamical geometry

IKKT model NC branes

H. Steinacker

Motivation

Matrix model description of gauge theory (and gravity?)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

 \Rightarrow 2 interpretations for quantization:

$$Z = \int dX^a d\Psi \, e^{-S[X] - S[\Psi]}$$

 on ℝ⁴_θ: X^μ = X̄^μ + θ̄^{μν} A_ν, X̄^μ...Moyal-Weyl → NC gauge theory on ℝ⁴_θ, UV/IR mixing in U(1) sector IKKT model: N = 4 SYM, perturb. finite !(?)
 on M⁴ ⊂ ℝ¹⁰: U(1) absorbed in θ^{μν}(x), g_{μν} → quantized gravity, induced E-H. action

$$S_{eff} \sim \int d^4x \sqrt{|G|} \left(\Lambda^4 + c\Lambda_4^2 R[G] + ...\right)$$

- explanation for UV/IR mixing & U(1) entanglement
- good quantization for theory with dynamical geometry

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

= na(~

 \Rightarrow 2 interpretations for quantization:

$$Z = \int dX^a d\Psi \, e^{-S[X] - S[\Psi]}$$

 $\begin{array}{l} \bullet \quad \underbrace{\text{on } \mathbb{R}^4_{\theta}}_{\theta}: \quad X^{\mu} = \bar{X}^{\mu} + \bar{\theta}^{\mu\nu} A_{\nu}, \qquad \bar{X}^{\mu}...\text{Moyal-Weyl} \\ \rightarrow \text{NC} \text{ gauge theory on } \mathbb{R}^4_{\theta}, \quad \text{UV/IR mixing in } U(1) \text{ sector} \\ \text{IKKT model: } \mathcal{N} = 4 \text{ SYM, perturb. finite } !(?) \\ \hline \bullet \quad \underbrace{\text{on } \mathcal{M}^4 \subset \mathbb{R}^{10}}_{\rightarrow}: \quad U(1) \text{ absorbed in } \theta^{\mu\nu}(x), \ g_{\mu\nu} \\ \rightarrow \text{ quantized gravity, induced E-H. action} \\ \hline S_{eff} \sim \int d^4x \sqrt{|G|} \left(\Lambda^4 + c\Lambda_4^2 R[G] + ...\right) \end{array}$

- explanation for UV/IR mixing & U(1) entanglement
- good quantization for theory with dynamical geometry

= na(~

Dynamical geometry

semi-classical limit of UV/IR mixing:

interaction of two scalar field components

 $S_{int} \ni Tr([\phi_1, \phi_2][\phi_1, \phi_2]) = 2Tr(\phi_1\phi_2\phi_1\phi_2 - \phi_1^2\phi_2^2)$

integrate out $A \equiv \phi_2 \Rightarrow$ eff. action for $\phi \equiv \phi_1$

phase factors for non-planar diagrams, $e^{ikX}e^{ilX} = e^{ik\theta l}e^{ilX}e^{ikX}$

(planar – non-planar diagram) $\sim \Lambda^2 \Big(1 - \frac{1}{1 - \frac{\rho^2 \Lambda^2}{\Lambda_{exp}^4}} \Big)$

<u>usual treatment:</u> high UV cutoff $\Lambda \gg \Lambda_{NC}$

 \Rightarrow IR divergence $\sim \frac{1}{\rho^2}$, accumulates

H. Steinacker

Matrix model description of gauge theory (and gravity?)

< ロ > < 同 > < 回 > < 回 >

<u>different limit:</u> low UV cutoff $\frac{p^2 \Lambda^2}{\Lambda_{NC}^4} \ll 1$ (max. SUSY !) $\Lambda^2 \left(1 - \frac{1}{1 - \frac{p^2 \Lambda^2}{\Lambda_{NC}^4}}\right) = \frac{p^2 \Lambda^4}{\Lambda_{NC}^4} + O(p^4 \Lambda^6)$

phase factors $[e^{ikX}, e^{ilX}] = 2i \sin(\frac{k\theta l}{2})e^{i(l+k)X}$ can be understood semi-classically:

 $[\phi, \mathbf{A}] \sim \{\phi, \mathbf{A}\} = \theta^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \mathbf{A}$

integrate out A

$$\langle [\phi, \mathbf{A}] [\phi, \mathbf{A}] \rangle_{\mathbf{A}} \sim \theta^{\mu \mu'} \theta^{\nu \nu'} \underbrace{(\partial_{\mu} \mathbf{A} \partial_{\nu} \mathbf{A})}_{\sim \Lambda^4 \mathbf{G}_{\mu \nu}} \partial_{\mu'} \phi \partial_{\nu'} \phi$$

 \Rightarrow 1-loop correction to kinetic term (metric!) of ϕ :

 $\delta S_{\textit{kin}}[\phi] \ni \langle [A,\phi][A,\phi] \rangle_{A} \sim \Lambda^{4} \theta^{\mu\mu'} \theta^{\nu\nu'} G_{\mu'\nu'} \partial_{\mu} \phi \partial_{\nu} \phi \sim \Lambda^{4} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$

э.

careful treatment: 1-loop eff. action due to fermion loops: (all terms of dim < 6):

$$\begin{split} \Gamma_{\text{eff}} &= \frac{\Lambda^4}{\Lambda_{\text{NC}}^4} \int \frac{d^4 x}{(2\pi)^2} \Big(g^{\alpha\beta} D_\alpha \varphi^i D_\beta \varphi_i \\ &- \frac{1}{2} \Lambda_{\text{NC}}^4 (\bar{\theta}^{\mu\nu} F_{\nu\mu} \bar{\theta}^{\rho\sigma} F_{\sigma\rho} + (\bar{\theta}^{\sigma\sigma'} F_{\sigma\sigma'}) (F\bar{\theta}F\bar{\theta})) \\ &- 2 \bar{\theta}^{\nu\mu} F_{\mu\alpha} g^{\alpha\beta} \partial_\nu \varphi^i \partial_\beta \varphi_i + \frac{1}{2} (\bar{\theta}^{\mu\nu} F_{\mu\nu}) g^{\alpha\beta} \partial_\beta \varphi^i \partial_\alpha \varphi_i + \text{h.o.} \Big) \\ &+ \frac{\Lambda^2}{\Lambda_{\text{NC}}^4} \int \frac{d^4 x}{(2\pi)^2} \Big(-\frac{11}{2} F_{\rho\eta} \Box_g F_{\sigma\tau} \bar{G}^{\rho\sigma} \bar{G}^{\eta\tau} - 12 \Box_g \varphi^i \Box \varphi_i \\ &+ \frac{1}{2} \Lambda_{\text{NC}}^4 (\bar{\theta}^{\mu\nu} F_{\mu\nu}) \bar{\Box}_G (\bar{\theta}^{\rho\sigma} F_{\rho\sigma}) + ... \Big) \\ &+ \frac{\Lambda^6}{\Lambda_{\text{NC}}^6} \int \frac{d^4 x}{(2\pi)^2} (...) + ... \end{split}$$

(all of this is due to UV/IR mixing, low cutoff, *U*(1) only) (D. Blaschke, H.S., M. Wohlgenannt JHEP 1103 (2011))

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

summarized in effective generalized matrix model:

re-assemble effective action: $X^a = \begin{pmatrix} X^{\mu} \\ 0 \end{pmatrix} + \begin{pmatrix} -\theta^{\mu\nu}A_{\nu} \\ \phi^i \end{pmatrix}$

$$\Gamma_L[X] = \operatorname{Tr} \frac{L^4}{\sqrt{\frac{1}{2}H^2 - H^{ab}H_{ab} + \frac{1}{L^2}\mathcal{L}_{10, \operatorname{curv}}[X] + \dots}} \sim \int d^4x \, \Lambda^4(x) \sqrt{g(x)}$$

 $\mathcal{L}_{10,curv}[X] = c_1[X^c, H^{ab}][X_c, H_{ab}] + c_2 H^{cd}[X_c, [X^a, X^b]][X_d, [X_a, X_b]] + \dots$

$$H^{ab} = [X^a, X^c][X^b, X_c] + (a \leftrightarrow b), \qquad H = H^{ab}\eta_{ab}$$

(D. Blaschke, H.S. M. Wohlgenannt arXiv:1012.4344) SO(D) manifest, broken by background (e.g. \mathbb{R}^4_{θ}) \Rightarrow highly non-trivial predictions for (NC) gauge theory expect generalization to nonabelian $\mathcal{N} = 4$ SYM: full SO(9, 1) !

effective generalized matrix model

= powerful new tool for (NC) gauge theory and (emergent) gravity

< ロ > < 同 > < 回 > < 回 >

summarized in effective generalized matrix model:

re-assemble effective action: $X^a = \begin{pmatrix} X^{\mu} \\ 0 \end{pmatrix} + \begin{pmatrix} -\theta^{\mu\nu}A_{\nu} \\ \phi^i \end{pmatrix}$

$$\Gamma_{L}[X] = \operatorname{Tr} \frac{L^{4}}{\sqrt{\frac{1}{2}H^{2} - H^{ab}H_{ab} + \frac{1}{L^{2}}\mathcal{L}_{10,\operatorname{curv}}[X] + \dots}}$$

 $\mathcal{L}_{10,\text{curv}}[X] = c_1[X^c, H^{ab}][X_c, H_{ab}] + c_2 H^{cd}[X_c, [X^a, X^b]][X_d, [X_a, X_b]] + \dots$

$$H^{ab} = [X^a, X^c][X^b, X_c] + (a \leftrightarrow b), \qquad H = H^{ab}\eta_{ab}$$

(D. Blaschke, H.S. M. Wohlgenannt arXiv:1012.4344) SO(D) manifest, broken by background (e.g. \mathbb{R}^4_{θ}) \Rightarrow highly non-trivial predictions for (NC) gauge theory expect generalization to nonabelian $\mathcal{N} = 4$ SYM: full SO(9, 1) !

effective generalized matrix model

= powerful new tool for (NC) gauge theory and (emergent) gravity

< ロ > < 同 > < 回 > < 回 >

э.

higher-order terms, curvature

$$\begin{array}{lll} H^{ab} & := & \frac{1}{2}[[X^{a}, X^{c}], [X^{b}, X_{c}]]_{+} \\ T^{ab} & := & H^{ab} - \frac{1}{4}\eta^{ab}H, \quad H := H^{ab}\eta_{ab} = [X^{c}, X^{d}][X_{c}, X_{d}], \\ \Box X & := & [X^{b}, [X_{b}, X]] \end{array}$$

result:

for 4-dim. $\mathcal{M} \subset \mathbb{R}^D$ with $g_{\mu\nu} = G_{\mu\nu}$:

 $Tr\left(2T^{ab}\Box X_{a}\Box X_{b} - T^{ab}\Box H_{ab}\right) \sim \frac{2}{(2\pi)^{2}}\int d^{4}x\sqrt{g}\,e^{2\sigma}R$ $Tr([[X^{a}, X^{c}], [X_{c}, X^{b}]][X_{a}, X_{b}] - 2\Box X^{a}\Box X^{a})$ $\sim \frac{1}{(2\pi)^{2}}\int d^{4}x\sqrt{g}\,e^{\sigma}\left(\frac{1}{2}e^{-\sigma}\theta^{\mu\eta}\theta^{\rho\alpha}R_{\mu\eta\rho\alpha} - 2R + \partial^{\mu}\sigma\partial_{\mu}\sigma\right)$

(Blaschke, H.S. arXiv:1003.4132)

(cf. Arnlind, Hoppe, Huisken arXiv:1001.2223)

⇒ contains Einstein-Hilbert- type action from matrix model pre-geometric origin, background indep.

H. Steinacker

Matrix model description of gauge theory (and gravity?)

Dynamical geometry

gravity from U(1) on branes ?

- + good quantum theory of geometry
- + E-H action induced
- + $\theta^{\mu\nu}$ invisible to scalar fields, gauge fields
- $\theta^{\mu\nu}$ couples to U(1) d.o.f., Lorentz-breaking effects
 - $\Rightarrow R_{abcd} \theta^{ab} \theta^{cd} \in$ 1-loop induced action (D. Klammer H.S. 2009)
- + NC gauge field ${\it F}_{\mu
 u}$ \Rightarrow 2 propagating Ricci-flat dof

(Rivelles 2003; cf. Yang 2004)

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

- grav. field on \mathbb{R}^4 couples to **derivative** of $\mathcal{T}_{\mu\nu}$ (class.)
- + non-deriv. coupling to $T_{\mu\nu}$ in presence of extrinsic curvature

(H.S. 2009 ff)

э.

maybe better: *covariant quantum spaces* e.g. S_N^4 , manifest Lorentz/ Euclidean inv.

summary, conclusion

• matrix-models $Tr[X^a, X^b][X^{a'}, X^{b'}]\eta_{aa'}\eta_{bb'}$ + fermions

dynamical NC branes \leftrightarrow "emergent" geometry, gravity?

- fluctuations of matrices \rightarrow gauge theory on brane all ingredients for physics
- rich solutions of IKKT model with $\mathcal{M}^4 \times \mathcal{K}$

building blocks for intersecting branes (\rightarrow standard model ?)

- need better understanding of quantum effects
 - perturbative: effective quantum matrix model action
 - new, adapted methods: eigenvalue distribution, localization, ...
- identify appropriate background
- ... very rich model, more to be discovered

= 900

- N. Ishibashi, H. Kawai, Y. Kitazawa, A. Tsuchiya, "A Large N reduced model as superstring," Nucl. Phys. B498 (1997) 467-491. [hep-th/9612115].
- S. W. Kim, J. Nishimura and A. Tsuchiya, "Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions," Phys. Rev. Lett. **108**, 011601 (2012) [arXiv:1108.1540 [hep-th]];
- H. Steinacker, "Emergent Gravity from Noncommutative Gauge Theory," JHEP **0712**, 049 (2007) [arXiv:0708.2426 [hep-th]].
- H. Steinacker, "A Non-perturbative approach to non-commutative scalar field theory," JHEP **0503**, 075 (2005) [hep-th/0501174].
- A. P. Polychronakos, "Effective action and phase transitions of scalar field on the fuzzy sphere," Phys. Rev. D 88, 065010 (2013) [arXiv:1306.6645 [hep-th]].
- J. Tekel, "Uniform order phase and phase diagram of scalar field theory on fuzzy CPⁿ," JHEP **1410**, 144 (2014) [arXiv:1407.4061]