Adding the $\mathcal{O}(\alpha_t^2)$ corrections to FeynHiggs

Thomas Hahn

Max-Planck-Institut für Physik München

MSSM Higgs-mass corrections

- Higgs mass predicted in MSSM but receives substantial radiative corrections, e.g. $M_h \leq M_Z$ at tree level.
- FeynHiggs is a public tool for computing the Higgs mass corrections (and much more).
- Leading two-loop contributions: $\mathcal{O}(\alpha_s \alpha_t)$, $\mathcal{O}(\alpha_t^2)$.
- Available in rMSSM in FH for long (eff. potential method). Degrassi, Slavich, et al. 2001, 2002, 2003
- $\mathcal{O}(\alpha_s \alpha_t)$ in the cMSSM available (diagrammatic calc.). Rzehak et al. 2007

$\mathcal{O}(lpha_t^2)$ corrections in FeynHiggs

- Two-loop Higgs-mass corrections (\approx 5 GeV) important for precise prediction in MSSM.
- $\mathcal{O}(\alpha_t^2)$: Diagrammatic 2L calculation in full cMSSM. Specific approximations ($p^2 = 0$, gaugeless). Nontrivial renormalization.

Hollik, Paßehr 2014

$\mathcal{O}(lpha_t^2)$ corrections in FeynHiggs

- Two-loop Higgs-mass corrections (\approx 5 GeV) important for precise prediction in MSSM.
- $\mathcal{O}(\alpha_t^2)$: Diagrammatic 2L calculation in full cMSSM. Specific approximations ($p^2 = 0$, gaugeless). Nontrivial renormalization.

Hollik, Paßehr 2014

This talk: Show 'How' (not 'What') of this calculation.

Work in collaboration with Sebastian Paßehr [arXiv:1508.00562].

T. Hahn, Adding the $\mathcal{O}(lpha_t^2)$ corrections to FeynHiggs – p.3

Shopping List

Need to compute:

1 Unrenormalized 2L self-energies $\Sigma_{hh}^{(2)}, \Sigma_{hH}^{(2)}, \Sigma_{hA}^{(2)}, \Sigma_{HH}^{(2)}, \Sigma_{HA}^{(2)}, \Sigma_{AA}^{(2)}, \Sigma_{H^+H^-}^{(2)}$ at $p^2 = 0$ at $\mathcal{O}(\alpha_t^2)$.

- **②** 1L diagrams with insertions of 1L counterterms.
- 3 **2L** counterterms for 1.
- 4 **2L** tadpoles $T_h^{(2)}$, $T_H^{(2)}$, $T_A^{(2)}$ at $\mathcal{O}(\alpha_t^2)$ appearing in 3.

T. Hahn, Adding the $\mathcal{O}(lpha_t^2)$ corrections to FeynHiggs – p.4

Calculational Setup

- For tree level and one-loop many packages available.
- Packages like Madloop, GoSam, etc. try to be comprehensive = do all parts of the calculation.
- This means higher automation (good!). For QCD often ok since e.g. renormalization simple.
- But: controlled by (e.g.) parameter cards, not easy to use beyond intended purpose.
- Calculations often have some 'speciality' that requires extra programming and/or extra packages.
- May want to switch to other packages for cross-checks.

Template for Calculations

- Starting point: several Mathematica 8 (sic) notebooks with parallel instructions poured all over, duplicate code (e.g. gaugeless limit implemented multiply), etc.
- Reorganization of entire procedure:
 - Break calculation into several steps.
 - Implement each step as independent program (invoked from command line).
 - In lieu of 'in vivo' debugging keep detailed logs.
 - Coordinate everything through a makefile.
- Outcome: Template for 2L calculation in nontrivial model with nontrivial renormalization with optimized output.

Wheels we don't reinvent

Will use external packages

• FeynArts (for diagram generation), Hahn 2001–2015

• MSSMCT.mod (MSSM model file with 1L counterterms), Schappacher et al. 2014

• FormCalc (for 1L tensor reduction, code generation),

Hahn 1996–2015

• TwoCalc (for 2L tensor reduction).

Weiglein et al. 1992, 1994

T. Hahn, Adding the $\mathcal{O}(\alpha_t^2)$ corrections to FeynHiggs – p.7

Steps of the Calculation

Calculation split into 7 (8) steps:

T. Hahn, Adding the $\mathcal{O}(\alpha_t^2)$ corrections to FeynHiggs – p.8

Script Structure

- Shell scripts (/bin/sh), run from command line as e.g.
 ./1-amps arg1 arg2
- arg1 = h0h0, h0HH, h0A0, HHHH, HHA0, A0A0, HmHp (self-energies), h0, HH, A0 (tadpoles).
- arg2 = 0 for virtual 2L diagrams,
 1 for 1L diagrams with 1L counterterms.
- Inputs/outputs defined in first few lines, e.g.

in=m/\$1/2-prep.\$2
out=m/\$1/3-calc.\$2

- Symbolic output + log files go to 'm' subdirectory.
 Log file = Output file + .log.gz
- Fortran code goes to 'f' subdirectory.

Scripting Mathematica

Efficient batch processing with Mathematica:

Put everything into a script, using sh's Here documents:

```
#! /bin/sh ..... Shell Magic
math << \_EOF_ .... start Here document (note the \)
    << FeynArts'
    << FormCalc'
    top = CreateTopologies[...];
    ...
_EOF_ .... end Here document</pre>
```

Everything between "<< \tag " and "tag" goes to Mathematica as if it were typed from the keyboard.

Note the "\" before tag, it makes the shell pass everything literally to Mathematica, without shell substitutions.

Scripting Mathematica

- Everything contained in one compact shell script, even if it involves several Mathematica sessions.
- Can combine with arbitrary shell programming, e.g. can use command-line arguments efficiently:

```
#! /bin/sh
math -run "arg1=$1" -run "arg2=$2" ... << \END
...
END</pre>
```

• Can easily be run in the background, or combined with utilities such as make.

Debugging hint: -x flag makes shell echo every statement, #! /bin/sh -x

Step 0: Gaugeless Limit

Gaugeless approximation:

- **1** Set gauge couplings $g, g' = 0 \Rightarrow M_W, M_Z = 0$.
- **2** Keep finite weak mixing angle.

3 Keep
$$\frac{\delta M_W^2}{M_W^2}$$
 and $\frac{\delta M_Z^2}{M_Z^2}$ finite.

Must set $m_b = 0$ so that $\mathcal{O}(\alpha_t^2)$ corrections form supersymmetric and gauge-invariant subset.

Most efficient to modify Feynman rules (not 3, though):

- Load MSSMCT.mod model file.
- Modify couplings, remove zero ones.
- Write out MSSMCTgl.mod model file.

Step 1: Diagram Generation

• Generate 2L virtual and 1L+counterterm diagrams using wrappers for FeynArts functions.

Simple diagram selection functions, e.g.

Step 2: Preparation for Tensor Reduction

- Take $p^2 \rightarrow 0$ limit.
- Simplify ubiquitous sfermion mixing matrices U_{ij} , mostly by exploiting unitarity (\sim 50% size reduction).

Efficiently Exploit Unitarity in Mathematica

Unitarity of 2 x 2 matrix: $UU^{\dagger} = U^{\dagger}U = 1$, i.e. $U_{11}U_{11}^{*} + U_{12}U_{12}^{*} = 1$, $U_{11}U_{21}^{*} + U_{12}U_{22}^{*} = 0$, $U_{21}U_{21}^{*} + U_{22}U_{22}^{*} = 1$, $U_{21}U_{11}^{*} + U_{22}U_{12}^{*} = 0$, $U_{11}U_{11}^{*} + U_{21}U_{21}^{*} = 1$, $U_{11}U_{12}^{*} + U_{21}U_{22}^{*} = 0$, $U_{12}U_{12}^{*} + U_{22}U_{22}^{*} = 1$, $U_{12}U_{11}^{*} + U_{22}U_{21}^{*} = 0$.

Problem: Simplify will rarely arrange the U's in just the way that these rules can be applied directly.

Solution: Introduce auxiliary symbols which immediately deliver the r.h.s. once Simplify considers the l.h.s., i.e. increase the 'incentive' for Simplify to use the r.h.s.

But: Upvalues work only one level deep.

Efficiently Exploit Unitarity in Mathematica

Introduce

```
\begin{split} & \texttt{USf}[1, j] \; \texttt{USfC}[1, j] \to \texttt{UCSf}[1, j], \\ & \texttt{USf}[2, j] \; \texttt{USfC}[2, j] \to \texttt{UCSf}[2, j], \\ & \texttt{USf}[1, j] \; \texttt{USfC}[2, j] \to \texttt{UCSf}[3, j], \quad \texttt{+ ditto for 1}^{\texttt{st} index} \end{split}
```

and formulate unitarity for the UCSf:

UCSf[2,1] = UCSf[1,2]; UCSf UCSf[2,2] = UCSf[1,1]; UCSf

UCSf[3,2] = -UCSf[3,1]; UCSfC[3,2] = -UCSfC[3,1]; UCSf[2,3] = -UCSf[1,3]; UCSfC[2,3] = -UCSfC[1,3];

Step 3: Tensor Reduction

- Relatively straightforward application of TwoCalc and FormCalc for tensor reduction.
- Observe: Need two Mathematica sessions since TwoCalc and FormCalc cannot be loaded into one session, easily accomodated in shell script.

T. Hahn, Adding the $\mathcal{O}(\alpha_t^2)$ corrections to FeynHiggs – p.17

Step 4: Simplification

- Tensor reduction traditionally increases # of terms most.
- Step 4 reduces size before combination of results.
- Empirical simplification recipe.
- 'DiagMark' trick (D. Stöckinger):
 - Introduce DiagMark[m_i] where m_i = masses in loop in FeynArts output.
 - Few simplifications can be made between parts with different ${\tt DiagMark}\Rightarrow {\tt Can}$ apply simplification as

Collect[amp, _DiagMark, simpfunc]

• Much faster.

Step 5: Calculation of Renormalization Constants

- Compute 1L renormalization constants (RC) with FormCalc.
- Substitute explicit mass dependence in $dMVsq1 \rightarrow MV2 \ dMVsq1MV2 \quad (V = W, Z)$ such that gaugeless limit can be taken safely.
- Expand in ε , collect powers for easier handling later, e.g.

Step 6: Combination of Results

- Expand amplitude in ε (similar as RC).
- Insert RCs.
- Add genuine 2L counterterms (hand-coded).
- Pick only ε^0 term (unless debug flag set).
- Perform final simplification.

Step 7: Code Generation

- Introduce abbreviations to shorten code.
- Write out Fortran code using FormCalc's code-generation functions.
- Add static code which computes e.g. the necessary parameters for the generated code.
- Total final code size: 350 kBytes.

Summary

As a by-product of the implementation of the $\mathcal{O}(\alpha_t^2)$ corrections in FeynHiggs we now have a

- Suite of scripts which can be used as a
- Template for similar calculations,
 - Two-loop,
 - Nontrivial model (MSSM),
 - Nontrivial renormalization,
 - Specific approximations (gaugeless, $p^2=0$),
 - Optimized output.

Code is included in public release of FeynHiggs 2.11+ in the $\tt gen/tlsp$ directory.

More details in arXiv:1508.00562.