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e Leading two-loop contributions: O (asa;), O(a?).
e Available in rMSSM in FH for long (eff. potential method).

Degrassi, Slavich, et al. 2001, 2002, 2003

e O(asxy) in the cMSSM available (diagrammatic calc.).
Rzehak et al. 2007
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Hollik, PaBehr 2014
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ontrivial renormalization.
Hollik, PaBehr 2014

This talk: Show ‘How’ (not ‘What’) of this calculation.

Work in collaboration with Sebastian Paflebhr [arXiv:1508.00562].
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[1 2L counterterms for L.
[0 2L tadpoles T(z), Tg), Tf) at O(«?) appearing in .
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For QCD often ok since e.g. renormalization simple.

e But: controlled by (e.g.) parameter cards, not easy to use
beyond intended purpose.

e Calculations often have some ‘speciality’ that requires
extra programming and/or extra packages.

e May want to switch to other packages for cross-checks.
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e Break calculation into several steps.

e Implement each step as independent program
(invoked from command line).

¢ In lieu of ‘in vivo’ debugging keep detailed logs.
e Coordinate everything through a makefile.

e Outcome: Template for 2L calculation in nontrivial model
with nontrivial renormalization with optimized output.

H E E N
2
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e FormCalc (for IL tensor reduction, code generation),
Hahn 1996-2015

e TwoCalc (for 2L tensor reduction).
Weiglein et al. 1992, 1994
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< MSSMCT.mod 4-simp

model file preparation simplification
e /-code <— 6-comb <— < FormCalc
code generation combination of results calculation of =
renorm. constants
n
|
|
|
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arg2 = 0 for virtua iagrams,
1 for IL diagrams with IL counterterms.

¢ Inputs/outputs defined in first few lines, e.g.
in=m/$1/2-prep. $2
out=m/$1/3-calc.$2

e Symbolic output + log files go to ‘m’ subdirectory.
Log file = Output file + .1og.gz

e Fortran code goes to ‘f’ subdirectory.
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<< FeynArts
<< FormCalc
top = CreateTopologies[...];

EOF_ . ... ... .. . end Here document

Everything between “<< \tag” and “tag” goes to Mathematica
as if it were typed from the keyboard.

Note the “\” before tag, it makes the shell pass everything
literally to Mathematica, without shell substitutions.
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#! /bin/sh
math -run "argl=$1" -run "arg2=$2" ... << \END

END

e Can easily be run in the background, or combined with
utilities such as make.

Debugging hint: -x flag makes shell echo every statement,
#! /bin/sh -x
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[] Keep MZW and M—ZZ finite.
W Z

Must set 7, = 0 so that O(a?) corrections form
supersymmetric and gauge-invariant subset.

Most efficient to modify Feynman rules (not [, though):
e Load MSSMCT.mod model file.
e Modify couplings, remove zero ones.
e Write out MSSMCTgl.mod model file.
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U Uiy + Uy Uy =1, U Ui, + Uy Uy, =0,
U U, + UppUsy =1, U, U5 + Upxp Uy, = 0.

Problem: Simplify will rarely arrange the LUI’s in just the way
that these rules can be applied directly.

Solution: Introduce auxiliary symbols which immediately
deliver the r.h.s. once Simplify considers the Lh.s., i.e.
increase the ‘incentive’ for Simplify to use the r.h.s.

But: Upvalues work only one level deep.
H B BN

T. Hahn, Adding the (’)((xt ) corrections to FeynHiggs — p.15



and formulate unitarity for the UCSt:

UCst [2,1]
UCst [2,2]

ucsf[1,2];
ucsfl1,1];

UCSf[3,2] = -UCSf[3,1];
UCSfC[3,2] = -UCSfC[3,1];
UCSf[2,3] = -UCSf[1,3];
UCSfC[2,3] = -UCSfCI[1,3];
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e Introduce DiagMark[m;] where 1, = masses in loop
in FeynArts output.

e Few simplifications can be made between parts with
different DiagMark = Can apply simplification as

Collect[amp, _DiagMark, simpfunc]
e Much faster.
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e Expand in ¢, collect powers for easier handling later, e.g.

{|aMf1[3,3] -> RC[-1, dMf1[-1,3,3]] +
RC[0, dMf1[0,3,3]],

- expansion

{dMf1[-1,3,3] —> ..
dMf1[0,3,3] —> ..

)

¥

- actual expressions for e-coeffs

}
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e Perform final simplification.
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e Total final code size: 350 kBuytes.
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Two-loop,
Nontrivial model (MSSM),

Specific approximations (gaugeless, p> = 0),

o
o
e Nontrivial renormalization,
o
o

Optimized output.

Code is included in public release of FeynHiggs 2.11+ in the

gen/tlsp directory.
More details in arXiv:1508.00562.
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