FLAVOUR CHANGING YUKAWA COUPLING IN TWO HIGGS DOUBLET MODELS

Francisco J. Botella
IFIC-Valencia

September 2015
FLAVOUR CHANGING YUKAWA COUPLING IN TWO HIGGS DOUBLET MODELS

- Collaboration
- Introduction
- 2HDM
- 2HDM and MFV
- The BGL models in the quark and lepton sectors
- The Yukawa Couplings in BGL models
- Results: introduction
- Constraints from the Higgs sector
- Rare top decays
- Flavour Changing Higgs decays to quarks
- Rare Higgs decays to leptons and correlation with rare decays to quarks
- Incorporating low energy constraints
- Conclusions
- Back
- The CP Violating contribution to the Baryon Asymmetry
Collaboration

Introduction

- Study the Higgs like particle properties: Yukawa Couplings (YC).
- YC diagonal in the SM. Beyond SM non diagonal in general.
- Study processes mediated by Flavour Changing Yukawa Coupling (FCYC).
- A natural scenario is Two Higgs Doublet Model (2HDM) type III.
- To avoid too large FCNC and/or too many parameters use the Minimal Flavour Violating (MFV) avenue in the most broad sense.
- There are 2HDM MODELS - enforced by symmetries- that realize the MFV idea.
- The so called BGL models (Branco, Grimus, Lavoura) that incorporate important enhancements in the BAU.
- Present the **Flavour Changing phenomenology of BGL 2HDM in the 125 GeV Higgs sector.**
The Yukawa sector of the 2HDM

\[
L_Y = -\bar{Q}_L (\Gamma_1 \Phi_1 + \Gamma_2 \Phi_2) d_R - \bar{Q}_L \left(\Delta_1 \tilde{\Phi}_1 + \Delta_2 \tilde{\Phi}_2 \right) u_R + .h.c. \\
+ \bar{L}_L (\Pi_1 \Phi_1 + \Pi_2 \Phi_2) l_R - \bar{L}_L \left(\Sigma_1 \tilde{\Phi}_1 + \Sigma_2 \tilde{\Phi}_2 \right) v_R + .h.c.
\]

The Higgs basis

\[
\langle H_1 \rangle^T = \begin{pmatrix} 0 & v / \sqrt{2} \end{pmatrix}, \langle H_2 \rangle^T = \begin{pmatrix} 0 & 0 \end{pmatrix}, v^2 = v_1^2 + v_2^2
\]

\[
\begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix} = \begin{pmatrix} \frac{v_1}{v} & \frac{v_2}{v} \\ \frac{v_2}{v} & -\frac{v_1}{v} \end{pmatrix} \begin{pmatrix} H_1 \\ H_2 \end{pmatrix}
\]

\[
H_1 = \left(\begin{pmatrix} G^+ \\ (v + H^0 + iG^0) / \sqrt{2} \end{pmatrix} ; \quad H_2 = \left(\begin{pmatrix} H^+ \\ (R^0 + iA) / \sqrt{2} \end{pmatrix} \right)
\]

\[
G^\pm \text{ and } G^0 \text{ longitudinal degrees of freedom of } W^\pm \text{ and } Z^0.
\]
• H^\pm new charged Higgs bosons.
• A new CP odd scalar (we will have CP invariant Higgs potential).
• H^0 and R^0 CP even scalars. If they do not mix, H^0 the SM Higgs.

The Lagrangian in the Higgs basis:

$$L_Y = -\overline{Q}_L \frac{\sqrt{2}}{v} (M^0_d H_1 + N^0_d H_2) d_R - \overline{Q}_L \frac{\sqrt{2}}{v} (M^0_u \tilde{H}_1 + N^0_u \tilde{H}_2) u_R$$

$$+ \overline{L}_L \frac{\sqrt{2}}{v} (M^0_l H_1 + N^0_l H_2) l_R - \overline{L}_L \frac{\sqrt{2}}{v} (M^0_v \tilde{H}_1 + N^0_v \tilde{H}_2) v_R$$

$$+ h.c$$

$$M^0_d = \frac{1}{\sqrt{2}} (\Gamma_1 v_1 + \Gamma_2 v_2)$$

$$N^0_d = \frac{1}{\sqrt{2}} (\Gamma_1 v_2 - \Gamma_2 v_1)$$
\[M_u^0 = \frac{1}{\sqrt{2}} (\Delta_1 v_1 + \Delta_2 v_2) \]
\[N_u^0 = \frac{1}{\sqrt{2}} (\Delta_1 v_1 - \Delta_2 v_1) \]
\[M_l^0 = \frac{1}{\sqrt{2}} (\Pi_1 v_1 + \Pi_2 v_2) \]
\[N_l^0 = \frac{1}{\sqrt{2}} (\Pi_1 v_2 - \Pi_2 v_1) \]
\[M_\nu^0 = \frac{1}{\sqrt{2}} (\Sigma_1 v_1 + \Sigma_2 v_2) \]
\[N_\nu^0 = \frac{1}{\sqrt{2}} (\Sigma_1 v_2 - \Sigma_2 v_1) \]
The mass basis is obtained by bidiagonalizing M^0_d, M^0_u, etc...

\[
U_L^{d+} M^0_d U_R^d = M_d = \text{diag} \left(m_d, m_s, m_b \right)
\]

\[
U_L^{u+} M^0_u U_R^u = M_u = \text{diag} \left(m_u, m_c, m_t \right)
\]

The components of $H_1 \ (H^0, G^0)$ are coupled in a flavour diagonal way.

In the mass basis the neutral components of $H_2 \ (R^0, A)$ generate "interesting" (dangerous) FCNC proportional to the arbitrary matrices

\[
N_d = U_L^{d+} N^0_d U_R^d
\]

\[
N_u = U_L^{u+} N^0_u U_R^u
\]
The components of H_1 and H_2 in the quark mass basis interact with

$$\mathcal{L}_Y = -\frac{\sqrt{2}H^+}{v} \bar{u} \left(VN_d \gamma_R - N_u^\dagger \ V \gamma_L \right) d + h.c. $$

$$- \frac{H^0}{v} (\bar{u} M_u u + \bar{d} M_d d) - $$

$$- \frac{R^0}{v} \left[\bar{u} (N_u \gamma_R + N_u^\dagger \gamma_L) u + \bar{d} (N_d \gamma_R + N_d^\dagger \gamma_L) d \right] $$

$$+ \frac{A}{v} \left[\bar{u} (N_u \gamma_R - N_u^\dagger \gamma_L) u - \bar{d} (N_d \gamma_R - N_d^\dagger \gamma_L) d \right]$$

Where the CKM matrix is $V = U^u_L U^d_L$. Instead in the leptonic sector there are N^0_l, N^0_ν and the PMNS matrix U^\dagger.

It is remarkable - and trivial- that the couplings that appear with the new neutral Higgs R^0 and A- in general Flavour Changing- N_u, N_d etc also appear in the charged Higgs H^\pm couplings.
The idea of Minimal Flavour Violation (MFV) applied to 2HDM imply to choose for example M_d^0 and M_u^0 as the basic flavour structures and therefore assume that N_d^0 and N_u^0 satisfy the following expansion:

$$
N_d^0 = \left[\epsilon_0 I + \epsilon_1 H_d + \epsilon_2 H_u + \epsilon_3 H_u H_d + \epsilon_4 H_d H_u + \cdots \right] M_d^0 \\
N_u^0 = \left[\epsilon'_0 I + \epsilon'_1 H_d + \epsilon'_2 H_u + \epsilon'_3 H_u H_d + \epsilon'_4 H_d H_u + \cdots \right] M_u^0
$$

with $H_d = M_d^0 M_d^{0\dagger}$ and $H_u = M_u^0 M_u^{0\dagger}$

But using for the down sector

$$
H_d = M_d^0 M_d^{0\dagger} = U_L^d M_d^2 U_L^{d\dagger} = U_L^d \sum_{i=1}^{3} m_{d_i}^2 P_i U_L^{d\dagger} = \sum_{i=1}^{3} m_{d_i}^2 P_i^{dL} \\

P_i^{dL} = U_L^d P_i U_L^{d\dagger}; \quad (P_i)_{jk} = \delta_{ij} \delta_{ik}
$$
it turns out that this expansion is equivalent to - or a particular case of-

\[
N^0_d = \left(a_0 I + a_1 j P_{j}^{dL} + a_2 j P_{j}^{uL} + a_{3ij} P_{i}^{uL} P_{j}^{dL} + a_{4ij} P_{i}^{dL} P_{j}^{uL} + \cdots \right) M^0_d \\
N^0_u = \left(a'_0 I + a'_1 j P_{j}^{dL} + a'_2 j P_{j}^{uL} + a'_{3ij} P_{i}^{uL} P_{j}^{dL} + a'_{4ij} P_{i}^{dL} P_{j}^{uL} + \cdots \right) M^0_u
\]

Remarkably enough it can be shown that renormalizable models known long time ago and enforced by flavour symmetries (Branco, Grimus, Lavoura) realize the most simple MFV expansion with controlled FCYC. For example one BGL model is enforced by the flavour symmetry

\[
Q_{L3} \rightarrow e^{i\alpha} Q_{L3} \quad ; \quad u_{R3} \rightarrow e^{i2\alpha} u_{R3} \quad ; \quad \Phi_2 \rightarrow e^{i\alpha} \Phi_2
\]
It corresponds to the model defined by the MFV expansion, with
\[t_\beta = \tan \beta = \frac{v_2}{v_1} \]

\[N^0_d = \left[t_\beta I - \left(t_\beta + t_\beta^{-1} \right) P^u_L \right] M^0_d \]
\[N^0_u = \left[t_\beta I - \left(t_\beta + t_\beta^{-1} \right) P^u_L \right] M^0_u \]

or to the model with the following Yukawa couplings

\[\Gamma_1 = \begin{pmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad ; \quad \Gamma_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times & \times \end{pmatrix} \]

\[\Delta_1 = \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad ; \quad \Delta_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \times \end{pmatrix} \]
This model is called a **top type model** after $u_{R3} = t_R$. The symmetry contains $t_R \rightarrow e^{i2\alpha} t_R$ and it has FCYC just in the down sector. In the quark mass basis we have

$$N_d = U^d_L N^0_d U^d_R = \left[t_\beta I - \left(t_\beta + t_\beta^{-1} \right) V^* P_3 V \right] M_d$$

$$N_u = U^u_L N^0_u U^u_R = \left[t_\beta I - \left(t_\beta + t_\beta^{-1} \right) P_3 \right] M_u$$

or equivalently

$$(N_d)_{ij} = \left[t_\beta \delta_{ij} - \left(t_\beta + t_\beta^{-1} \right) \delta_{ij} \right] m_{dj}$$

$$(N_u)_{ij} = \left[t_\beta \delta_{ij} - \left(t_\beta + t_\beta^{-1} \right) \delta_{ij} \right] m_{uj}$$
In the quark sector we have **three up type models**
\((u_1 = u, u_2 = c, u_3 = t)\) defined by the following symmetries and with the corresponding couplings

\[
Q_{L_k} \rightarrow e^{i\alpha} Q_{L_k} \\
u_{R_k} \rightarrow e^{i2\alpha} u_{R_k} \\
\Phi_2 \rightarrow e^{i\alpha} \Phi_2 \left\{ \begin{array}{c}
(N_d)_{ij} = \left[t_\beta \delta_{ij} - \left(t_\beta + t_\beta^{-1} \right) V_{ki}^* V_{kj} \right] m_{dj} \\
(N_u)_{ij} = \left[t_\beta - \left(t_\beta + t_\beta^{-1} \right) \delta_{ik} \right] \delta_{ij} m_{uj} \end{array} \right.
\]

They have FCYC in the down sector \(N_d\).

And **three down type models** \((d_1 = d, d_2 = s, d_3 = b)\)

\[
Q_{L_k} \rightarrow e^{i\alpha} Q_{L_k} \\
d_{R_k} \rightarrow e^{i2\alpha} d_{R_k} \\
\Phi_2 \rightarrow e^{i\alpha} \Phi_2 \left\{ \begin{array}{c}
(N_d)_{ij} = \left[t_\beta - \left(t_\beta + t_\beta^{-1} \right) \delta_{ik} \right] \delta_{ij} m_{dj} \\
(N_u)_{ij} = \left[t_\beta \delta_{ij} - \left(t_\beta + t_\beta^{-1} \right) V_{ik} V_{jk}^* \right] m_{uj} \end{array} \right.
\]

They have FCYC in the up sector \(N_u\).
In the lepton sector we have **three neutrino type models** \((\nu_1, \nu_2, \nu_3)\) defined by the following symmetries and with the corresponding couplings

\[
\begin{align*}
L_{L_k} &\rightarrow e^{i\alpha} L_{L_k} \\
\nu_{R_k} &\rightarrow e^{i2\alpha} \nu_{R_k} \\
\Phi_2 &\rightarrow e^{i\alpha} \Phi_2
\end{align*}
\]

\[
\begin{align*}
\left(N_{l} \right)_{ij} &= t_\beta \delta_{ij} - \left(t_\beta + t_\beta^{-1} \right) U_{ik} U^*_{jk} m_{lj} \\
\left(N_{\nu} \right)_{ij} &= t_\beta - \left(t_\beta + t_\beta^{-1} \right) \delta_{ik} \delta_{ij} m_{\nu j}
\end{align*}
\]

With FCYC in the charged lepton sector.

And **three charged lepton type models** \((l_1 = e, l_2 = \mu, l_3 = \tau)\)

\[
\begin{align*}
L_{L_k} &\rightarrow e^{i\alpha} L_{L_k} \\
\ell_{R_k} &\rightarrow e^{i2\alpha} \ell_{R_k} \\
\Phi_2 &\rightarrow e^{i\alpha} \Phi_2
\end{align*}
\]

\[
\begin{align*}
\left(N_{l} \right)_{ij} &= t_\beta \delta_{ij} - \left(t_\beta + t_\beta^{-1} \right) U_{ki} U^*_{kj} m_{lj} \\
\left(N_{\nu} \right)_{ij} &= t_\beta \delta_{ij} - \left(t_\beta + t_\beta^{-1} \right) U^*_{ki} U_{kj} m_{\nu j}
\end{align*}
\]
A general BGL model is defined both in the quark and in the leptonic sector. There are 36 different models grouped by having FCYCY either in the up or down sector and either in the charged lepton or the neutrino sectors.

All BGL models are invariant under $\Phi_2 \rightarrow e^{i\alpha} \Phi_2$. Therefore the Higgs potential should be the CP conserving

$$V = \mu_1 \Phi_1^\dagger \Phi_1 + \mu_2 \Phi_2^\dagger \Phi_2 - m_{12} \left(\Phi_1^\dagger \Phi_2 + \Phi_2^\dagger \Phi_1 \right)$$

$$+ 2\lambda_3 \left(\Phi_1^\dagger \Phi_1 \right) \left(\Phi_2^\dagger \Phi_2 \right) + 2\lambda_4 \left(\Phi_1^\dagger \Phi_2 \right) \left(\Phi_2^\dagger \Phi_1 \right)$$

$$+ \lambda_1 \left(\Phi_1^\dagger \Phi_1 \right)^2 + \lambda_2 \left(\Phi_2^\dagger \Phi_2 \right)^2$$

where a soft breaking term has been introduced to avoid a Goldstone boson.
By expanding the neutral scalar components around their vacuum expectation values $\Phi_i^0 = \frac{1}{\sqrt{2}} (\nu_i + \rho_i + i\eta_i)$ we can connect the real mass neutral eigenstates with the neutral fields in the Higgs basis:

$$
\begin{pmatrix}
H \\
h
\end{pmatrix}
=
\begin{pmatrix}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{pmatrix}
\begin{pmatrix}
\rho_1 \\
\rho_2
\end{pmatrix}
$$

$$
\begin{pmatrix}
H^0 \\
R^0
\end{pmatrix}
=
\begin{pmatrix}
\cos \beta & \sin \beta \\
-\sin \beta & \cos \beta
\end{pmatrix}
\begin{pmatrix}
\rho_1 \\
\rho_2
\end{pmatrix}
$$

The relevant angle is $(\beta - \alpha)$: $c_{\beta \alpha} = \cos (\beta - \alpha)$, $s_{\beta \alpha} = \sin (\beta - \alpha)$

$$
\begin{pmatrix}
H^0 \\
R^0
\end{pmatrix}
=
\begin{pmatrix}
c_{\beta \alpha} & s_{\beta \alpha} \\
-s_{\beta \alpha} & c_{\beta \alpha}
\end{pmatrix}
\begin{pmatrix}
H \\
h
\end{pmatrix}
$$
The Yukawa Couplings in BGL models

- The Yukawa couplings of the 125 GeV scalar is for all type of fermions f

$$ L_{h\bar{f}f} = -\bar{f}_L Y^{(f)} f_R h + h.c $$

$$ Y^{(f)} = \frac{1}{v} \left[s_{\beta\alpha} M_f + c_{\beta\alpha} N_f \right] $$

- In the k-up type model u_k we have FCYC in the down sector controlled by

$$ Y^{(d)}_{ij} [u_k] = -c_{\beta\alpha} \left(t_{\beta} + t_{\beta}^{-1} \right) V^*_k V_j \frac{m_d}{v} \quad ; \quad i \neq j $$

- In the k-down type model d_k we have FCYC in the up sector controlled by

$$ Y^{(u)}_{ij} [d_k] = -c_{\beta\alpha} \left(t_{\beta} + t_{\beta}^{-1} \right) V_k V^*_j \frac{m_u}{v} \quad ; \quad i \neq j $$

In the neutrino type model ν_k we have FCYC in the charged lepton sector controlled by

$$Y_{ij}^{(l)} [\nu_k] = -c_{\beta \alpha} \left(t_{\beta} + t_{\beta}^{-1} \right) U_{ik} U_{jk}^{*} \frac{m_{lj}}{v} ; \quad i \neq j$$

For the diagonal coupling to the top in model q_i we have

<table>
<thead>
<tr>
<th>MODEL</th>
<th>COUPLING to top in units of $\left(\frac{m_t}{v} \right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>u, c</td>
<td>$\left(s_{\beta \alpha} - c_{\beta \alpha} t_{\beta} \right)$</td>
</tr>
<tr>
<td>t</td>
<td>$\left(s_{\beta \alpha} + c_{\beta \alpha} t_{\beta}^{-1} \right)$</td>
</tr>
<tr>
<td>d_i</td>
<td>$s_{\beta \alpha} - c_{\beta \alpha} \left[1 -</td>
</tr>
</tbody>
</table>
The Yukawa Couplings in BGL models III

For the diagonal coupling to the bottom in model \(q_i \) we have

<table>
<thead>
<tr>
<th>MODEL</th>
<th>COUPLING to bottom in units of (\left(\frac{m_b}{\nu} \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d, s)</td>
<td>((s_{\beta\alpha} - c_{\beta\alpha} t_{\beta}))</td>
</tr>
<tr>
<td>(b)</td>
<td>((s_{\beta\alpha} + c_{\beta\alpha} t_{\beta}^{-1}))</td>
</tr>
<tr>
<td>(u_i)</td>
<td>(s_{\beta\alpha} - c_{\beta\alpha} \left[\left(1 -</td>
</tr>
</tbody>
</table>

For the diagonal coupling to the tau in models \(l_i \) or \(\nu_i \) we have

<table>
<thead>
<tr>
<th>MODEL</th>
<th>COUPLING to tau in units of (\left(\frac{m_{\tau}}{\nu} \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e, \mu)</td>
<td>((s_{\beta\alpha} - c_{\beta\alpha} t_{\beta}))</td>
</tr>
<tr>
<td>(\tau)</td>
<td>((s_{\beta\alpha} + c_{\beta\alpha} t_{\beta}^{-1}))</td>
</tr>
<tr>
<td>(\nu_i)</td>
<td>(s_{\beta\alpha} - c_{\beta\alpha} \left[\left(1 -</td>
</tr>
</tbody>
</table>
All FCYC effects are proportional to $c_{\beta\alpha} \left(t_\beta + t_\beta^{-1} \right)$

We can have at tree level: $t \rightarrow hu, hc$ with down type models.

We can have at tree level: $h \rightarrow \mu\tau, e\tau, e\mu$ in neutrino type models.

We can have at tree level $h \rightarrow d\bar{b}, s\bar{b}$ in up type model.

In general we will have modified diagonal couplings in all models.

But all these new couplings are controlled by the free parameters α and β and the well-known CKM V and PMNS U matrices.

Of course before making prediction we have to impose the constraint on α and β

From non FCYC: Higgs couplings to $\gamma\gamma, WW, ZZ, \bar{b}b, \tau\tau, t\bar{t}$. Note that both production and decay are modified according to previous tables.

From low-energy flavour physics: rather involved since H and A are also present together with h; requires specific study (additional parameters) [Botella, Branco, Carmona, Nebot, Pedro & Rebelo, JHEP(2014)]
Constraints from the Higgs sector

- We impose the signal strengths μ_i^X in different decay channels X, where i labels the different combinations of production mechanism:

$$\mu_i^X = \frac{\sigma(pp \to h)^i}{\sigma(pp \to h)^i_{SM}} \frac{Br(h \to X)}{Br(h \to X)_{SM}}$$

- We use for $m_h = 125\,\text{GeV}$ and $\sqrt{s} = 8\,\text{TeV}$ and $\sigma(pp \to h)^i_{SM}$ in pb.

<table>
<thead>
<tr>
<th>Prod chan i</th>
<th>ggF</th>
<th>VBF</th>
<th>Wh</th>
<th>Zh</th>
<th>$t\bar{t}h$</th>
<th>bbh</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(pp \to h)^i_{SM}$</td>
<td>19.27</td>
<td>1.578</td>
<td>0.7046</td>
<td>0.4153</td>
<td>0.1293</td>
<td>0.2035</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decay chan X</th>
<th>$b\bar{b}$</th>
<th>WW^*</th>
<th>ZZ^*</th>
<th>$\tau\bar{\tau}$</th>
<th>$\gamma\gamma$</th>
<th>gg</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Br(h \to X)_{SM}$</td>
<td>0.578</td>
<td>0.216</td>
<td>0.0267</td>
<td>0.0637</td>
<td>0.0023</td>
<td>0.0856</td>
</tr>
</tbody>
</table>

and the data from ATLAS and CMS
We also impose constraints from CMS and ATLAS on $h \rightarrow \mu \tau$ and $t \rightarrow hq$

The result for a few models are
Constraints from the Higgs sector III

(a) Model $t \nu_2$

(b) Model $d \nu_1$
In the down type models - d_k type model - there are tree level top decays like $t \rightarrow uh, ch$

$$Br^{(d_k)}(t \rightarrow qh) = 0.131 \frac{|V_{tk} V_{qk}|^2}{|V_{tb}|^2} \left| c_{β\alpha} \left(t_β + t_β^{-1} \right) \right|^2$$

CMS and ATLAS bound imply for models b and s: $|V_{tb} V_{cb}|^2 \sim |V_{ts} V_{cs}|^2 \sim \lambda^4$

$$\left| c_{β\alpha} \left(t_β + t_β^{-1} \right) \right| \lesssim 4.9$$

For all models of the type down-charged lepton (d_k, l_m) we have:
Naive constraints from the Higgs tree level contributions to $D^0 - \bar{D}^0$ are included in the figures. But remember that in these models there are also contributions from H and A. In such a way that the total contribution is proportional to

$$
\left(\frac{c_{\beta\alpha}^2}{m_h^2} + \frac{s_{\beta\alpha}^2}{m_H^2} - \frac{1}{m_A^2} \right)
$$

Oblique corrections accommodates better with important cancellations. Therefore there are important "natural" cancellations invalidating to use the naive bounds coming from the tree level Higgs exchange contribution alone.
In up type models - \(u_k \) type models - there are tree level \(h \) decays like
\[h \rightarrow s \bar{b}, b \bar{s}, d \bar{b}, b \bar{d}, \text{etc...} \]

\[
Br^{(u_k)} (h \rightarrow q\bar{b} + b\bar{q}) = 0.578 \frac{\Gamma^{SM} (h)}{\Gamma (h)} |V_{kq} V_{kb}|^2 |c_{\beta\alpha} (t_{\beta} + t_{\beta}^{-1})|^2
\]

For the \(c \) and \(t \) models:
\[|V_{cs} V_{cb}|^2 \sim |V_{ts} V_{tb}|^2 \sim \lambda^4 \]
the channel \(h \rightarrow sb \) can reach values for the branching ratio of order \(10^{-1} \) for values of
\[|c_{\beta\alpha} (t_{\beta} + t_{\beta}^{-1})| \sim 5 - 10 \] in charged lepton models.

For all models of the type up-charged lepton \((d_k, l_m)\) we have:
Flavour Changing Higgs decays to quarks II
As before naive bounds from $K^0 - \bar{K}^0$, $B_d^0 - \bar{B}_d^0$ and $B_s^0 - \bar{B}_s^0$ mixing are displayed in the figure. They correspond, in the u and c (t) models to $|c_{\beta\alpha}(t_\beta + t_\beta^{-1})| \lesssim 0.43 (0.60)$
In neutrino type models - ν_k type models - we have the interesting processes $h \to \mu^\pm \tau^\mp, e^\pm \tau^\mp, e^\pm \mu^\mp$

$$\text{Br}^{(\nu_k)} (h \to \mu\tau) = 0.0637 \frac{\Gamma^{SM} (h)}{\Gamma (h)} \left| U_{\mu k} U_{\tau k} \right|^2 \left| c_{\beta\alpha} \left(t_\beta + t_\beta^{-1} \right) \right|^2$$

For the ν_3 in order to get a $h \to \mu\tau$ branching ratio of order 10^{-2} -

$$\text{Br} (h \to \mu\tau) = \begin{pmatrix} 0.84 & +0.39 \\ -0.37 & \end{pmatrix} \% - \text{we need a value of}$$

$$\left| c_{\beta\alpha} \left(t_\beta + t_\beta^{-1} \right) \right| \sim 1$$
If we consider model of type down-neutrino \((d_k, \nu_l)\) we will have correlations among \(t \rightarrow hc\) and \(h \rightarrow \mu \tau\) controlled by

\[
Br^{(d_k)}(t \rightarrow qh) = 2.06 |\frac{V_{tk} V_{qk}}{V_{tb} U_{\mu l} U_{\tau l}}|^2 \frac{\Gamma^{SM}(h)}{\Gamma(h)} Br^{(\nu_k)}(h \rightarrow \mu \tau)
\]
Rare Higgs decays to leptons and correlation with rare decays to quarks III
note that the constraint on $h \rightarrow \mu\tau$ has reduced the range of variation of $Br^{(d_k)}(t \rightarrow ch)$ respect to charged lepton models.
In the case of \((u_k, \nu_l)\) models we get correlations among rare leptonic and hadronic Higgs decays.
Incorporating low energy constraints

- $\mu \to e\gamma$ constrains very severely the coupling $h \to \mu e$ via the two-loop Barr-Zee diagrams. In BGL models $\mu \to e\gamma$ will translate into an important constraint on $c_{\beta\alpha} \left(t_\beta + t_\beta^{-1} \right)$. However not only the Higgs h can be exchanged but also H and A will enter with the known tendency to produce destructive interference between the different contribution - as in neutral meson mixing -.

- The results of our analysis are shown in the following figures:
Conclusions

- We have analyzed 2HDM with tree level FCYC, controlled and suppressed by V_{CKM} and/or light quark masses (or U_{PMNS} in the leptonic sector).
- There are 36 different BGL models, enforced by different symmetries, and having either FCYC in the up or in the down sector (similar in the leptonic sector).
- Given a model, the free parameters in the Yukawa coupling are $\tan \beta$ and $\cos (\beta - \alpha)$.
- BGL 2HDM lead to New Physics effects interesting at LHC and/or at a Linear Collider: $t \rightarrow qh$, $h \rightarrow l\bar{\tau}$, $h \rightarrow q\bar{b}$
- We have used all the constraints related to Higgs production and its subsequent Higgs decay.
- Low energy flavour constraints have been considered, but important cancellations operate both in meson mixing and in $\mu \rightarrow e\gamma$ among others.
The CP Violating contribution to the Baryon Asymmetry

- In the SM the CP violating contribution to the BAU at the electroweak phase transition is proportional to
 \[
 \prod_{i>j,k>l} \left(m_{ui}^2 - m_{uj}^2 \right) \left(m_{dk}^2 - m_{dl}^2 \right) \text{Im} \left(V_{ud} V_{cs} V_{us}^* V_{cd}^* \right)
 \sim m_t^4 m_c^2 m_b^2 m_s^2 \text{Im} \left(V_{ud} V_{cs} V_{us}^* V_{cd}^* \right)
 \]

- In the d (also in s) BGL type model the CP violating contribution to the BAU at the electroweak phase transition is proportional to
 \[
 \left(t_\beta + t_\beta^{-1} \right) \left(m_b^2 - m_s^2 \right) \prod_{i>j} \left(m_{ui}^2 - m_{uj}^2 \right) \text{Im} \left(V_{ud} V_{cs} V_{us}^* V_{cd}^* \right)
 \sim \left(t_\beta + t_\beta^{-1} \right) m_t^4 m_c^2 m_b^2 \text{Im} \left(V_{ud} V_{cs} V_{us}^* V_{cd}^* \right)
 \]

- If E is the relevant scale for baryogenesis at the electroweak phase transition one can get an enhancement of order
 \[
 \left(t_\beta + t_\beta^{-1} \right) \frac{E^4}{m_b^2 m_s^2} \Bigg|_{E \sim 100 \text{ GeV}} \sim 10^{10}
 \]