Thomas Hahn

Max-Planck-Institut fiir Physik
Miinchen

T. Hahn, Adding the O(cxtz) corrections to FeynHiggs — p.1

e Leading two-loop contributions: O (asa;), O(a?).
e Available in rMSSM in FH for long (eff. potential method).

Degrassi, Slavich, et al. 2001, 2002, 2003

e O(asxy) in the cMSSM available (diagrammatic calc.).
Rzehak et al. 2007

T. Hahn, Adding the O(cxtz) corrections to FeynHiggs — p.2

Hollik, PaBehr 2014

T. Hahn, Adding the O(cxtz) corrections to FeynHiggs — p.3

ontrivial renormalization.
Hollik, PaBehr 2014

This talk: Show ‘How’ (not ‘What’) of this calculation.

Work in collaboration with Sebastian Paflebhr [arXiv:1508.00562].

T. Hahn, Adding the O(cxtz) corrections to FeynHiggs — p.3

[1 2L counterterms for L.
[0 2L tadpoles T(z), Tg), Tf) at O(«?) appearing in .

T. Hahn, Adding the O(cxtz) corrections to FeynHiggs — p.4

For QCD often ok since e.g. renormalization simple.

e But: controlled by (e.g.) parameter cards, not easy to use
beyond intended purpose.

e Calculations often have some ‘speciality’ that requires
extra programming and/or extra packages.

e May want to switch to other packages for cross-checks.

T. Hahn, Adding the O(cxtz) corrections to FeynHiggs — p.5

e Break calculation into several steps.

e Implement each step as independent program
(invoked from command line).

¢ In lieu of ‘in vivo’ debugging keep detailed logs.
e Coordinate everything through a makefile.

e Outcome: Template for 2L calculation in nontrivial model
with nontrivial renormalization with optimized output.

H E E N
2

T. Hahn, Adding the (’)(cxt) corrections to FeynHiggs — p.6

e FormCalc (for IL tensor reduction, code generation),
Hahn 1996-2015

e TwoCalc (for 2L tensor reduction).
Weiglein et al. 1992, 1994

T. Hahn, Adding the O(cxtz) corrections to FeynHiggs — p.7

< MSSMCT.mod 4-simp

model file preparation simplification
e /-code <— 6-comb <— < FormCalc
code generation combination of results calculation of =
renorm. constants
n
|
|
|

T. Hahn, Adding the O(cxtz) corrections to FeynHiggs — p.8

arg2 = 0 for virtua iagrams,
1 for IL diagrams with IL counterterms.

¢ Inputs/outputs defined in first few lines, e.g.
in=m/$1/2-prep. $2
out=m/$1/3-calc.$2

e Symbolic output + log files go to ‘m’ subdirectory.
Log file = Output file + .1og.gz

e Fortran code goes to ‘f’ subdirectory.

T. Hahn, Adding the O(cxtz) corrections to FeynHiggs — p.9

<< FeynArts
<< FormCalc
top = CreateTopologies[...];

EOF_ end Here document

Everything between “<< \tag” and “tag” goes to Mathematica
as if it were typed from the keyboard.

Note the “\” before tag, it makes the shell pass everything
literally to Mathematica, without shell substitutions.

T. Hahn, Adding the (’)((xlg) corrections to FeynHiggs — p.10

#! /bin/sh
math -run "argl=$1" -run "arg2=$2" ... << \END

END

e Can easily be run in the background, or combined with
utilities such as make.

Debugging hint: -x flag makes shell echo every statement,
#! /bin/sh -x

T. Hahn, Adding the (’)((xlg) corrections to FeynHiggs — p.11

[] Keep MZW and M—ZZ finite.
W Z

Must set 7, = 0 so that O(a?) corrections form
supersymmetric and gauge-invariant subset.

Most efficient to modify Feynman rules (not [, though):
e Load MSSMCT.mod model file.
e Modify couplings, remove zero ones.
e Write out MSSMCTgl.mod model file.

T. Hahn, Adding the (’)((xlg) corrections to FeynHiggs — p.12

sel [0] [S[_] -> S[_]] = : ' > 1 w 2 1 " 2

t[3] && htb[6], ; ; ;

t[3] && tb[6], b -

t[3] && tb[6], 1 O

£03] &k £[4) Bk htb[S], o [ht 4 b 8

t[3] && htb[5]6], P 3 12 m

£[3] && htb[5], ” = :

t[3] && t[5] , L 5 & /5\ |

t[5] && ht[3]4], — X ¥ @ R -

t[31415] && ht[31415] } i L e =
T7 T8 T9 .

T. Hahn, Adding the (’)(octz) corrections to FeynHiggs — p.13

T. Hahn, Adding the (’)(octz) corrections to FeynHiggs — p.14

U Uiy + Uy Uy =1, U Ui, + Uy Uy, =0,
U U, + UppUsy =1, U, U5 + Upxp Uy, = 0.

Problem: Simplify will rarely arrange the LUI’s in just the way
that these rules can be applied directly.

Solution: Introduce auxiliary symbols which immediately
deliver the r.h.s. once Simplify considers the Lh.s., i.e.
increase the ‘incentive’ for Simplify to use the r.h.s.

But: Upvalues work only one level deep.
H B BN

T. Hahn, Adding the (’)((xt) corrections to FeynHiggs — p.15

and formulate unitarity for the UCSt:

UCst [2,1]
UCst [2,2]

ucsf[1,2];
ucsfl1,1];

UCSf[3,2] = -UCSf[3,1];
UCSfC[3,2] = -UCSfC[3,1];
UCSf[2,3] = -UCSf[1,3];
UCSfC[2,3] = -UCSfCI[1,3];

T. Hahn, Adding the (’)(octz) corrections to FeynHiggs — p.16

T. Hahn, Adding the (’)((xtz) corrections to FeynHiggs — p.17

e Introduce DiagMark[m;] where 1, = masses in loop
in FeynArts output.

e Few simplifications can be made between parts with
different DiagMark = Can apply simplification as

Collect[amp, _DiagMark, simpfunc]
e Much faster.

T. Hahn, Adding the (’)((xlg) corrections to FeynHiggs — p.18

e Expand in ¢, collect powers for easier handling later, e.g.

{|aMf1[3,3] -> RC[-1, dMf1[-1,3,3]] +
RC[0, dMf1[0,3,3]],

- expansion

{dMf1[-1,3,3] —> ..
dMf1[0,3,3] —> ..

)

¥

- actual expressions for e-coeffs

}

T. Hahn, Adding the (’)((xtz) corrections to FeynHiggs — p.19

e Perform final simplification.

T. Hahn, Adding the (’)(octz) corrections to FeynHiggs — p.20

e Total final code size: 350 kBuytes.

T. Hahn, Adding the (’)((xtz) corrections to FeynHiggs — p.21

Two-loop,
Nontrivial model (MSSM),

Specific approximations (gaugeless, p> = 0),

o
o
e Nontrivial renormalization,
o
o

Optimized output.

Code is included in public release of FeynHiggs 2.11+ in the

gen/tlsp directory.
More details in arXiv:1508.00562.

T. Hahn, Adding the (’)((xlg) corrections to FeynHiggs — p.22

	MSSM Higgs-mass corrections
	$O (alpha _t^2)$
corrections in FeynHiggs
	Shopping List
	Calculational Setup
	Template for Calculations
	Wheels we don't reinvent
	Steps of the Calculation
	Script Structure
	Scripting Mathematica
	Scripting Mathematica
	Step 0: Gaugeless Limit
	Step 1: Diagram Generation
	Step 2: Preparation for Tensor Reduction
	Efficiently Exploit Unitarity in Mathematica
	Efficiently Exploit Unitarity in Mathematica
	Step 3: Tensor Reduction
	Step 4: Simplification
	Step 5: Calculation of Renormalization Constants
	Step 6: Combination of Results
	Step 7: Code Generation
	Summary

