Unitarity triangle fits: Standard model & Search for New Physics

Guido Martinelli SISSA Trieste & INFN Roma

erc

International School for Advanced Studies

STANDARD MODEL UNITARITY TRIANGLE ANALYSIS (Flavor Physics)

- Provides the best determination of the CKM parameters;
- Tests the consistency of the SM (``direct" vs ``indirect" determinations) @ the quantum level;
- Provides <u>predictions</u> for SM observables (in the past for example sin 2β and Δm_s)
- It could lead to new discoveries (CP violation, Charm, !?)

Flavor physics in the Standard Model

In the SM, the quark mass matrix, from which the CKM matrix and *GP* violation originate, is determined by the coupling of the Higgs boson to fermions.

Absence of FCNC at tree level (& GIM suppression of FCNC @loop level)

Almost no CP violation at tree level

Flavour Physics is extremely sensitive to New Physics (NP)

WHY RARE DECAYS ?

Rare decays are a manifestation of broken (accidental) symmetries e.g. of physics beyond the Standard Model

Proton decay

baryon and lepton number conservation

 $\mu \rightarrow e + \gamma$

 $v_i \rightarrow v_k$

lepton flavor number

RARE DECAYS WHICH ARE ALLOWED IN THE STANDARD MODEL

FCNC: $q_i \rightarrow q_k + v \overline{v}$

 $q_i \rightarrow q_k + l^+ l^-$

 $q_i \rightarrow q_k + \gamma$

these decays occur only via loops because of GIM and are suppressed by CKM

THUS THEY ARE SENSITIVE TO NEW PHYSICS

Why we like $K \rightarrow \pi v \overline{v}$? For the same reason as $A_{J/\psi K_s}$: 1) Dominated by short distance dynamics (hard GIM suppression, calculable in pert. theory) 2) Negligible hadronic uncertainties (matrix element known)

Flavor and New Physics

flavor physics can be used in two "modes":

1. "NP Lagrangian reconstruction"

- an external information on the NP scale is required
- the main tool are correlations among observables
- needs good theoretical control on uncertainties of both SM and NP contributions
- 2. "Discovery"
- looks for deviation from the SM whatever the origin
- needs good theoretical control of the SM contribution only
- in general cannot provide precise information on the NP scale, but a positive result would be a strong evidence that NP is not too far (i.e. in the multi-TeV region)

the path leading to TeV NP is narrower after the results of the LHC at 7 & 8 TeV

> *this will be further explored in the next run*

(i.e. LHC)

CP Violation in the Standard Model

In the Standard Model the quark mass matrix, from which the CKM Matrix and $\mathcal{C}P$ originate, is determined by the Yukawa Lagrangian which couples fermions and Higgs

Diagonalization of the Mass Matrix

Up to singular cases, the mass matrix can always be
diagonalized by 2 unitary transformations
$$u_{L}^{i} \rightarrow U_{L}^{ik} u_{L}^{k}$$
 $u_{R}^{i} \rightarrow U_{R}^{ik} u_{R}^{k}$
 $\mathbf{M}' = \mathbf{U}_{L}^{\dagger} \mathbf{M} \mathbf{U}_{R}$ $(\mathbf{M}')^{\dagger} = \mathbf{U}_{R}^{\dagger} (\mathbf{M})^{\dagger} \mathbf{U}_{L}$
 $\int mass = m_{up} (\overline{u}_{L} u_{R} + \overline{u}_{R} u_{L}) + m_{ch} (\overline{c}_{L} c_{R} + \overline{c}_{R} c_{L})$
 $+ m_{top} (\overline{t}_{L} t_{R} + \overline{t}_{R} t_{L})$

$$L_{CC}^{weak\,int} = \frac{g_W}{\sqrt{2}} \left(J_{\mu}^- W_{\mu}^+ + h.c. \right)$$

$$\rightarrow \frac{g_W}{\sqrt{2}} \left(\bar{u}_L \mathbf{V}^{CKM} \gamma_{\mu} d_L W_{\mu}^+ + ... \right)$$

N(N-1)/2 angles and (N-1)(N-2)/2 phases

N=3 3 angles + 1 phase KM the phase generates complex couplings i.e. <u>CP</u> <u>violation;</u>

6 masses +3 angles +1 phase = 10 parameters

V _{ud}	V _{us}	V _{ub}
V _{cd}	V _{cs}	V _{cb}
V _{tb}	V _{ts}	V _{tb}

NO Flavour Changing Neutral Currents (FCNC) at Tree Level (FCNC processes are good candidates for observing NEW PHYSICS)

CP Violation is natural with three quark generations (Kobayashi-Maskawa)

With three generations all CP phenomena are related to the same unique parameter (δ)

Quark masses & Generation Mixing

$$M^{d} = M \begin{pmatrix} 0 & -\sqrt{x} \\ \sqrt{x} & 1+x \end{pmatrix} \xrightarrow{\text{Sin } \theta_{c} \sim \sqrt{m_{d}} / m_{s}} \\ \text{R.Gatto '70} \\ \text{diag}(M) = M (x , 1) \quad x = m_{d} / m_{s} \\ V_{1} = \begin{pmatrix} 1 \\ \sqrt{x} \end{pmatrix} \quad \lambda_{1} = M x \xrightarrow{\text{Masses } 4} \\ \text{Mixings} \\ \text{(including the } \\ CP \text{ phases }) \\ \text{are related } \| \\ \end{array}$$

The Wolfenstein Parametrization

1 - 1/2 λ ²	λ	Αλ ³ (ρ - i η)	V _{ub}
- λ	1 - 1/2 λ ²	$A \lambda^2$	+ Ο(λ ⁴)
A $\lambda^3 \times$ (1- ρ - i η)	-A λ ²	1	
V _{td} ∧ ~ 0.2	A ~ 0.	$\begin{array}{c} \text{Sin } \theta_1 \\ \text{Sin } \theta_2 \\ \text{Sin } \theta_1 \end{array}$	2 = λ 3 = A λ ² 3 = A λ ³ (ρ-i η)
η~υ.Ζ	ρ~υ	5	

Physical quantities correspond to invariants under phase reparametrization i.e. $|a_1|, |a_2|, ..., |e_3|$ and the area of the Unitary Triangles

$$J = Im (a_1 a_2^*) = |a_1 a_2| Sin \beta$$

a precise knowledge of the
moduli (angles) would fix J
$$\mathcal{CP} \propto J$$

$$V_{ud}^*V_{ub} + V_{cd}^*V_{cb} + V_{td}^*V_{tb} = 0$$

$$\gamma = \delta_{CKM}$$

Gluons and quarks

 $\frac{The \ QCD \ Lagrangian :}{L_{STRONG}} = -1/4 \ G^{A}_{\mu\nu}G_{A}^{\mu\nu} \longleftarrow GLUONS$ $+ \sum_{f=flavour} \bar{q}_{f} (i \gamma_{\mu} D_{\mu} - m_{f}) q_{f}$ QUARKS (& GLUONS)

$$\begin{split} G^{A}{}_{\mu\nu} &= \partial_{\mu}G^{A}{}_{\nu} - \partial_{\nu}G^{A}{}_{\mu} - g_{0} f^{ABC}G^{B}{}_{\mu}G^{C}{}_{\nu} \\ q_{f} &= q_{f}{}^{a}{}_{\alpha}(x) \quad \gamma_{\mu} &= (\gamma_{\mu})^{\alpha\beta} \quad D_{\mu} &\equiv \partial_{\mu}I + i g_{0} t^{A}{}_{ab}G^{A}{}_{\mu} \end{split}$$

STRONG CP VIOLATION

This term violates CP and gives a contribution to the electric dipole moment of the neutron

$$e_n < 3 \ 10^{-26} e cm$$

 $\theta < 10^{-10}$ which is quite unnatural !!

(Some) Resolutions of the Strong CP Problem

- Just declare CP to be good in the strong sector
 - Weak sector can reintroduce the problem

$$\begin{split} & \mathsf{m}_{\mathsf{u}} = 0 \quad \bar{q} \left(i \mathcal{P} - m e^{i \theta' \gamma_5} \right) q \\ & \overset{\mathsf{t}}{\mathsf{t}} \operatorname{Hooft PRL 37 8 (1976)}_{\operatorname{Jackiw \& Rebbi, PRL 37 127 (1976)}_{\operatorname{Callan, Dashen \& Gross PLB 63 335 (1976)}_{\operatorname{Kaplan \& Manohar PRL 56 2004 (1986)}} \\ & \cdot m_{\mathsf{u}} \neq 0 \\ & \overset{\mathsf{m}_{\mathsf{u}}}{\operatorname{Gasser \& Leutwyler PhysRept 87 77-169 (1982)}} \end{split} \\ & \bullet \operatorname{Additional Peccei-Quinn symmetry \& axions}_{\operatorname{Peccei \& Quinn: PRL 38 (1977) 1440, PR Dif (1977) 1791}} v \\ & \overset{\mathsf{m}_{\mathsf{u}}}{\operatorname{M}^{MS}} \left(2 \operatorname{GeV} \right) = 2.40 \left(15 \right) (17) \operatorname{MeV} \\ & m_{u}^{\overline{MS}} \left(2 \operatorname{GeV} \right) = 4.80 \left(15 \right) (17) \operatorname{MeV} \\ & \frac{m_{u}^{\overline{MS}}}{m_{u}^{\overline{MS}}} = 0.50 \left(2 \right) (3) \\ & \overset{\mathsf{m}_{\mathsf{u}}}{\operatorname{Flag}} \end{split}$$

 \mathbf{m}_{ud}

FLAG2013

Axions

Peccei & Quinn: PRL 38 (1977) 1440, PR D16 (1977) 1791

Couple to topological charge

$$\mathcal{L}_{\text{axions}} = \frac{1}{2} \left(\partial_{\mu} a \right)^2 + \left(\frac{a}{f_a} + \theta \right) \frac{1}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$$

 $a \rightarrow a + \alpha$

• Otherwise have shift symmetry.

Amenable to effective theory treatment

PQ symmetry can break before or after inflation.

Average over initial $\boldsymbol{\theta}$

 $V_{\rm eff} \sim \cos\left(\theta + c\langle a \rangle\right)$

More this evening

Measure
$$V_{CKM}$$
Other NP parameters $\Gamma(b \rightarrow u)/\Gamma(b \rightarrow c)$ $\bar{\rho}^2 + \bar{\eta}^2$ $\bar{\Lambda}, \lambda_1, F(1), \dots$ ϵ_K $\eta [(1 - \bar{\rho}) + \dots]$ B_K Δm_d $(1 - \bar{\rho})^2 + \bar{\eta}^2$ $f_{B_d}^2 B_{B_d}$ $\Delta m_d / \Delta m_1$ $(1 - \bar{\rho})^2 + \bar{\eta}^2$ ξ $A_{CP}(B_d \rightarrow J/\psi K_s)$ $\sin 2\beta$ $Q^{EXP} = V_{CKM} \times \langle H_F | \hat{O} | H_I \rangle$

For details see: UTfit Collaboration

http://www.utfit.org

classical UT analysis

sin 2 β is measured directly from B $\rightarrow J/\psi K_s$ decays at Babar & Belle & LHC

$$\mathcal{A}_{J/\psi K_{s}} = \frac{\Gamma(B_{d}^{0} \rightarrow J/\psi K_{s}, t) - \Gamma(B_{d}^{0} \rightarrow J/\psi K_{s}, t)}{\Gamma(B_{d}^{0} \rightarrow J/\psi K_{s}, t) + \Gamma(\overline{B}_{d}^{0} \rightarrow J/\psi K_{s}, t)}$$

$$\mathcal{A}_{J/\psi K_s} = \sin 2\beta \quad \sin (\Delta m_d t)$$

DIFFERENT LEVELS OF THEORETICAL UNCERTAINTIES (STRONG INTERACTIONS)

1) First class quantities, with reduced or negligible theor. uncertainties $A_{CP}(B \rightarrow J/\psi K_s) \quad \gamma \ from \ B \rightarrow DK$

 $K^0 \rightarrow \pi^0 \nu \bar{\nu}$

2) Second class quantities, with theoretical errors of O(10%) or less that can be reliably estimated $\epsilon_{K} \qquad \Delta M_{d,s}$ $\Gamma(B \to c, u), \qquad K^{+} \to \pi^{+} v \bar{v}$

3) Third class quantities, for which theoretical predictions are model dependent (BBNS, charming, etc.) In case of discrepacies we cannot tell whether is <u>new physics or</u> <u>we must blame the model</u> $B \rightarrow K \pi \quad B \rightarrow \pi^0 \pi^0$

Quantities used in the Standard UT Analysis

levels @ 68% (95%) CL

Inclusive vs Exclusive Opportunity for lattice QCD

UT-LATTICE

Other Quantities used in the UT Analysis

UT-ANGLES

Several new determinations of UT angles are now available, thanks to the results coming from the B-Factory experiments

New bounds are available from rare B and K decays. They do not still have a strong impact on the global fit and they are not used at present.

 $(\mathbf{B} \rightarrow \rho/\omega \mathbf{\gamma})/(\mathbf{B} \rightarrow \mathbf{K}^* \mathbf{\gamma})$

CKM matrix is the dominant source of flavour mixing and CP violation

CKM-TRIANGLE ANALYSIS

State of The Art 2015

	Measurement	Fit	Prediction	Pull
$\overline{\alpha}$	$(92.7 \pm 6.2)^{o}$	$(90.1 \pm 2.7)^{o}$	$(88.3 \pm 3.4)^{o}$	0.6
	6.7 %	2.9 %	3.8 %	
$\sin 2\beta$	0.680 ± 0.024	0.696 ± 0.022	0.747 ± 0.039	1.8
	$3.5 \ \%$	2.6~%	5.2~%	
$\overline{\gamma}$	$(71.4 \pm 6.5)^{o}$	$(67.4 \pm 2.8)^{o}$	$(66.7 \pm 3.0)^{o}$	0.7
	9.1 %	4.2~%	4.5 %	
$ V_{ub} \times 10^3$	3.81 ± 0.40	3.66 ± 0.12	3.64 ± 0.12	0.5
	$10 \ \%$	3.3~%	3.3~%	
$ V_{cb} \times 10^2$	4.09 ± 0.11	4.206 ± 0.053	4.240 ± 0.062	0.9
	2.6~%	1.2~%	1.4~%	
$\varepsilon_K \times 10^3$	2.228 ± 0.011	2.227 ± 0.011	2.08 ± 0.18	0.8
	0.5~%	0.5~%	8.7~%	
$\Delta m_s \ ({\rm ps}^{-1})$	17.761 ± 0.022	17.755 ± 0.022	17.3 ± 1.0	0.2
	0.1~%	0.1 %	5.7~%	
$BR(B \to \tau \nu) \times 10^4$	1.06 ± 0.20	0.83 ± 0.07	0.81 ± 0.7	1.3
	18.9~%	7.9~%	8.2~%	
$\overline{BR}(B_s \to \mu\mu) \times 10^9$	2.9 ± 0.7	3.90 ± 0.15	3.94 ± 0.16	1.5
	24.1~%	3.8~%	4.0 %	ew corrections not included
$\overline{BR(B_d \to \mu\mu) \times 10^9}$	0.39 ± 0.15	0.1098 ± 0.0057	0.1103 ± 0.0058	1.9
	38.5~%	5.2~%	5.2~%	ew corrections not included
$\overline{eta_s}$	$(0.97 \pm 0.95)^o$	$(1.056 \pm 0.039)^o$	$(1.056 \pm 0.039)^o$	0.1
	98 %	4.4 %	4.1~%	not included in the fit

 $B(B \rightarrow \tau \nu)_{Old} = (1.67 \pm 0.30) \ 10^{-4}$

LATTICE PARAMETERS

	Lattice	Prediction	Pull
\hat{B}_K	0.766 ± 0.010	0.84 ± 0.07	0.9
	1.3~%	8.3~%	
$\overline{f_{B_s}}$	0.226 ± 0.005	0.2256 ± 0.0039	0.0
	2.2~%	2.7~%	
$\overline{f_{B_s}/f_{B_d}}$	1.204 ± 0.016	1.197 ± 0.056	0.0
	1.3~%	0.4~%	
$\overline{B_s}$	0.875 ± 0.040	0.875 ± 0.030	0.0
	1.3~%	0.4~%	
$\overline{B_s/B_d}$	1.03 ± 0.08	1.096 ± 0.062	0.7
	7.8 %	5.7 %	

CKM Matrix in the SM

inclusives vs exclusives

 $\begin{array}{ll} V_{ub} & (4.41\pm0.22)\times10^{-3} \\ V_{cb} & (4.22\pm0.07)\times10^{-2} \end{array}$

 $(3.69 \pm 0.15) \times 10^{-3}$ $(3.92 \pm 0.07) \times 10^{-2}$

$$\begin{array}{ll} V_{ub} & (3.81\pm0.40)\times10^{-3} \\ V_{cb} & (4.09\pm0.11)\times10^{-2} \end{array}$$

 $sin2\beta_{exp} = 0.680 \pm 0.024$

 $sin2\beta_{UTfit} =$ 0.747 ± 0.039 $B_{K} = 0.84 \pm 0.07$

 $sin2\beta_{incl} =$ 0.782 ± 0.028 B_K= 0.74 ±0.05

 $sin2\beta_{excl} = 0.725 \pm 0.019$ B_K= 0.93 ±0.07

 $\left|V_{ub}
ight|$, $\left|V_{cb}
ight|$

Courtesy of C. Pena *Lattice* 2015

 $|V_{cb}|x10^3$

.

our average for $N_f = 2 + 1$

FNAL/MILC 13B

- Gambino 13 Inclusive

Courtesy of Denis Derkach

The relative ratio of CKM elements is easily calculable:

$$\left|\frac{V_{ub}}{V_{cb}}\right| = \frac{\lambda}{1 \ - \ \frac{\lambda^2}{2}} \sqrt{\bar{\rho}^2 + \bar{\eta}^2}$$

QCD corrections to be considered •inclusive measurements: OPE •exclusive measurements: form-factors from lattice QCD

There is still an inconsistency between inclusive and exclusive measurements. We take this into account inflating the combined uncertainty (a-la PDG).

 $\sin(2\beta) = (0.680 \pm 0.023)$

inclusives vs exclusives

sin2β_{UTfit} = 0.709 ± 0.029 ~0.9σ

preliminary

Many of the tensions of the past unfortunately disappeared

There still remain important differences between inclusive and exclusive determinations of V_{ub} and V_{cb}

But this seems rather to be a theory problem !!

Is the present picture showing a **Model Standardissimo**?

An evidence, an evidence, my kingdom for an evidence

From Shakespeare's Richard III

1) Fit of NP- $\Delta F=2$ parameters in a Model "independent" way

2) "Scale" analysis in $\Delta F=2$

What for a ``standardissimo" CKM which agrees so well with the experimental observations?

New Physics at the EW scale is "flavor blind" -> MINIMAL FLAVOR VIOLATION, namely flavour originates only from the Yukawa couplings of the SM New Physics introduces new sources of flavor, the contribution of which, at most < 20 %, should be found in the present data, e.g. in the asymmetries of Bs decays

.... beyond the Standard Model

UT Analysis:
Model independent analysis
Limits on the deviations
NP scale update

Main Ingredients and General Parametrizations

Fit simultaneously CKM and NP parameters (generalized Utfit)

$$H^{\Delta F=2} = \hat{m} - \frac{i}{2}\hat{\Gamma} \quad A = \hat{m}_{12} = \langle \bar{M}|\hat{m}|M\rangle \quad \Gamma_{12} = \langle \bar{M}|\hat{\Gamma}|M\rangle$$

Neutral Kaon Mixing

$$ReA_K = C_{\Delta m_K} ReA_K^{SM}$$
 $ImA_K = C_{\varepsilon} ImA_K^{SM}$

B_d and **B**_s mixing

$$A_q e^{2i\phi_q} \equiv C_{B_q} e^{2i\phi_{B_q}} \times A_q^{SM} e^{2i\phi_q^{SM}} = \left(1 + \frac{A_q^{NP}}{A_q^{SM}} e^{2i(\phi_q^{NP} - \phi_q^{SM})}\right) \times A_q^{SM} e^{2i\phi_q^{SM}}$$

$$C_{B_s}e^{2i\phi_{B_s}} = \frac{A_s^{SM}e^{-2i\beta_s} + A_s^{NP}e^{2i(\phi_s^{NP} - \beta_s)}}{A_s^{SM}e^{-2i\beta_s}} = \frac{\langle \bar{B}_s | H_{eff}^{full} | B_s \rangle}{\langle \bar{B}_s | H_{eff}^{SM} | B_s \rangle}$$

$$\begin{split} \frac{\Gamma_{12}^{q}}{A_{q}} &= -2\frac{\kappa}{C_{B_{q}}} \left\{ e^{i2\phi_{B_{q}}} \left(n_{1} + \frac{n_{6}B_{2} + n_{11}}{B_{1}} \right) - \frac{e^{i(\phi_{q}^{\text{SM}} + 2\phi_{B_{q}})}}{R_{t}^{q}} \left(n_{2} + \frac{n_{7}B_{2} + n_{12}}{B_{1}} \right) \right. \\ &+ \frac{e^{i2(\phi_{q}^{\text{SM}} + \phi_{B_{q}})}}{R_{t}^{q^{2}}} \left(n_{3} + \frac{n_{8}B_{2} + n_{13}}{B_{1}} \right) + e^{i(\phi_{q}^{\text{Pen}} + 2\phi_{B_{q}})} C_{q}^{\text{Pen}} \left(n_{4} + n_{9}\frac{B_{2}}{B_{1}} \right) \\ &- e^{i(\phi_{q}^{\text{SM}} + \phi_{q}^{\text{Pen}} + 2\phi_{B_{q}})} \frac{C_{q}^{\text{Pen}}}{R_{t}^{q}} \left(n_{5} + n_{10}\frac{B_{2}}{B_{1}} \right) \right\} \end{split}$$

 C_q^{Pen} and ϕ_q^{Pen} parametrize possible NP contributions to Γ^q_{12} from b -> s penguins

Physical observables

$$\Delta m_s = |A_s| = C_{B_s} \Delta m_s^{SM}$$

$$2\phi_{s} = -\arg A_{s} = 2 \left(\beta_{s} - \phi_{B_{s}}\right)$$
$$A_{SL}^{s} = \frac{\Gamma(\bar{B}_{s} \to l^{+}X) - \Gamma(B_{s} \to l^{-}X)}{\Gamma(\bar{B}_{s} \to l^{+}X) + \Gamma(B_{s} \to l^{-}X)} = Im\left(\frac{\Gamma_{12}^{s}}{A_{s}}\right)$$

$$A_{SL}^{\mu\mu} = \frac{f_d \chi_{d0} A_{SL}^d + f_s \chi_{s0} A_{SL}^s}{f_d \chi_{d0} + f_s \chi_{s0}}$$
$$\frac{\Delta \Gamma_s}{\Delta m_s} = Re \left(\frac{\Gamma_{12}^s}{A_s}\right) \qquad \tau_{B_s}^{FS} = \frac{1}{\Gamma_s} \frac{1 + (\Delta \Gamma_s / 2\Gamma_s)^2}{1 - (\Delta \Gamma_s / 2\Gamma_s)^2}$$

NP model independent Fit $\Delta F=2$ $\Delta m_d^{EXP} = C_B_\Delta m_d^{SM}$ $f(\rho,\eta, C_B_A, QCD..)$ Parametrizing NP physics in $\Delta F=2$ processes $\alpha^{EXP} = \alpha^{SM} - \phi_B_A$ $f(\rho,\eta, \phi_B_A)$ $\mathcal{C}_{Bg}e^{2i\phi}Bq = \frac{\mathcal{A}_{\Delta B=2}^{NP} + \mathcal{A}_{\Delta B=2}^{SM}}{\mathcal{A}_{\Delta B=2}^{SM}}$ $e^{EXP} = C_E | e_K |^{SM}$ $f(\rho,\eta, C_E, QCD..)$ $\mathcal{A}_{CP}(J/\Psi, \phi) = \sin(2\beta_s - 2\phi_{B_s})$ $f(\rho,\eta, \sigma_B_s)$ $f(\rho,\eta, \sigma_B_s)$

T		ρ,η	C _d	φ _d	C _s	φ _s	C _{eK}
Iree	γ (DK)	Х					
processes	V _{ub} /V _{cb}	Х					
1 < > 2	Δm_d	X	X				
	АСР (J/Ψ K)	X		X			
tamily	ACP $(D\pi(\rho), DK\pi)$	Х		Х			
	A _{SL}		X	X			
	α (ρρ,ρπ,ππ)	Х		X			
2⇔3 family	A _{CH}		X	X	X	X	
	$\tau(Bs), \Delta\Gamma_s/\Gamma_s$				X	X	
	Δm				X		
	ASL(Bs)				X	X	
	ΑCP (J/Ψ φ)	~X				X	
1⇔2	ε _K	X					X
familiy							

ρ,η fit quite precisely in NP-ΔF=2 analysis and consistent with the one obtained on the SM analysis [error double] (main contributors tree-level γ and V_{ub}) Please consider these numbers when you want to get CKM parameters

in presence of NP in $\Delta F=2$ amplitudes (all sectors 1-2,1-3,2-3)

NP parameters (i)

NP parameters (ii)

TESTING THE NEW PHYSICS SCALE Effective Theory Analysis ΔF=2

Effective Hamiltonian in the mixing amplitudes

$$H_{eff}^{\Delta B=2} = \sum_{i=1}^{5} C_{i}(\mu) Q_{i}(\mu) + \sum_{i=1}^{3} \widetilde{C}_{i}(\mu) \widetilde{Q}_{i}(\mu)$$

$$Q_{1} = \overline{q}_{L}^{\alpha} \gamma_{\mu} b_{L}^{\alpha} \overline{q}_{L}^{\beta} \gamma^{\mu} b_{L}^{\beta} \quad (SM/MFV)$$

$$Q_{2} = \overline{q}_{R}^{\alpha} b_{L}^{\alpha} \overline{q}_{R}^{\beta} b_{L}^{\beta} \qquad Q_{3} = \overline{q}_{R}^{\alpha} b_{L}^{\beta} \overline{q}_{R}^{\beta} b_{L}^{\beta}$$

$$Q_{4} = \overline{q}_{R}^{\alpha} b_{L}^{\alpha} \overline{q}_{L}^{\beta} b_{R}^{\beta} \qquad Q_{5} = \overline{q}_{R}^{\alpha} b_{L}^{\beta} \overline{q}_{L}^{\beta} b_{R}^{\beta}$$

$$\widetilde{Q}_{1} = \overline{q}_{R}^{\alpha} \gamma_{\mu} b_{R}^{\alpha} \overline{q}_{R}^{\beta} \gamma^{\mu} b_{R}^{\beta} \qquad \widetilde{Q}_{3} = \overline{q}_{L}^{\alpha} b_{R}^{\beta} \overline{q}_{L}^{\beta} b_{R}^{\beta}$$

$$C_j(\Lambda) = \frac{LF_j}{\Lambda^2} \Rightarrow \Lambda = \sqrt{\frac{LF_j}{C_j(\Lambda)}}$$

 $C(\Lambda)$ coefficients are extracted from data

L is loop factor and should be : L=1 tree/strong int. NP L= α_s^2 or α_W^2 for strong/weak perturb. NP

$$F_1 = F_{SM} = (V_{tq}V_{tb}^*)^2$$

 $F_{j=1} = 0$

MFV

|F_j|=F_{SM} arbitrary phases

NMFV

|F_j|=1 arbitrary phases

Flavour generic

Results from a fit to the Wilson Coefficients

Results obtained with L=1 corresponding to tree level NP effects and

an arbitrary flavor structure

 $\begin{aligned} \epsilon_{\rm K} & \Lambda = 5 \ 10^5 \, {\rm TeV} \\ {\rm D} & \Lambda = \ 10^4 \, {\rm TeV} \\ {\rm B}_{\rm d} & \Lambda = \ 3 \ 10^3 \, {\rm TeV} \\ {\rm B}_{\rm s} & \Lambda = \ 8 \ 10^2 \, {\rm TeV} \end{aligned}$

CONCLUSIONS

- 1) The high precision of the SM UT Analysis allows to test the SM and to search for NP at a level which is competitive with direct searches
- 2) CKM matrix is the dominant source of flavour mixing and CP violation $\sigma(\rho) \sim 15\%$ & $\sigma(\eta) \sim 4\%$. SM analysis shows a very good overall consistency
- 3) The main tensions disappeared
- 4) Inclusive vs exclusive semileptonic decays still need theoretical improvement and BK !!

Thus for the time being we have to remain with a STANDARDISSIMO STANDARD MODEL but ...

THANKS FOR YOUR ATTENTION

International School for Advanced Studies

