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Today’s high energy colliders

Today’s high energy physics program relies mainly on results from

Collider Process status
LEP/LEP2 e'e 1989-2000
Hera e*p 1992-2007
Tevatron PP 1983-201 |
LHC- Run | PP 2010-2012
LHC- Run |l PP started 2015

® LEP high precision measurements of masses, couplings, EW parameters .
® Hera: mainly measurements of parton densities and diffraction

® Tevatron: mainly discovery of top and many QCD measurements
® | HC designed to

@ discover the Higgs [done in Runl]
@ unravel possible BSM physics [elusive up to now]
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Future high-energy colliders ?

® Future colliders are of course already under discussion: ILC (international
linear collider,) CLIC, FCC (Future Circular Collider)...

® However no decision has been taken yet (collider type, beams, energy,
location ...)

® The typical time-scale to build a collider is about 30 years. Still, given the
huge scale of such a project decisions will happen only after LHC results
from Run |l

No matter what happens, for the next twenty years collider precision
phenomenology will be LHC phenomenology

QCD interactions (the strong force) determine the structure of all
background processes to New Physics searches, hence it is crucial to
understand some basic properties of QCD



QCD

Satisfactory model for strong interactions: non-abelian gauge theory SU(3)

U'U=UU"=1 det(U)=1

Hadron spectrum fully classified with the following assumptions

hadrons (baryons,mesons): made of spin |/2 quarks

- SU(3) is an exact symmetry

- each quark of a given flavour comes in N.=3 colors Vg

- hadrons are colour neutral, i.e. colour singlet under SU(3)

observed hadrons are colour neutral = hadrons have integer charge



Color singlet hadrons

Quarks can be combined in 2 elementary ways into color singlets of the
SU(3) group

Mesons (bosons, e.g. pion ...)

> i — Y USsUntbjbe = > vty
) k

ijk

anti-blue

Baryons (fermions, e.g. proton, neutrons ...)

Mm&w?ﬁ&%w — M €ijk Uit Ujjr U birp by = M €irjrir det(U)irhjripps
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First experimental evidence for colour

l. Existence of A** particle: particle with three up quarks of the same spin
and with symmetric spacial wave function. Without an additional

quantum number Pauli’s principle would be violated
= color quantum number



First experimental evidence for colour

l. Existence of A** particle: particle with three up quarks of the same spin
and with symmetric spacial wave function. Without an additional
quantum number Pauli’s principle would be violated
= color quantum number

ll. R-ratio: ratio of (e*e — hadrons)/(e*e” — u*w)

eTe~ — hadrons

R OAZQMUQW
f

eteT — ptuT
e D2

Data compatible with N = 3. Will come back to R later.
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Quark mass spectrum
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Six known quarks. Their masses of different quark flavors range from
around 2 MeV for the up quark to around 173 GeV for the top.Why
these masses are split by almost six orders of magnitude is one of the big
mysteries of particle physics



The R-ratio: comparison to data
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QED and QCD

¢ QED and QCD are very similar, yet very different theories
¢ quarks are a bit like leptons, but there are three of each

€ gluons are a bit like photons, but there are eight of them
€ gluons interact with themselves

¢ the QCD coupling is also small at collider energies, but larger then
the QED one

€ the similarities and differences are evident from the two Lagrangians



QED and QCD

¢ QED and QCD are very similar, yet very different theories
¢ quarks are a bit like leptons, but there are three of each

€ gluons are a bit like photons, but there are eight of them
€ gluons interact with themselves

¢ the QCD coupling is also small at collider energies, but larger then
the QED one

€ the similarities and differences are evident from the two Lagrangians

S0, let’s start by looking at the QED Lagrangian



The QED Lagrangian

hOMU — hU?ma + hzgimHH + hmbﬂ

= % (i —m)y — Wﬁuttvm — Q&Qtﬁ.

= \%Q.I m) ¢ — Wﬁuttvw

. electromagnetic vector potential A,

field strengh tensor F),, =90,A, — 0,4,

. covariant derivative Ut = mt +- s.m\»t



QED Feynman rules

thU — hUmwmh + hgm.xio: + hma




QED gauge invariance

1

Lqoep = Y (i) —m) 1 — mﬁutcvw

A crucial property of the QED Lagrangian is that it is invariant under

which acts on the Dirac field as a local phase transformation



QED gauge invariance

1

Lqep = ¥ (i) —m)y — mQuE\vw

A crucial property of the QED Lagrangian is that it is invariant under

which acts on the Dirac field as a local phase transformation

Yang and Mills (1954) proposed that the local phase rotation in QED
could be generalized to invariance under any continuos symmetry

[C.N.Yang and R. L. Mills, Phys. Rep. 96 (1954) 191]
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The QCD Lagrangian

1

h@oon |Mﬁ%<$¢ +M$3®Qa|§§b&b
7

Um. = 0"0i5 +1gsti; Ay F.,=0,A, — 0 A, — Q?x%ﬁ»wbm

=> covariant derivative = field strength




The QCD Lagrangian

| ~(f) /-
h@OU — |Mmu% Nﬂtt + M\,,U\%NCNV A@N\@. o Sﬁ%ﬂv g,%\uv
_ ; a a — a a b pc
Um. = 0"0i5 +1gsti; Ay F., = 0,A, — 0,A, — gsfancA, A
= covariant derivative = field strength

J

€ only one QCD parameter g regulating the strength of the interaction
(quark masses have EVV origin)
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€ setting gs = 0 one obtains the free Lagrangian (free propagation of
quarks and gluons without interaction)



The QCD Lagrangian

| ~(f) /-
h@OU — |Mmu% NHHE\ + M,\,U\%NCJ A@Q@. o Sﬁ%ﬂv ﬁb,%\uv
_ ; a a — a a b pc
Dm = 0"0i5 +1gsti; Ay F., = 0,A, — 0,A, — gsfancA, A
= covariant derivative = field strength

J

€ only one QCD parameter g regulating the strength of the interaction
(quark masses have EVV origin)

¢ setting gs = 0 one obtains the free Lagrangian (free propagation of
quarks and gluons without interaction)

€ terms proportional to g in the field strength cause self-interaction
between gluons (makes the difference w.r.t. QED)



The QCD Lagrangian

1
4

Locp = ——FFs, + Y 0 (D — myéy) ¢y
J

Nus@ — @t%@. -+ \@.Qmwmw.\wm .

= covariant derivative

F.,=0,A, — 0 A, — Qm\@@a\»mbm

= field strength

J

€

“€c

€

“€c

only one QCD parameter gs regulating the strength of the interaction

(quark masses have EVV origin)

setting gs = 0 one obtains the free Lagrangian (free propagation of

quarks and gluons without inte

terms proportional to gs in the

raction)

field strength cause self-interaction

between gluons (makes the difference w.r.t. QED)

color matrices t%; are the gene

rators of SU(3)




The QCD Lagrangian

1
4

Locp = ——FFs, + Y 0 (D — myéy) ¢y
J

Nus@ — @t%@. -+ \@.Qmwmw.\wm .

= covariant derivative

F.,=0,A, — 0 A, — Qm\@@a\»mbm

= field strength

J

€

“€c

€

“€c

€

only one QCD parameter gs regulating the strength of the interaction

(quark masses have EVV origin)

setting gs = 0 one obtains the free Lagrangian (free propagation of

quarks and gluons without inte

terms proportional to gs in the

raction)

field strength cause self-interaction

between gluons (makes the difference w.r.t. QED)

color matrices t%; are the gene

QCD flavour blind (differences

rators of SU(3)
only due to EW)
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The generators of SU(N)

The gauge group of QCD is SU(N) with N =3
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The gauge group of QCD is SU(N) with N =3

NxN complex generic matrix = N? complex values, i.e. 2 N? real ones

UUT=UU = 1nyun

e unitarity = N? conditions



The generators of SU(N)

The gauge group of QCD is SU(N) with N =3

NxN complex generic matrix = N? complex values, i.e. 2 N? real ones
UUT=U'U = 1nxn det(U) =1

e unitarity = N2 conditions « unit determinant = | condition



The generators of SU(N)

The gauge group of QCD is SU(N) with N =3

NxN complex generic matrix = N? complex values, i.e. 2 N? real ones
UUT=U'U = 1nxn det(U) =1

e unitarity = N2 conditions « unit determinant = | condition

So, the fundamental representation of SU(N) has N2-| generators t*:
NxN traceless hermitian matrices = N?-| gluons

[J — eifa(@)t® a=1,---N*—-1



The Gell-Mann matrices

. . 1
One explicit representation: ¢ = m>>
M are the Gell-Mann matrices
0 1 0 0 — O 1 0 O 0 0 1
M=1[1 0 0], X=(i 0 0)],X=]|0 -1 0],x*={0 0 0],
0O 0 O 0O 0 O 0O 0 O 1 0 0
0 0 — 0 0 O 0 0 O 1 1 0 O
»mnooo 00 1],X={0 0 —i|],X=—101 0
t 0 O 0 1 0 0 2 O V3 0 0 -2
. . ab ab 1
Standard normalization: Tr(t“t”) =Tr 6" Tg = 5

Notice that the first three Gell-Mann matrices contain the three Pauli
matrices in the upper-left corner



The generators of SU(N)

Infinitesimal transformations (close to the identity) give complete
information about the group structure.The most important
characteristic of a group is the commutator of two transformations:

U (01),U(d2)] = U(01)U(02) — U(2)U(61)
= (i67) (id3) [t*, "] + O(6?)

The two matrices to hot commute, therefore the transformations don’t.
Such a group is called non-abelian.

* Familiar abelian groups: translations, phase transformations U(1) ...

* Familiar non-abelian groups: 3D-rotations
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The generators of SU(N)

Consider the commutator
MJQ;ATWQL w&v =0 = TNS w& — @.\@@own

fabc are the (real) structure constants of the SU(Nc) algebra, they generate
a representation of the algebra called adjoint representation

Clearly, fabc is anti-symmetric in (ab). It is easy to show that it is fully
antisymmetric

&\u@@n =21r ATNS w&wnv

and that hence it is fully antisymmetric

\V@@n — |,\V@@o — |,\V@n@
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Color algebra: fundamental identities

Fundamental representation 3:

Adjoint representation 8:

@ ~sooooTo~ b = Ogp

Trace identities:

Tr(t*) =0

i mv j =t

Y]



What do color identities mean physically

T LA
Vit W,

What does this really mean?

20



What do color identities mean physically

4 )
T LA
Bith o, 0 1 0 0
N y (1,0,0) 1 0 O 1
0 0 O
What does this really mean? Y ﬁw. Y

Gluons carry color and anti-color. They repaint quarks and other gluons.
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Color algebra: Casimirs & Fierz identity

Fierz identity:

(1), (9) = imi SO w - ! A:M _ Nwo o

Fundamental representation 3:

N2 —1
M@wvﬁmb = Cpoy; Cp=—5 mm@)&up

IN.

Cr

a

Adjoint representation 8:

M\@&\gn o k%@w Q> — Zm 3@3 = Au> EERERERRS
cd
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Gauge invariance

The QCD Lagrangian is invariant under local gauge transformations, i.e.
one can redefine the quark and gluon fields independently at every point
in space and time without changing the physical content of the theory

* Gauge transformation for the quark field

= =Ulx)y

* The covariant derivative (D, );; = 0,0;; + igst; A, must transform as
(covariant = transforms “with” the field)

D,y — UPQ\ = U(x) Dyt

* From which one derives the transformation property of the gluon field

t*A, — t* A = U(x)t* AU (z) + % (U (z)) U ()

L2



Gauge invariance

The QCD Lagrangian is invariant under local gauge transformations, i.e.
one can redefine the quark and gluon fields independently at every point
in space and time without changing the physical content of the theory

¢ |t follows that

t"Fe, —t"Fe, = U(x)t"Fo, U (2)
e.g.because ig.t"F), =[D,, D,

* Therefore the QCD Lagrangian is indeed gauge invariant

1 "uv 'a 1 v a
|M~U@t Nﬂtt”|Mﬁ%Nﬂtt

>0 QQ@ B SEQV v =3 o iy — myiy) vy
f

f



Gauge invariance

The QCD Lagrangian is invariant under local gauge transformations, i.e.
one can redefine the quark and gluon fields independently at every point
in space and time without changing the physical content of the theory

Remarks:

* the field strength alone is not gauge invariant in QCD (unlike in QED)
because of self interacting gluons (carries of the force carry colour,
unlike the photon)

* a gluon mass term violate gauge invariance and is therefore forbidden
(as for the photon). On the other hand quark mass terms are gauge

invariant.
="t
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|sospin symmetry

Isospin SU(2) symmetry: invariance under u < d

Particles in the same isospin multiplet have very similar masses
(proton and neutron, neutral and charged pions)

The QCD Lagrangian has isospin symmetry if my = mqg or my,mq = 0

The fermionic Lagrangian becomes

L= MU Aﬁb Q%S S SV MS& Aﬁg S 4 %Mbﬁmﬁvv
f

Y =Py, Yr= Pry, ﬁb\mH (1F )

N | —

So neglecting fermion masses the Lagrangian has the larger symmetry

@Q«N\AN/\WV X QQNQ/N\V X N\NAHV X QMWAHV

25



Feynman rules: propagators

Obtain quark/gluon propagators from free piece of the Lagrangian

Quark propagator: replace i0 = k and take the i x inverse

Lo tree = Mu% &ISE&&&@ ai B _ A%v »
af

k,m

Gluon propagator: replace i0 = k and take the i x inverse ?

1
Lytioe = 3A" (g = 0,0,) A”

= inverse does not exist, since (g, — 9,0,) 9, =10, — 10, =

How can one to define the propagator ?
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Gauge fixing

Solution:
add to the Lagrangian a gauge fixing term which depends on an
arbitrary parameter ¢

In covariant gauges:

1 9 E=1 Feynman gauge
Lgauge fixing = Im Amtxﬁv =0 Landau gauge
Gluon propagator:
i kok,\ ., DM b, v
phy _
R O Lo

Gauge fixing explicitly breaks gauge invariance. However, in the end physical
results are independent of the gauge choice. Powerful check of higher order
calculations: verify that the € dependence fully cancels in the final result
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Ghosts

In covariant gauges gauge fixing term must be supplemented with ghost
term to cancel unphysical longitudinal degrees of freedom which should
not propagate

a ()
hmTOmd — Q\&s ._.NUMNuQ\\@ .........:.‘I.V. .......... —_— ﬂ %Q@

A A

A=+1,—-1,0
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Axial gauges

Alternative: choose an axial gauge (introduce an arbitrary direction n)

1 2
h@u&@_ m@:m®”|| A t\f\wv

§

The gluon propagator becomes

@. 3\\9\+3\A A3w+m\awvw\a
&t”| —Yuv = e E %@
g ﬁm T A P AE b
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Axial gauges

Alternative: choose an axial gauge (introduce an arbitrary direction n)

1 2
h@u&@_ m@:m®”|| A t\f\wv

§

The gluon propagator becomes

& s\w._'z\\a A3w+m\awvw\a
&t”| —Yuv r - E= %@
g ﬁm T A P AE b

Light cone gauge:n?=0and £=0

Axial gauges for k* — 0

d k" = dyn* =0

i.e. only two physical polarizations propagate, that’s why often the term
physical gauge is used
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QCD Feynman rules: the vertices

i b, v A —1Guv




Perturbative expansion of the R-ratio

The R-ratio is defined as

o(eTe™ — hadrons)

R =

olete — ptu~)

At lowest order in perturbation theory

o(ete” — hadrons) = og(eTe™ — qq)
The PT treatment works since the scattering happens at large momentum
transfer (short time), while hadronization happens at low momentum
transfer, i.e. too late to change the original probability distribution

Since common factors cancel in numerator/denominator, to lowest order
one finds

- oo(y = )

31
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The R-ratio: perturbative expansion

First order correction

virtual real

Real and virtual do not interfere since they have a different # of particles.
The amplitude squared becomes

_ 9%

[Ar]* = [Ao]® + as (JA1r|* + 2Re{Ao AT, }) + O(a7) Qs =

Integrating over phase space, the first order result reads

mHnmoA:ﬁv
Tr
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R-ratio and UV divergences

To compute the second order correction one has to compute diagrams
like these and many more

: M _
Ry = Ry AH + 2s + Aﬁv Am + mby In M/\vv by = 1IN, — dnsTg
@ @ Q 127

Ultra-violet divergences do not cancel. Result depends on UV cut-off.
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Renormalization and running coupling

The divergence is dealt with by renormalization of the coupling constant

2
>\§Q< AQU@EV 2

os(p1) = ™ + b In 2 \%

R expressed in terms of the renormalized coupling is finite

R=pRy |1+ %W Aﬁs% Ai by In Rv + O3 ()

T T ()?

Renormalizability of the theory guarantees that the same redefinition of the
coupling removes all UV divergences from all physical quantities (massless case)

Will not cover renormalization in these lectures, but it suffices to know
that renormalization of S-matrix elements is achieved by replacing bare
masses and bare coupling with renormalized ones

* the coupling = J3 function

* the masses = anomalous dimensions ym
34



The beta-function

4 5 )
das(p17)
ren 2 S

\ J

The renormalized coupling is

2
imi\ AQG@BVM

Qs Atv — wawm |_| @o :H \&w S

So, one immediately gets

B = —boa(p) + .

Integrating the differential equation one finds at lowest order

1 ? 1 1
=bpln— 4+ —— =4 as(p) = ——=
as(p) 7 au(po) bo In 14
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More on the beta-function

Roughly speaking:
(a) quark loop vacuum polarization diagram gives a negative contribution

to bo ~ ns

(2)

(b) gluon loop gives a positive contribution to bo ~ Nc

~{

(b)

Since (b) > (a) = boocp > 0 = overall negative beta-function in QCD
While in QED (b) = 0 = bogep <0

1

BQED = wﬂQw =+ .

36



More on the beta-function

Perturbative expansion of the beta-function:

2 ) B function of QCD with 3 light flavours
Q — |Qm A\&v M@@QMAKV .m|| (MS bar scheme) ||
’ B 1-loop 7]
- 2—loop 4
@ H.H{N/\O I R.:\@«\uﬂm -~ B 4—loop ]
0= g
127 =

B H‘:/\«nm — WZQS,NQ — wQﬁi\w

b
! 2472

* nf is the number of active flavours (depends on the scale)
* today, the beta-function known up to four loops, but only first two
coefficients are independent of the renormalization scheme
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Active flavours & running coupling

The active field content of a theory modifies the running of the couplings

01.2GeV

L
.

H-O T T T
08| N; =3 : :

0.6f : ]

(1)

04} : :

L
1 L 1 1 1l

1 5 10 50 100 500
u [GeV]

Constrain New Physics by measuring the running at high scales!?
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Renormalization Group Equation

Consider a dimensionless quantity A, function of a single scale Q.The
dimensionless quantity should be independent of Q. However in quantum
field theory this is not true, as renormalization introduces a second scale p
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Renormalization Group Equation

Consider a dimensionless quantity A, function of a single scale Q.The
dimensionless quantity should be independent of Q. However in quantum
field theory this is not true, as renormalization introduces a second scale p

But the renormalization scale is arbitrary. The dependence on it must cancel
in physical observables up to the order to which one does the calculation.
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Renormalization Group Equation

Consider a dimensionless quantity A, function of a single scale Q.The
dimensionless quantity should be independent of Q. However in quantum
field theory this is not true, as renormalization introduces a second scale p

But the renormalization scale is arbitrary.The dependence on it must cancel
in physical observables up to the order to which one does the calculation.

So, for any observable A one can write a renormalization group equation

4 )

0 , O Q?
w S \w . 2 —
o T %SL Cﬁiiv ’
\_ J

Oag
Qs — g A?wv QAQF@V — tw @Ew
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Renormalization Group Equation

Consider a dimensionless quantity A, function of a single scale Q.The
dimensionless quantity should be independent of Q. However in quantum
field theory this is not true, as renormalization introduces a second scale p

But the renormalization scale is arbitrary.The dependence on it must cancel
in physical observables up to the order to which one does the calculation.

So, for any observable A one can write a renormalization group equation

4 )
@ ,da, O Q?
w S A . 2 _
\_ J
Oag
Qs = Qs Atwv Blas) = tw ou?

Scale dependence of A enters through the running of the coupling:
knowledge of A(1, as(Q?)) allows one to compute the variation of A with

Q given the beta-function
39



Measurements of the running coupling

DIS [pol. strct. fctn.]  +—o——
DIS [Bj-SR] ——
DIS [GLS-SR] —_—l

t-decays [LEP]

* overall consistent picture: 0 from very F, le uDIS|

DIS [ep —> jets]

different observables compatible QQ + lattice QCD

Y decays

Summarizing:

s

%

® (Xsis not so small at current scales ¢"e F)

¢" ¢ [Ohadl
. . @+@\:.@W%_;:mﬁmm 14 GeV] +——0——
o te [jets & shapes 22 GeV]

Os decreases slowly at higher energies €1l & shapes 22 GeV]
@+@\TMTN_»L

A_Ommlﬁjgmn OS_YV ete [jets & shapes 44 GeV]  Ho—s

et e [jets & shapes 58 GeV] Ho—
. . . pp --> bb X —O——
* higher order corrections are and will o0 >3 X
o(pp --> jets
1 1 I'(z%--> had.) [LEP]
1m3m-3 —BUO —)HN:H ®+®\70m::m. viol.]
ete” [4-jet rate]
jets & shapes 91.2 GeV
jets & shapes 133 GeV
jets & shapes 161 GeV
jets & shapes 172 GeV

World average s s 185G

jets & shapes 195 GeV

-

jets & shapes 201 GeV
jets & shapes 206 GeV

QmﬁgNov = 0.1184 4= 0.007 0.08 010 012 014
os(Mz)

H%H%Hﬂf#

40



