Higgs boson studies with the ATLAS detector at the Large Hadron Collider

Giovanni Marchiori (LPNHE-Paris) ATLAS Collaboration

Corfu 2015 Summer School and Workshop 8 September 2015

Outline

- Higgs boson discovery
 - experimental setup
 - experimental features of Higgs boson production and decay at the LHC
 - observation of a Higgs boson with m~125 GeV
- Higgs boson characterisation with the full ATLAS data from LHC Run1
 - mass
 - production and decay strength
 - couplings
 - width
 - spin and CP
 - differential cross sections
 - beyond-SM (BSM) decays
- Future perspectives

1. The Higgs boson discovery

The Large Hadron Collider at CERN

- LHC is a proton and heavy ion collider
- Run1: ~25 fb⁻¹ of pp collisions at √s=7,8 TeV

- Bunches of ~1.5e11 p cross every 50 ns
- More than 25 pp interactions per bunch crossing on average

The ATLAS experiment at the LHC

- General purpose detector optimised for diboson final states, considered in 90's most promising for Higgs boson discovery: $\gamma\gamma$, ZZ^{*}, WW^{*}, Z^(*) $\rightarrow \ell\ell$, W^(*) $\rightarrow \ell\nu$ ($\ell=e,\mu$)
 - **e**, μ : inner detector (tracker) with high precision, even at low transverse momentum
 - e,γ : e.m. calorimeter with excellent energy resolution and direction reconstruction
 - v (E_T^{miss}), **jets**: calorimeters with large acceptance and good jet energy resolution for reconstruction of missing energy in transverse plane

Inner Detector

µ: muon system with good precision up to 1 TeV

oduction

SM Higgs boson production @ LHC (m_H~125 GeV)

~500k Higgs bosons in ATLAS interaction point in Run1 collisions (before reconstruction)

3

→ 10⁵ larger than $H \rightarrow \tau^+ \tau^-$ production SM Higgs boson production @ LHC (m_H~125 GeV)

- Different production processes
 - sensitive to different couplings
 - ggF, ttH: fermions (t, b)
 - VBF, VH: bosons (WV, Z) $jjVV \rightarrow jjH$
 - different signatures $pp \rightarrow t\bar{t}H$
 - sub-dominant modes have we have the sub-dominant modes have we have the state of the second state of th
 - VBF: two jets with large m_{jj}, large rapidity gap, little hadronic activity in between
 - WH, ZH: V boson decay to
 - charged leptons ($W \rightarrow \ell \nu, Z \rightarrow \ell \ell$)
 - neutrinos (W $\rightarrow \ell \nu$, Z $\rightarrow \nu \nu$)
 - jet pairs w/ m_{jj} ~80-90 GeV (W,Z \rightarrow qq)
 - ttH: tt \rightarrow WbWb, W $\rightarrow \ell v$ or W \rightarrow qq: many jets (\geq 4-6), b-jets, leptons, neutrinos

SM Higgs boson decays

- Many final states with non negligible branching ratios @ m_H~125 GeV
 - not all of them can be cleanly identified (cc, gg..)

Backgrounds in pp collisions

Giovanni Marchiori

SM Higgs boson decays exploited at the LHC

- To reduce QCD backgrounds or get best invariant mass resolution, privilege
 - photons
 - W→ℓν (ℓ=e,μ) (BR_{WW} = 4.7%)
 - $Z \rightarrow \ell \ell$ (BR_{ZZ} = 0.45%, BR_{Zγ} = 6.7%)
 - VH \rightarrow Vbb, V $\rightarrow \ell \ell / \ell \nu / \nu \nu$ ($\sigma_{VH}/\sigma_{H}^*BR_V = 1.15\%$)

but reconstruct also other final states (like W,Z \rightarrow jj) to increase stat or access specific Higgs boson couplings

$H_{125} \rightarrow$	γγ	WW* →ℓvℓv	ZZ* →4ℓ	ττ	Vbb V→ℓℓ,ℓv,vv	μμ	$egin{array}{c} {\sf Z}\gamma \ ightarrow \ell\ell\gamma \end{array}$
σ*BR/σ _{τοτ}	2.28E-03	1.06%	1.25E-04	6.3%	6.4E-03	2.2E-04	1.03E-04

- A* ϵ ~30–40% for modes without v ($\gamma\gamma/4\ell/\ell\ell\gamma/\mu\mu$), 2–10% for the others
 - ~1.5k Higgs bosons (m_H =125 GeV) in full 8 TeV sample after selection

Higgs boson search strategy: the $H \rightarrow \gamma \gamma$ example

- Reconstruct final state of interest: two photons in the detector
- Apply selection optimised based on expected properties of signal (S) and background (B) to improve S/B while keeping good signal efficiency
- Define (at least) 1 discriminating variable between S and B: the di-photon invariant mass

$$m_{\gamma\gamma} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2} = \sqrt{2E_1E_2(1 - \cos\theta)}$$

- Fit $m_{\gamma\gamma}$ distribution to estimate S and B yields, $N_{\rm S}$ and $N_{\rm B}$
 - signal and background distributions from simulation and data control samples

- Claim discovery if "> 5σ significance": N_S/ $\sqrt{N_B}$ > 5 or some equivalent but more complicated criteria. The probability ("p-value") that B fluctuates to yield a fake S that large is 3^{10-7}
- · Search in as many final states as possible to increase sensitivity

Giovanni Marchiori

Higgs boson studies in ATLAS

Higgs boson discovery: CERN, 4th July 2012

http://www.elsevier.com/locate/physletb

Higgs boson discovery

- ~10 fb⁻¹ for each experiment (5 fb⁻¹ @ 7 TeV + ~5 fb⁻¹ @ 8 TeV)
- Maximum deviation of data from B-only hypothesis near $m_H=125$ GeV
- ~5 σ /experiment mainly from largest-sensitivity (i.e. best N_S/ $\sqrt{N_B}$) final states

2. Higgs boson characterisation with full Run1 data

Name: Higgs boson

Date of birth: 04/07/2012

Weight: 125.36 GeV

Blood type (J^P): 0⁺

Address: Route de Meyrin 385, 1217 Meyrin, CH

Reconstructed production and decay modes

Productions

	ggF	VBF	VH	ttH	σ _m /m	S/B	S	Observed (expected) significance or limit
γγ	~	~	~	~	1.3%	0.03	~400	5.2σ (4.6σ)
ZZ*→4ℓ	~	~	~	✓	1–2%	1.5	~15	8.1σ (6.2σ)
WW*	 	~	~	~	15%	0.02	~1000	6.5σ (5.9σ)
ττ	 Image: A start of the start of	~			15–20%	0.03	~100	4.5σ (3.4σ)
bb			~	~	15%	0.03	~160	1.4σ (2.6σ)
Ζγ	✓				1.4%	0.003	~15	<11 (9) * SM
μμ	~	~			2%	0.002	~35	<7.0 (7.2) * SI

• plus searches for rarer/forbidden decay modes (see later)

Invariant mass distributions of main decay modes

• no hint of peak at 125 GeV in $Z\gamma$ and $\mu\mu$ channels (not shown here)

Higgs boson mass

- In SM, Higgs sector is determined by a single parameter, m_H (+vev~245 GeV)
 - need to know m_{H} to predict couplings to all other SM particles
- In SM, quantum corrections to many observables depend on m_H , m_t and m_W
 - test consistency of SM by comparing direct m_t, m_W measurements to indirect constraints from fits of SM observables after fixing m_H

Giovanni Marchiori

Higgs boson mass from $H \rightarrow \gamma \gamma$ and $H \rightarrow 4\ell$

- From position of invariant mass peak in channels with best resolution σ_m/m
- Through maximisation of profile likelihood ratio $\Lambda(\alpha) = \frac{L(data|\alpha, \theta(\alpha))}{L(data|\hat{\alpha}, \hat{\theta})}$
 - L = likelihood function
 - α = parameter of interest = m_H
 - θ = nuisance parameters (systematic uncertainties, bkg and signal model parameters, signal cross section*BR)
 - $\hat{\alpha}, \hat{\theta}$ maximise L; $\hat{\theta}(\alpha)$ maximises L for given α

- m_H = 125.36 ±0.37 ±0.18 GeV
- 2.0σ compatibility between the two channels
 - $(m_{\rm H}^{\gamma\gamma}-m_{\rm H}^{4\ell}=1.47\pm0.67\pm0.28~{\rm GeV})$
- Limited by statistical uncertainty
- Systematic uncertainty dominated by energy and momentum scale and resolution

ATLAS+CMS mass combination

• m_H = 125.09 ± 0.24 GeV (2‰ uncertainty!)

- Compatibility (p-value) between the 4 masses: 10%
- Expected uncertainties for same values of nuisance parameters: ±0.19 ±0.10 GeV

 BR_f

Production and decay rate strengths

• Production and decay "signal strengths": $\mu_i = \frac{\sigma_i}{(\sigma_i)_{SM}}$ and $\mu_f = \frac{\sigma_i}{(\sigma_i)_{SM}}$

can be inferred correlating the signal rates measured in all channels c

- $\mu \neq 1 \Rightarrow$ deviation from SM assuming that production and decay kinematics are similar to SM expectation
 - corroborated by measurements of differential x-sections and tests of spin/CP
- Simplest model: one overall μ
 - $\mu = 1.18^{+0.15}_{-0.14}$ [±0.10 (stat) ±0.07 (syst) $^{+0.08}_{-0.07}$ (theo)]
- p-value of SM (µ = 1): 18%
- systematic error dominated by background estimates; theory error due to uncertainty on SM x-sections, BRs and kinematic distributions

Giovanni Marchiori

Higgs boson studies in ATLAS

Total uncertainty

2

Signal strength (µ)

0

-1

3

 \pm 1 σ on μ

by decay mode

(assuming $\mu_i=1$)

σ(stat.)

σ(sys inc.)

σ(theory)

ATLAS

 $H \rightarrow \gamma \gamma$

 $H \rightarrow ZZ^*$

 $H \rightarrow WW^*$

 $H \rightarrow \tau \tau$

 $H \rightarrow bb$

 $H \rightarrow \mu\mu$

 $H \rightarrow Z\gamma$

Combined

\s = 7 TeV, 4.5-4.7 fb⁻¹

\s = 8 TeV, 20.3 fb⁻¹

m_H = 125.36 GeV

 $\mu = 1.17^{+0.28}_{-0.26}$

 $\mu = 1.46^{+0.40}_{-0.34}$

 $\mu = 1.18^{+0.24}_{-0.21}$

 $\mu = 1.44^{+0.42}_{-0.37}$

 $\mu = 0.63^{+0.39}_{-0.37}$

 $\mu = -0.7^{+3.7}_{-3.7}$

 $\mu = 2.7^{+4.6}$

 $\mu = 1.18^{+0.15}_{-0.14} \stackrel{+0.11}{\overset{+0.01}{\overset{+0.01}{\overset{-0.00}{\overset{+0.00}{\overset{-0.00}{\overset{+0.00}{\overset{-$

Signal strength parameters

- All μ 's consistent with SM expectation = 1
- VBF evidence $> 4\sigma$
- VH, ttH not firmly established yet (but evidence of VH at Tevatron); μ_{ttH} <3.2@95% C.L.

Total cross section

• From SM predictions and measured μ_i (removing σ_{SM} uncertainty from μ_i)

	σ _{SM} [pb]		
$\sigma_H(7 \mathrm{TeV})$	$= 22.1 {}^{+7.4}_{-6.0} \text{ pb}$	= $22.1_{-5.3}^{+6.7}$ (stat.) $^{+2.7}_{-2.3}$ (syst.) $^{+1.9}_{-1.4}$ (theo.) pb	17.4±1.6
$\sigma_H(8 \text{ TeV})$	= 27.7 ± 3.7 pb	= 27.7 ± 3.0 (stat.) $^{+2.0}_{-1.7}$ (syst.) $^{+1.2}_{-0.9}$ (theo.) pb	22.3±2.0

- uncertainty dominated by gluon-fusion contribution
- ~1 σ higher than theoretical prediction

Differential cross-sections from $H \rightarrow \gamma \gamma$ and $H \rightarrow 4\ell$

- Several distributions sensitive to various theoretical effects: QCD modelling in ggF production (pT^H, y^H), ratios of different production mechanisms (N_{jets}), modelling of partonic radiation in ggF and of jets in VBF and VH events (pT of leading jet, pT^{j1})
- Measured separately in 2 channels from differential yields, efficiencies and BR
- Two combinations: absolute xsections (assume SM BR) and normalised ones (shapes only; no assumptions on BR), vs analytical calculations and MC generators

- Total xsection larger than SM but shapes in good agreement with prediction (p-values between 8% and 88%)
- Statistical uncertainties (23%-75%) dominate

Giovanni Marchiori

Constraints on BSM in EFT using differential xsections in $H\gamma\gamma$

- SM lagrangian augmented with dim-6 operators of Strongly Interacting Light Higgs
- Differential xsections in Hγγ mainly sensitive to CP-even and CP-odd operators affecting interactions with: photons (c_γ); gluons, via ggF (c_g); WW and ZZ via VBF and associated production (C_{HW}, C_{HB}). Other operators have very small impact

$$\begin{aligned} \mathcal{L} &= \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB} \\ &+ \tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB}, \end{aligned}$$

- Particle-level predictions with Madgraph5 reweighted to account for higher-order QCD and EW corrections, assuming factorisation wrt EFT effects
- 2D limits after setting other coefficients to SM (c=0)

Giovanni Marchiori

Higgs boson studies in ATLAS

24

Coupling-strength fits

- Scale strength of SM coupling to particle j by factor k_j (SM: k_j=1)
- Parametrise x-sections and partial widths in terms of $\{k_j\}$, e.g. $\frac{\sigma_{WH}}{\sigma_{WH}^{SM}} = \kappa_W^2$, $\frac{\Gamma_{ZZ}}{\Gamma_{ZZ}^{SM}} = \kappa_Z^2$

$$\sigma(i \to H \to f) = \frac{\sigma_i(\kappa_j) \cdot \Gamma_f(\kappa_j)}{\Gamma_H(\kappa_j)}$$

- *k* of loop-induced couplings (g, γ ..) defined either:
 - as function of scale factors for fields in the loop (t, W, ..)
 - as additional free parameter
- Total width depends on invisible/undetected decays: $\Gamma_H(\kappa_j, BR_{i.,u.}) = \frac{\kappa_H^2(\kappa_j)}{(1 BR_{i...})} \Gamma_H^{SM}$
 - make some assumptions: BR_{i,u}=0, or $k_W \le 1$, $k_Z \le 1$, ...
 - or measure ratios of coupling strengths
- Assumptions:
 - observed signals come from single resonance with m=125.36 GeV, $\Gamma=0$
 - production and decay kinematics compatible with SM expectation
 - tensor structure of the couplings same as in SM (pure CP-even state)

Parametrisation of x-sections and partial widths

Production	Loops	Interference	Expression	in fundamental coupling-strength scale factors
$\sigma(ggF)$	\checkmark	b-t	$\kappa_g^2 \sim$	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
$\sigma({ m VBF})$	-	-	~	$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$
$\sigma(WH)$	-	-	\sim	κ_W^2
$\sigma(q\bar{q} \to ZH)$	-	-	\sim	κ_Z^2
$\sigma(gg \to ZH)$	\checkmark	Z- t	$\kappa^2_{qqZH} \sim$	$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(bbH)$	-	-	~	κ_b^2
$\sigma(ttH)$	-	-	\sim	κ_t^2
$\sigma(gb \to WtH)$	-	W-t	\sim	$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qb \to tHq')$	-	W-t	\sim	$3.4 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
Partial decay width				
$\Gamma_{b\bar{b}}$	-	-	\sim	κ_b^2
Γ_{WW}	-	-	\sim	κ_W^2
Γ_{ZZ}	-	-	\sim	κ_Z^2
$\Gamma_{\tau\tau}$	-	-	\sim	κ_{τ}^2
$\Gamma_{\mu\mu}$	-	-	\sim	κ_{μ}^2
$\Gamma_{\gamma\gamma}$	\checkmark	W-t	$\kappa_{\gamma}^2 \sim$	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$
$\Gamma_{Z\gamma}$	\checkmark	W-t	$\kappa_{Z\gamma}^2 \sim$	$1.12 \cdot \kappa_W^2 + 0.00035 \cdot \kappa_t^2 - 0.12 \cdot \kappa_W \kappa_t$
Total decay width				
		W +		$0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_g^2 +$
Γ_H	\checkmark	W - t	$\kappa_{H}^{2} \sim$	$0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$
		v - v		$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{Z\gamma}^2 + 0.00022 \cdot \kappa_{\mu}^2$

- Interference terms allows the determination of the sign of k_t , k_Z , k_b relative to k_W
- Negligible effect by approximating the xsections with inclusive expression (neglecting kinematic dependence of interference for ggF, gg→ZH), except for tH, explicitly modelled

Giovanni Marchiori

Many models explored

- Custodial Symmetry (k_W vs k_Z)
- Fermion vs vector-boson couplings (k_F vs k_V)
- Up-type vs down-type fermion couplings (k_d vs k_u)
- Quark vs lepton couplings (k_q vs k_ℓ)
- BSM contributions in loops and decays (k_g , k_γ , $k_{Z\gamma}$)
- Generic models w/ or w/o new particles in loops and assumptions on $\Gamma_{\rm H}$

- All tested configurations consistent with SM
- Negative sign of *k*t disfavoured

Giovanni Marchiori

New! ATLAS+CMS coupling combination

- VBF and $H \rightarrow \tau\tau$ now established at over 5 σ (like ggF and $\gamma\gamma$, ZZ*, WW*)
- couplings measured to: ~10% (W,Z); 14% (t,τ); 21% (b)
 - assuming no BSM particles in loops and BR(inv)=0

ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

Total width and off-shell couplings from $H \rightarrow ZZ,WW$

- $\Gamma_{H}=4.12$ MeV in SM for $m_{H}=125.36$ GeV, could be increased by BSM contributions
- Direct determination from width of $m_{\gamma\gamma}$ and $m_{4\ell}$ • peaks limited by detector resolution (1-2 GeV) being deconvoluted Phys. Rev. D90 (2014) 052004
- Indirect constraint from ratio between off-shell / ٠ on-shell strengths

 $\sigma_{\text{off-shell}}^{gg \rightarrow H^* \rightarrow VV}(\hat{s})$ $= \kappa_{q,\text{off-shell}}^2(\hat{s}) \cdot \kappa_{V,\text{off-shell}}^2(\hat{s})$ $\overline{\sigma_{\text{off-shell, SM}}^{gg \to H^* \to VV}(\hat{s})}$

$$\frac{\sigma_{\text{on-shell}}^{gg \to H \to VV}}{\sigma_{\text{on-shell}, SM}^{gg \to H \to VV}} = \frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{V,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{SM}}$$

γγ

4*l*

- sizeable off-shell x-section at high mass (>200 GeV)
- measure with WW ($ev\mu v$), ZZ (4 ℓ , 2 ℓ 2v) events @ large m_{VV}

after accounting for interference with VV bkg

CAVEAT: neglect dependence on \hat{s} and assume

- same off-shell/on-shell couplings
- background not affected by new physics affecting k_{off}
- no sizeable kinematic modifications to off-shell signal or new signals in search region
- ratio of k-factors for $gg \rightarrow VV$ (unknown) and $gg \rightarrow H^* \rightarrow VV$ (calculated) in 0.5–2.0 •
- ZZ/WW xsection ratio as in SM for both on-shell and off-shell (for combination)

Spin and parity in $H \rightarrow$ diboson decays

- Kinematic distributions of production and decay are sensitive to J^P
 - $\gamma\gamma$: $p_T^{\gamma\gamma}$ and photon production angle (sensitive to spin only)
 - $ZZ^* \rightarrow 4\ell$: production and decay angles
 - WW* $\rightarrow e_{\nu}\mu_{\nu}$: $m_{\ell\ell}$, $p_{T}^{\ell\ell}$, $\Delta \varphi_{\ell\ell}$, m_{T}

Giovanni Marchiori

Spin and parity in $H \rightarrow$ diboson decays

- SM (0⁺) tested against alternative hypotheses w/ EFT approach
 - pure 0⁻
 - pure (BSM) 0⁺ with anomalous couplings to vector bosons
 - pure 2⁺ with universal or non-universal couplings to quarks and gluons
 - mixture of 0⁺ (SM-like) and 0⁺,0⁻ (BSM)
- Assumptions:
 - single resonance with m~125 GeV, narrow width, negligible interference with background
 - any other BSM particle has m>1 TeV
- · Hypotheses discriminated based on ratio

$$\tilde{q} = \log \frac{\mathcal{L}(J_{\text{SM}}^{P}, \hat{\hat{\mu}}_{J_{\text{SM}}^{P}}, \hat{\hat{\theta}}_{J_{\text{SM}}^{P}})}{\mathcal{L}(J_{\text{alt}}^{P}, \hat{\hat{\mu}}_{J_{\text{alt}}^{P}}, \hat{\hat{\theta}}_{J_{\text{alt}}^{P}})}$$

Alternative hypotheses excluded based on

$$CL_{s}(J_{alt}^{P}) = \frac{p(J_{alt}^{P})}{1 - p(J_{SM}^{P})}$$

 All alternative hypotheses rejected at >99.9% CL

Š

BSM Higgs boson searches

- So far the discovered Higgs boson look like the SM one, but:
 - the level of precision which we know the Higgs sector is still limited
 - the SM cannot be the ultimate theory
- Beyond-SM theories predict a richer Higgs boson sector (more final states accessible or more Higgs bosons) ⇒ Higgs boson searches as portal to BSM
 - Exotic decays of H₁₂₅
 - lepton flavour violating decays
 - invisible decays
 - decays to $J/\psi\gamma$ and $Y\gamma$
 - decays to "dark" gauge bosons $(H \rightarrow ZZ_D \rightarrow 4\ell)$
 - Additional low/high-mass Higgs bosons
 - pseudoscalar A boson decaying to ZH_{125}
 - scalar boson decaying to ZZ
 - scalar boson decaying to diphotons
 - charged Higgs bosons decaying to WZ and τv

Lepton Flavor Violating decays: $H \rightarrow \tau \mu$

- Not allowed in the SM
- CMS observes a 2.5σ excess in 8 TeV data in $H{\rightarrow}\tau\mu$
- Indirect constraints by LFV μ,τ decays: BR(H $\rightarrow\mu e$)<O(10⁻⁸); BR(H $\rightarrow\tau\mu$, H $\rightarrow\tau e$)<10%

Invisible decays: VH, H—invisible, V— $\ell\ell$ or qq'

- BR(H \rightarrow ZZ^{*} \rightarrow vv)<0.1% in SM; BR(inv.) enhanced if H coupled to BSM WIMPs
- Final states: ET^{miss} + 2 leptons or 2 jets, m₁₂~m_{W,Z}
- No excess in E_T^{miss} distributions \Rightarrow 95% CL limits:

Phys. Rev. Lett. 112 (2014) 201802

Invisible decays in VBF (and ggF+2jets)

- Final states: E_T^{miss} + 2 VBF-tagged jets
- No excess in E_T^{miss} distribution
 - BR_{inv} (H₁₂₅)<28% assuming SM for ggF and VBF x-sections, acceptance*efficiency \Rightarrow better than global coupling analysis!

BR_{inv}<23% combining VBF and VH results!

Pseudoscalar Higgs boson A \rightarrow ZH₁₂₅, H₁₂₅ $\rightarrow \tau\tau$, bb

- A⁰ (J^P=0⁻) appears in many models with extended Higgs sector like 2HDM
- Reconstructed final states: *ℓℓττ*, *ℓℓ*bb, *vvbb*
- Search for narrow resonance (Γ_A/m_A <few %) for 220<m_A<1000 GeV
- Improve invariant mass resolution (~few %) by constraining $m_{\ell\ell}=m_Z$, $m_{bb}=m_H$
- Similar to SM Higgs boson searches with additional cuts on $m_{bb},\,m_{\tau\tau}$ and $p_T{}^Z$

Heavy neutral Higgs boson $H \rightarrow ZZ \rightarrow 4\ell$, $2\ell 2\nu$, $2\ell 2q$, $2\nu 2q$

- Search narrow resonance, 140<m<1000 GeV, produced in ggF, VBF (all) or VH (4ℓ)
- No assumption on ratios of production cross sections \Rightarrow separate limits
- Similar selection to SM Higgs boson searches, but include H₁₂₅ (+ off-shell production and interference with continuum) as additional bkg

Low/high-mass scalar di-photon resonances

- Search for narrow di-photon resonance, 65<m<600 GeV in fiducial region where reconstruction efficiency ~independent of event topology
- Similar selection to SM Higgs boson search, but include H₁₂₅ as additional bkg
- Interference with background neglected
- At low-mass, contribution from Drell-Yan included (Z \rightarrow ee data + e $\rightarrow\gamma$ MC corrections)
- No excess in data, $\sigma < 1 90$ fb @ 95% CL

Charged Higgs bosons: VBF $H^{\pm} \rightarrow WZ \rightarrow qq\ell\ell$

- H[±] appears in models with extended Higgs sector (additional doublets, triplets ..)
- Search for H[±] coupled to W and Z: VBF production followed by H[±] \rightarrow WZ decay
- Final state: VBF jets + $jj\ell\ell$ ($\sigma_m/m\sim 2.4\%$) from W $\rightarrow qq$, Z $\rightarrow\ell\ell$
- Assume narrow width, 200<m<1000 GeV

No excess in data

• $\sigma {<} 31{-}1020~\text{fb}$ @ 95% CL

• also translated into limits on Higgs triplet model $(s_{H^2} = fraction of m_V^2 generated by vev of triplet)$

 240<m_H<700 GeV excluded for s_H=1 (weaker limits for smaller s_H) പ് 0.9 0.8 0.7 0.6 $H^{\pm} \rightarrow W^{\pm}Z \rightarrow qqll$ 0.5 0.4 Observed (CLs) Expected (CLs) 0.3 ATLAS ±**1**σ 0.2 $\pm 2\sigma$ \s = 8 TeV, 20.3 fb⁻¹

500

600

700

Higgs boson studies in ATLAS

0.1

300

400

Γ_μ:/m_μ:>15%

800

900

m_{ut} [GeV]

1000

Charged Higgs bosons: $H^{\pm} \rightarrow \tau^{\pm} v$

- Search for narrow H[±] coupled to fermions: decaying to $\tau^{\pm}v$ and produced either in
 - top decays in ttbar events ($pp \rightarrow tt \rightarrow HbWb$) \Rightarrow low-mass: 80<m_H<160 GeV
 - association with top (pp \rightarrow tHX \rightarrow WbHX) \Rightarrow high-mass: 180<m_H<1000 GeV (main production modes of H[±] in type-II 2HDM like MSSM)
- Final state: a hadronic τ decay, E_T^{miss} , b-jets, a hadronic W decay, no isolated ℓ

No excess in data, upper limits @ 95% CL:

- Low m_H: BR(t \rightarrow bH)*BR(H \rightarrow τ v)<0.23%-1.3%
- High m_H: $\sigma(pp \rightarrow tHX)^*BR(H \rightarrow \tau v) < 0.76pb 4.5fb$
- also translated into limits on MSSM parameters
 - e.g. tanβ>1 ~completely excluded in 3 benchmark scenarios for low m_H 60

3. Future perspectives

LHC schedule (with caveats..)

Run1	LS1	Run2	LS2	Run3	LS3	
2011 2012 20	13 2014 20	15 2016 2017 2018	2019 2020	2021 2022 2023	2024 2025	2035
	Accelerator: splice consolidation	13TeV	Accelerator: Injector upgrade	14TeV	Accelerator: HL-LHC installation (new final	<u>14TeV</u> Energy
7TeV 7TeV 75% nominal luminosity	Experiment: Beam pipe Improved pixel detector	nominal Iuminosity	Experiment: Upgrade Phase1 (detector readout)	2x nominal luminosity	Experiment: Upgrade Phase2 (new tracker,)	5x nominal luminosity instan. luminosity
25fb-1		100fb-1		300fb -1		3000fb ⁻¹ integrated luminosity
	to	day				

Run2 plans (100 fb⁻¹ at 13 TeV)

- Exploit larger sample (4x more luminosity, 2–4x higher cross section) to
 - Re-establish signals observed in Run1
 - More fiducial/differential cross-section measurements, at 13 TeV
 - Observe more exclusive production (VH, ttH) and decay modes (bb)
 - Investigate in more depth few excesses observed in Run1 ($\tau\mu$, ttH, ..)
 - More in-depth look for richer BSM Higgs-boson sector

NOTE: also bkg x-sections increase by ~2 (W,Z, $\gamma\gamma$) – 3.3 (ttbar)

HL-LHC perspectives (3000 fb⁻¹ at 14 TeV)

- Enter precision era. Search for BSM in coupling deviations from SM ($\sigma_k \sim \text{few } \%$)
- Establish coupling to 2nd generation fermions (Hµµ: $>7\sigma$)
- Strong evidence of loop-induced rare decay to $Z\gamma$ (~4 σ)
- Higgs-boson self coupling (λ): through di-Higgs production. In bby γ S~8, B=47:
- ~1.2 σ significance \Rightarrow more channels and ingenuity needed. Aim for σ_{λ}/λ ~30% Giovanni Marchiori Higgs boson studies in ATLAS

ATL-PHYS-PUB-2013-014 ATL-PHYS-PUB-2014-019

Conclusion

- Higgs boson discovery
 - ATLAS and CMS have observed the existence of a Higgs boson (> 5σ)
- Higgs boson characterisation with the full LHC Run1 data
 - mass (~125 GeV) measured with 0.2% precision
 - no significant deviation from SM
 - in spin, parity, width, couplings, rare or forbidden decays, extra bosons
 - $\sigma/\sigma_{SM} = 1.18^{+0.15}_{-0.14}$
- Future perspective for Run2 and beyond
 - rich program of searches for deviations from SM or for extra states in the scalar sector exploiting larger datasets. Towards a precision era measurement