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It is by now a common belief that at the Panck’s scale (or even

before) something is happening. . .

We certainly do not what is actually happening, but probably

we all agree that the fundamental structure of spacetime will be

altered.

In the last years there have been several attempts involving non-

trivial commutation relations for the position operator:

[xi, xj] = iθij

or the ones leading to the generalized uncertainty principle

[xi, pj] = i~
(
1 + F ij

)
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In general we can consider a more generic space adding also

nontrivial commutation relations for momenta

[pi, pj] = iCij

when θ, F, C are constant it is easy to express the noncommu-

tativity via a nontrivial ? product, such as the Moyal product or

its generalizations

In case they are not constant the explicit construction of the

product is much more difficult, although formally possible

The problem is in the symmetries
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Even in the simple case of a constant θ there is no way to

preserve rotation (or Lorentz) invariance

The presence of a tensor defines always (except for the trivial

case of two dimensions) some preferred directions, which break

the symmetry

Less trivial constructions are based on invariance under a quan-

tum group (Hopf algebra)

In more sophisticated approaches (DFR) the operators do not

break Lorentz invariance, but preferred directions are picked from

the vacuum
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Other visions of quantum spacetime point to a granularity of it,

such a Loop Quantum Gravity, or changing dimensions, or dual

field theories and so on

In all cases we should ask ourselves, operatively the following

question:

How is space(time) measured?

In the following I will discuss the question in the context of non

relativistic quantum mechanics. A treatment using quantum field

theory and/or relativity is more ambitious, but not unreachable
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As starting points I will have the observables. They are the

selfadjoint part of an algebra of operators which I represent on

an Hilbert space.

A state of a physical system is a map from the algebra which is

positive and of unit norm. Pure states (which cannot be written

as convex sum of other states) are the vectios of the Hilbert

space, the rest of the states are represented by mixed density

matrices

Usually as algebra we take the (bounded) operators functions of x̂ and p̂

In this view configuration space emerges as the selfadjoint part of a commu-

tative subalgebra, in other word the algebra generated by x̂ alone. From

this commutative algebra it is possible to reconstruct the topology of config-

uration space as the set of pure states of this commutative algebra

5



Let me go back to the nontrivial commutation relations:

[xi, pj] = iHi
j [xi, xj] = iθij [pi, pj] = iCij

The last two relations break rotation invariance

Usually Hi
j = ~δij , otherwise we rescale the coordinates.

Side remark: The natural scale for the length
√
θ and the momentum

√
C

is Planckian, which is microscopic for length
√

~G
c3 ' 10−35m , less so for

momentum
√

~c3

G
' 6.5 Kg m/sec
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One way to recover, at a certain level, the lost invariance is

to have θ depend on space and/or time and to be a random

variables, fast oscillating around zero

In this case the invariance is recovered in an effective way, as an

average

On the other side it is most natural to immagine che the cor-

relation lenght and time of a variable concerning quatum space

time be of Planckian nature
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Let me a final ingredient to the discussion.

From what I said earlier, in quantum mechanics, what counts is

an algebra of observables, and the fact that within it one can

recognize a commutative subalgebra defining configuration space

Considering all of the variables of space time as a single vector,

Y A = {xi, pj} , A = 1 . . .2d the non trivial commutations I de-

scribed earlier can be stored into a single antysymmetric 2d× 2d

matrix

Ω =

(
θij Hi

j

−Hi
j Cij

)
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It is always possible, at lead locally, to put the matrix Ω in

canonical form with a Darboux transformation to obtain

Ω′ =

 0 H ′ij
−H ′ij 0



This suggest to consider the modified commutation relation

[xi, pj] = H ′ij

Which is tantamount to having a Planck’ Inconstant
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Having fundamental constants of nature to be variables is not a
new idea, it goes back to Dirac

But usually the variability was over long (cosmological) time
scales. The previous reasoning instead suggests an effective
Panck constant with a variability over very shot scales.

In the following we will concentrate on a simple one dimensional model

[x,p] = i~(1 + ε(t))

with ε rapidly changing with time

ε(t) = 0 ; ε(t)ε(t′) = τ δ(t− t′)

Overline denotes the mean over ε probability distribution. The
fluctuations are uncorrelated for time differences larger than a
typical correlation time τ
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The time evolution of an operator is

dA

dt
=

1

i~
[A,H] +

∂A

∂t

Here we are assuming that the dependence on ε is given by the

commutator. This means that also the Poisson bracket, whose

quantization gives the commutator, is also fluctuating.

This is coherent with the view that the fluctuations are an ef-

fective way to take into account an underlying structure
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We now need to represent x and p as operators reflecting the

modified commutator

xψ(x) = A(t)xψ(x) = A(t)x0ψ(x)

pψ(x) = −i~B(t)
d

dx
ψ(x) = B(t)p0ψ(x)

with A(t)B(t) = 1 + ε(t) , and x0, p0 the canonical pair of

standard quantum mechanics.

We treat position and momentum in the same way and choose

A(t) = B(t) =
√

1 + ε(t) ,
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Such an effective variable ~ will undoubtedly have consequences

at several levels. The effects will depend on the scale τ

In our paper we investigated two possible experimental signa-

tures. Surely there will be many more, and we hope that other

groups will explore other possibilities. We looked at

• Free particles and interferometric experiments.

• Harmonic Oscillators and coherent light
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The Schrödinger equation for the free particle will show a time

dependence via ε(t)

i~
∂

∂t
ψ =

1

2m
(1 + ε(t))p2

0ψ

It is possible to solve it for a plane wave of momentum p0

ψp0(x, t) =
1√
2π

exp

[
i
p0x

~
− i

p2
0

2m~

(
t+

∫ t
0
ε(t′)dt′

)]
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When measuring an observable in this scheme there are two

averaging processes, conceptually distinct.

• Averaging over the time fluctuations of ε : Ā

• The quantum mechanical averaging.The possible results of

a measurement are the eigenvalues of the operator with a

probability given by the state: 〈A〉

In practice, for τ smaller than the experimental time resolution

the two averaging coincide. Repeating the experiment samples

both distribution. Nevertheless they are conceptually different,

and I will keep the two notations
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For a gaussian peaked at p and variance δ2 we have

ψ(x, t) =
∫

dp0√
2π

1

(πδ2)1/4
e
−(p0−p)2

2δ2
+ip0x/~−ip2

0

(
t+
∫ t

0 ε(t)
)
/(2m~)

The mean distance travelled by a particle is the usual 〈x〉ψ(t)− 〈x〉ψ(0) = p
m
t}

While the uncertainty is

(∆x)2
ψ(t)− (∆x)2

ψ(0) =
δ2

2m2
t2 +

p2 + δ2/2

m2
τ t
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The motion is like a Brownian motion with diffusion coefficient

D =
p2 + δ2/2

2m2
τ

For δ � p , one can view D as due to scatterings with mean

free path (p/m)τ .

Scattering over the quantum structure of spacetime

The usual spreading of the wave packet will dominate, but the

effect can be enhanced for massless particles. In this case

(∆x)2
ψ(t)− (∆x)2

ψ(0) = c2 τ t
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It is possible to measure this effect in a double slit experiment

Waves are detected at some fixed distance L from the plate,
the effect is a change δt of travel time with variance

δt2 = τ t = τ L/c

with t = L/c the time mean value

For frequency ω and intensity I at the mid-point on the screen

I ∝
1

4

∣∣∣e−iω(t+δt1) + e−iω(t+δt2)
∣∣∣2 =

1

2
(1 + cos [ω(δt1 − δt2)])

δt1,2 are the uncorrelated time shift along the two paths.In the standard case

the two waves show a constructive interference. Here, averaging over δt1,2

I ∝
1

2

(
1 + e−ω

2τL/c
)
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For large L, t the intensity behaves as the two waves were not

interfering

The relevant parameter here is ω2τL/c ≥ 1 .

A preliminary analysis puts for Virgo, whose sensibility is bound

by the shot noise, a bound

τ < 10−10GeV−1~
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For Harmonic Oscillator,we have a variable mass M = m/(1 + ε)

and frequency Ω = ω(1 + ε) with MΩ = mω constant.

H =
1

2m
(1 + ε)p2

0 +
mω2

2
(1 + ε)x2

0 =
1

2M
p2

0 +
MΩ2

2
x2

0

The Hamiltonian depends on time via an overall multiplicative

factor, and
[
H(t),H(t′)

]
= 0 , so that Dyson series for time evo-

lution operator can be integrated

U(t) = exp
(
−
i

~

∫ t
0
H(t′)dt′

)

Defining, with standard normalization, creation operator

a =
√
mω

2~
x0 + i

1√
2m~ω

p0
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we have da(t)
dt = −iω (1 + ε(t)) a(t)

which has the formal solution

a(t) = a(0)e−i ωt
∑
n

(−iω)n

n!

∫ t
0
dt1....

∫ t
0
dtnε(t1)....ε(tn)

Averaging over ε(t) probability distribution and computing n -

point correlation functions in terms of two–point correlation

a(t) = a(0)e−i ωt
∑
k

(−ω2τt)k

2kk!
= a(0)e−i ωte−ω

2τt/2

Apart from standard oscillatory term, evolution is exponentially

damped on time–scales larger than the characteristic time 2(ω2τ)−1



Consider a coherent state |λ〉 at t = 0 . Take it real

The evolution of the operators and uncertainty can be calculated

〈x〉λ(t) =
√

2~
mω λ cos(ωt)e−ω

2τt/2 〈p〉λ(t) = −
√

2~mωλ sin(ωt)e−ω
2τt/2

〈x2〉λ(t) = ~
mω

[
1
2 + λ2

(
1 + cos(2ωt)e−ω

2τt
)]

〈p2〉λ(t) = m~ω
[

1
2 + λ2

(
1− cos(2ωt)e−ω

2τt
)]

The lower limit of Heisenberg relation is not saturated for λ 6= 0

∆xλ∆pλ = ~
2

[
1 + 2λ2

(
1− e−ω2τt

)]
This is similar to decoherence processes
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The time evolution of position mean value 〈x〉λ (solid), 〈x2〉λ (long-dashed)

and squared uncertainty ∆x2
λ (short-dashed) for λ = 1 in units of appropri-

ate powers of
√

~/(mω) .
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We choose an unrealistic large value ωτ = 0.05
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This behavior can be translated in the capability of an optical

coherent state to survive in a cavity

The effect of the variable ~ is that the state decoherentizes.

This must be compared with the fact that in any case coherent

states in real cavities do not last forever. The two competing

effects are however different for scales and functional dependence

on time

Present technology, without dedicated experiments, give an or-

der of magnitude for the bound to be

τ < 10−8GeV−1~
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Discussion

There some elements, premises of this work, which can have developments

• Lorentz invariance may be the result of granular random structure on

very short distances. This is not new (random lattices, causal sets), but

it has not been used in NCG

• A quantum space time can give as effective theory, at low energy, one

for which some constants of nature are actually variables

• In addition to particle, cosmological and astrophysical experiments, there

could be signatures of quantum spacetime (non necessarily noncommu-

tative) that can be seen using new kinds of experiments, such as inter-

ferometry, or optical cavities
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