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The aim of this talk is to show you that the standard model is,

like general relativity, a geometric theory

The geometry which describes it is not that made of points,

lines, curves, but some generalization which involves matrices,

Hilbert spaces, γ matrices and the like. Something with roots

in quantum mechanics, where the geometry of phase space is

substituted by operators. Except that now I need something

able to describe fields, not particles.

The aim (and we are not too far from this goal), is that in the

end this view of the standard model may help unifying it with

gravity, and help make testable predictions
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The first step will be to find such a generalized geometry

This already exists. It is based on algebras (you may consider them continuous

fields) acting on a Hilbert space (you may consider it to be the space of matter

fields), with the geometry encoded by a self-adjoint operator, a generalization

of the Dirac operator.

When the algebra is commutative this framework enables an algebraic de-

scription of ordinary geometry. When the algebra is non abelian, we have a

Noncommutative Geometry.

Moreover, the machinery I am building should be able to describe also a

quantum spacetime, which should be the arena of a quantum gravity theory

But for the moment I will “limit” myself to the standard model coupled to

background gravity, and see if I can say something useful
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Throughout the seminar I will be very sketchy, skipping all of the mathemat-

ical details, and many of the physical ones. A recent book by Walter Van

Suijlekom (Noncommutative Geometry and Particle Physics, Springer 2014)

has a full description from a mathematical physicist point of view.

Most of the seminar is based on work of Connes for the mathematical part,

and Chamseddine, Connes and Marcolli for the physical part. Important

contributions were made by several people including Barrett, Boyle, Martin,

Farnsworth, Gracia-Bondia, Iochum, Kastler, Lott, Schucker, Stephan, Van

Suijlekom, Varilly. And by my collaborators on this topic: Andrianov, Devas-

tato, Kurkov, Martinetti, Mangano, Miele, Sakellariadou, Sparano, Valcarcel,

Vassilievich, Watcharangkool.

Disclaimer: For this seminar noncommutative geometry is not the one given

by noncommutative coordinates [xµ, xν] = iθµν , in fact for most of the talk I

will have a recognizable spacetime with usual symmetries.
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The starting point is that geometry and its (noncommutative)
generalizations are described by the spectral data of three basic
ingredients:

• An algebra A which describes the topology of spacetime. In
the commutative case is the algebra of continuous functions

• A Hilbert space H on which the algebra act as operators,
and which also describes the matter fields of the theory.

• A (generalized) Dirac Operator D0 which gives the metric
of the space, and other information about the fermions.

An important role is also played by two other operators: Γ and J . For

physicists they are chirality and charge conjugation
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There is a profound mathematical result (Gelfand-Najmark) which

says that all topological informations on a space can be recon-

structed algebraically from the algebra of continuous functions.

Points can be reconstructed from the algebraic data, as irre-

ducible representations of the algebra

Algebraic concepts are more robust than those based on “point-

wise” geometry and they survive when the algebra is noncom-

mutative, enabling us to do noncommutative geometry

The geometric aspects are encoded in the Dirac operator. Connes

and other mathematicians are building some sort of dictionary

translating all concepts or ordinary geometry (differential forms,

vector bundles, metric distances . . . ) into algebraic structures

so that they can be generalized to the noncommutative case
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Let us build a noncommutative geometry corresponding to a
gauge theory. As algebra we take matrix valued functions on
spacetime

A = C(M)⊗AF

This must be an algebra. more precisely a C∗ -algebra, not just
a group. In the finite dimensional case these are only matrices
with real, complex or quaternions entries, or they combination.

Represent this algebra as operators on a Hilbert space of spinors
with extra indices corresponding to the representations of the
algebra

H = Sp(M)⊗HF
The operators Γ = γ5 ⊗ γ and J split H into left-right and particle-antiparticle

subpaces respectively
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Note that since we are dealing with algebras, and not groups,

the allowed representations are either the trivial one, or the fun-

damental one.

The gauge group, i.e. the invariances of the action which I will

introduce shortly, is the unimodular group of the algebra, the

unitary elements of the algebra with unit determinate , and the

representations for the group as well have to be the same. This is

true for the standard model, and for SU(2)L × SU(2)R × SU(4)PS ,

but is not true for generic GUT’s
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Define a proper generalized Dirac operator. For the commutative case it is

D0 = /∂ +m , and the fermionic action is 〈ψ|D0ψ〉

The coupling with a background is done adding to D0 a potential, i.e.

a connection one-form, which in this framework is a well defined object,

generically defined as D = D0 + /A = D0 +
∑

i ai[D0, bi] ,with ai, bi ∈ A

This is the commutative case, when the internal parts AF ,HF are absent.

In the noncommutative setting as Dirac operator we take

D0 = (/∂ + /ω)⊗ I + γ5 ⊗DF

Where ωµ is the spin connection (in the case of curved background)

8



DF is a finite matrix containing all masses and mixings of the

fermions. Calculating D gives the potentials corresponding to

the unitary group of the algebra, which becomes automatically

the gauge group

The procedure gives automatically an extra field, the Higgs, as a

part of the connection one-form, obtained by DF rater than /∂

In this way the Higgs is the “vector” boson corresponding to the

internal degrees of freedom
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For the bosonic part of the action, we take, the spirit of noncommutative

geometry a regularized trace of the Dirac operator, the spectral action:

SB = Trχ

(
D2
A

Λ2

)

where Λ an energy cutoff scale, and χ is a cutoff function, for example the

characteristic function of the unit interval. In this case the spectral action

becomes the number of eigenvalued of DA smaller than the cutoff Λ

The spectral action can be obtained from the fermionic action using finite

mode regularization, and from zeta function regularization. Unfortunately

there is no time to discuss this.

The spectral action is a function of a Laplacian, it can be expressed us-

ing known heat kernel techniques. If one uses as Dirac operator the usual

covariant derivative then the first nontrivial order is the usual bosonic action.
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Technically the bosonic spectral action is a sum of residues and can be ex-
panded in a power series in terms of Λ−1 as

SB =
∑

n

fn an(D2/Λ2)

where the fn are the momenta of χ

f0 =

∫ ∞

0
dxxχ(x)

f2 =

∫ ∞

0
dxχ(x)

f2n+4 = (−1)n∂nxχ(x)

∣∣∣∣
x=0

n ≥ 0

the an are the Seeley-de Witt coefficients which vanish for n odd. For D2 of
the form

D2 = −(gµν∂µ∂ν1l + αµ∂µ + β)
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Defining (in term of a generalized spin connection containing also the gauge
fields)

ωµ =
1

2
gµν
(
αν + gσρΓν

σρ1l
)

Ωµν = ∂µων − ∂νωµ + [ωµ, ων]
E = β − gµν

(
∂µων + ωµων − Γρ

µνωρ
)

then

a0 =
Λ4

16π2

∫
dx4√g tr 1lF

a2 =
Λ2

16π2

∫
dx4√g tr

(
−R

6
+ E

)

a4 =
1

16π2

1

360

∫
dx4√g tr (−12∇µ∇µR+ 5R2 − 2RµνR

µν

+2RµνσρR
µνσρ − 60RE + 180E2 + 60∇µ∇µE + 30ΩµνΩ

µν

tr is the trace over the inner indices of the finite algebra AF and in Ω and E
are contained the gauge degrees of freedom including the gauge stress energy
tensors and the Higgs, which is given by the inner fluctuations of D
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The game is therefore to find a set of spectral data: Algebra,
Hilbert Space and Dirac Operator and then ‘crank a machine’

The first application was to consider the algebra of functions
valued in diagonal 2× 2 matrices (a two sheeted spacetime).
As Hilbert space that of left and right Dirac spinor and

D0 =

(
/∂ m
m /∂

)

Then the covariant Dirac operator will be:

DA =

(
/∂ + /AL φ
φ /∂ + /AR

)

This will give the Lagrangian of a U(1)L × U(1)R breaking to

U(1) theory. With the Higgs being the “vector” boson corre-
sponding to the internal degree of freedom.
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This space is “almost” noncommutative, in the sense that there still is an

underlying spacetime, and and internal noncommutative but finite dimen-

sional algebra. In the following we will consider algebras is of the kind

A = C(R4)⊗AF , where AF is a finite dimensional matrix algebra.

The algebra to describe the standard model is

AF = Mat(C)3 ⊕ H⊕ C

H are the quaternions, which we represent as 2× 2 matrices

The unimodular elements of the algebra which correspond to the symmetries

of the standard model: SU(3)× SU(2)× U(1)
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This algebra must be represented as operators on a Hilbert space, which also

has a continuos infinite dimensional part (spinors on spacetime) times a finite

dimensional one: H = sp(R)⊗HF . The grading given by Γ splits it into a

left and right subspace: HL ⊕HR

The J operator basically exchange the two chiralities and conjugates, thus

effectively making the algebra act form the right.

For HF we take the fermions: 32 degrees of freedom per gen-

eration.

Note the the full Hilbert space is the tensor product of this finite dimensional space times

the usual spinorial degrees of freedom. So the states are overcounted. This is called fermion

doubling.
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One has to represent the algebra on this Hilbert space (in a
reducible way). There are several restrictions imposed by the
theory, namely the Dirac operator, one forms, chirality Γ and
charge conjugation J have to commute or anticommute accord-
ing to given rules dictated by the fact that we are generalizing a
geometry to the noncommutative setting.

This imposes several restrictions, mainly to the representation
of the algebra. The scheme works for the standard model, but
not for a generic gauge theory, even enlarging the Hilbert space
or the algebra

In fact the scheme almost singles out the standard model as the
smallest non trivial gauge group which works.

Then one cranks the machine and obtains the lagrangian of the
standard model coupled with gravity
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36 CHAMSEDDINE, CONNES, AND MARCOLLI

LSM = − 1
2∂νga

µ∂νga
µ − gsf

abc∂µga
νgb

µgc
ν − 1

4g2
sfabcfadegb

µgc
νgd

µge
ν − ∂νW+

µ ∂νW−
µ − M2W+

µ W−
µ −

1
2∂νZ0

µ∂νZ0
µ − 1

2c2
w

M2Z0
µZ0

µ − 1
2∂µAν∂µAν − igcw(∂νZ0

µ(W+
µ W−

ν − W+
ν W−

µ ) − Z0
ν (W+

µ ∂νW−
µ −

W−
µ ∂νW+

µ ) + Z0
µ(W+

ν ∂νW−
µ − W−

ν ∂νW+
µ )) − igsw(∂νAµ(W+

µ W−
ν − W+

ν W−
µ ) − Aν(W+

µ ∂νW−
µ −

W−
µ ∂νW+

µ ) + Aµ(W+
ν ∂νW−

µ − W−
ν ∂νW+

µ )) − 1
2g2W+

µ W−
µ W+

ν W−
ν + 1

2g2W+
µ W−

ν W+
µ W−

ν +

g2c2
w(Z0

µW+
µ Z0

νW−
ν −Z0

µZ0
µW+

ν W−
ν )+g2s2

w(AµW+
µ AνW−

ν −AµAµW+
ν W−

ν )+g2swcw(AµZ0
ν (W+

µ W−
ν −

W+
ν W−

µ ) − 2AµZ0
µW+

ν W−
ν ) − 1

2∂µH∂µH − 2M2αhH2 − ∂µφ
+∂µφ

− − 1
2∂µφ

0∂µφ
0 −

βh

(
2M2

g2 + 2M
g H + 1

2 (H2 + φ0φ0 + 2φ+φ−)
)

+ 2M4

g2 αh − gαhM
(
H3 + Hφ0φ0 + 2Hφ+φ−)

−
1
8g2αh

(
H4 + (φ0)4 + 4(φ+φ−)2 + 4(φ0)2φ+φ− + 4H2φ+φ− + 2(φ0)2H2

)
− gMW+

µ W−
µ H −

1
2g M

c2
w

Z0
µZ0

µH − 1
2 ig

(
W+

µ (φ0∂µφ
− − φ−∂µφ

0) − W−
µ (φ0∂µφ

+ − φ+∂µφ
0)

)
+

1
2g

(
W+

µ (H∂µφ
− − φ−∂µH) + W−

µ (H∂µφ
+ − φ+∂µH)

)
+ 1

2g 1
cw

(Z0
µ(H∂µφ

0 − φ0∂µH) +

M ( 1
cw

Z0
µ∂µφ

0 +W+
µ ∂µφ

− +W−
µ ∂µφ

+)− ig
s2

w

cw
MZ0

µ(W+
µ φ

− −W−
µ φ

+)+ igswMAµ(W+
µ φ

− −W−
µ φ

+)−
ig

1−2c2
w

2cw
Z0

µ(φ+∂µφ
− −φ−∂µφ

+)+ igswAµ(φ+∂µφ
− −φ−∂µφ

+)− 1
4g2W+

µ W−
µ

(
H2 + (φ0)2 + 2φ+φ−)

−
1
8g2 1

c2
w

Z0
µZ0

µ

(
H2 + (φ0)2 + 2(2s2

w − 1)2φ+φ−)
− 1

2g2 s2
w

cw
Z0

µφ
0(W+

µ φ
− + W−

µ φ
+) −

1
2 ig2 s2

w

cw
Z0

µH(W+
µ φ

− − W−
µ φ

+) + 1
2g2swAµφ

0(W+
µ φ

− + W−
µ φ

+) + 1
2 ig2swAµH(W+

µ φ
− − W−

µ φ
+) −

g2 sw

cw
(2c2

w − 1)Z0
µAµφ

+φ− − g2s2
wAµAµφ

+φ− + 1
2 igs λ

a
ij(q̄

σ
i γ

µqσ
j )ga

µ − ēλ(γ∂ + mλ
e )eλ − ν̄λ(γ∂ +

mλ
ν )νλ − ūλ

j (γ∂ + mλ
u)uλ

j − d̄λ
j (γ∂ + mλ

d)dλ
j + igswAµ

(
−(ēλγµeλ) + 2

3 (ūλ
j γ

µuλ
j ) − 1

3 (d̄λ
j γ

µdλ
j )

)
+

ig
4cw

Z0
µ{(ν̄λγµ(1 + γ5)νλ) + (ēλγµ(4s2

w − 1 − γ5)eλ) + (d̄λ
j γ

µ(4
3s2

w − 1 − γ5)dλ
j ) + (ūλ

j γ
µ(1 − 8

3s2
w +

γ5)uλ
j )} + ig

2
√

2
W+

µ

(
(ν̄λγµ(1 + γ5)U lep

λκeκ) + (ūλ
j γ

µ(1 + γ5)Cλκdκ
j )

)
+

ig

2
√

2
W−

µ

(
(ēκU lep†

κλγ
µ(1 + γ5)νλ) + (d̄κ

j C†
κλγ

µ(1 + γ5)uλ
j )

)
+

ig

2M
√

2
φ+

(
−mκ

e (ν̄λU lep
λκ(1 − γ5)eκ) + mλ

ν (ν̄λU lep
λκ(1 + γ5)eκ

)
+

ig

2M
√

2
φ−

(
mλ

e (ēλU lep†
λκ(1 + γ5)νκ) − mκ

ν (ēλU lep†
λκ(1 − γ5)νκ

)
− g

2
mλ

ν

M H(ν̄λνλ) − g
2

mλ
e

M H(ēλeλ) +

ig
2

mλ
ν

M φ0(ν̄λγ5νλ) − ig
2

mλ
e

M φ0(ēλγ5eλ) − 1
4 ν̄λ MR

λκ (1 − γ5)ν̂κ − 1
4 ν̄λ MR

λκ (1 − γ5)ν̂κ +
ig

2M
√

2
φ+

(
−mκ

d(ūλ
j Cλκ(1 − γ5)dκ

j ) + mλ
u(ūλ

j Cλκ(1 + γ5)dκ
j

)
+

ig

2M
√

2
φ−

(
mλ

d(d̄λ
j C†

λκ(1 + γ5)uκ
j ) − mκ

u(d̄λ
j C†

λκ(1 − γ5)uκ
j

)
− g

2
mλ

u

M H(ūλ
j uλ

j ) − g
2

mλ
d

M H(d̄λ
j dλ

j ) +

ig
2

mλ
u

M φ0(ūλ
j γ

5uλ
j ) − ig

2
mλ

d

M φ0(d̄λ
j γ

5dλ
j )

Here the notation is as in [46], as follows.

• Gauge bosons: Aµ,W ±
µ , Z0

µ, ga
µ

• Quarks: uκ
j , dκ

j , collective : qσ
j

• Leptons: eλ, νλ

• Higgs fields: H,φ0, φ+, φ−

• Ghosts: Ga,X0,X+,X−, Y ,
• Masses: mλ

d ,mλ
u,mλ

e ,mh,M (the latter is the mass of the W )

• Coupling constants g =
√

4πα (fine structure), gs = strong, αh =
m2

h
4M2

• Tadpole Constant βh

• Cosine and sine of the weak mixing angle cw, sw

• Cabibbo–Kobayashi–Maskawa mixing matrix: Cλκ

• Structure constants of SU(3): fabc

• The Gauge is the Feynman gauge.

Remark 4.5. Notice that, for simplicity, we use for leptons the same convention usually
adopted for quarks, namely to have the up particles in diagonal form (in this case the neu-
trinos) and the mixing matrix for the down particles (here the charged leptons). This is
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In the Dirac operator there are, as input all data relative to the fermions, but

no information on the Higgs mass (vev and quartic coupling coefficient). In

this scheme can be calculated from the fermion mass parameters (Yukawa

couplings), which are dominated by the top quark coupling. Therefore we

have a “prediction” for these quantities

The action we have written is classical and it depend on the cutoff Λ , and

there is no symmetry to ensure that the renormalization flow conserves the

relation among Yukawa couplings and Higgs parameters

In this scheme necessarily the coupling contents of the three gauge interac-

tions come out to be equal (apart form the 3/5 normalization of the U(1)

coupling)

Putting the previous comments together we will consider that the classical

lagrangian coming from the spectral action is written at the scale Λ which is

the scale of unification of the three constants.
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This is almost true. In the absence of new physics the constants

show a pattern in which the three meeting point are roughy at

the same value, but at scales ranging form 1013 − 1017 GeV

4 6 8 10 12 14 16
Log10HΜ�GeVL

0.6

0.7

0.8

0.9

1.0

1.1

giHΜL

If one uses the values of the quartic coupling λ calculated form

the top Yukawa at a scale in the proper range, and run back to

low energy. This to a prediction for the Higgs mass

MH = 175.1 + 5.8− 7.2 GeV
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Ironically, a few months after the publications of the Chamseddine-
Connes paper, Fermilab excluded this value

Now it depends how you consider this theory. if you take it as a mature fully

formed theory then the result is wrong. If you take it (as I do) as a tool to

investigate the standard model starting from first principles, then I think it is

remarkable that a theory based on pure mathematical result gets reasonable

numbers

There are several areas in which one could improve, or in other
words, if you were pessimist, there were several shortcoming:
the theory is Euclidean, it needs a compact spacetime (to define
a discrete spectrum), the heat kernel is trustable only to first
order, the three couplings do not meet exactly, the Hilbert space
needs fermion doubling . . .

Now LHC gave MH , and we know in which direction to move
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In some sense the answer was already present, together with

some positive features

I mentioned earlier that noncommutative geometry allows the

translation of geometric concepts into algebraic language. In

the commutative case it is possible to characterize a manifold

with properties of the elements of the triple (all five of them)

There is a list of conditions and a theorem (Connes) which proves

this.

Since the conditions are all purely algebraic there remain valid in

the noncommutative case, defining a noncommutative manifold.

And we apply these to the noncommutative matrix part of the

triple
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In case you want to see the conditions:

1. Dimension There is a nonnegative integer n such that the eigenvalues of
D0 grow os O(1

n
).

2. Regularity For any a ∈ A both a and [D0, a] belong to the domain of δk

for any integer k, where δ is the derivation given by δ(T ) = [|D|, T ].

3. Finiteness The space
⋂
k Dom(Dk) is a finitely generated projective left

A module.

4. Reality There exist J with the commutation relation fixed by the number
of dimensions with the property

(a) Commutant [a, Jb∗J−1] = 0, ∀a, b
(b) First order [[D, a], bo = Jb∗J−1] = 0 , ∀a, b

5. Orientation There exists a Hochschild cycle c of degree n which gives
the grading γ , This condition gives an abstract volume form.

6. Poincaré duality A Certain intersection form determined by D0 and by
the K-theory of A and its opposite is nondegenrate.
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The conditions are purely algebraic. They can be applied to

finite dimensional (matrix) algebras. The result singles out one

class of algebras:

AF = Ma(H)⊕M2a(C) a ∈ N.

Matrices of quaternions plus matrices of complex numbers. Since

quaternions can be represented as 2× 2 matrices, the two al-

gebras are matrices of equal rank

This algebra acts on a finite Hilbert space of dimension 2(2a)2 .

For a non trivial grading it must be a ≥ 2
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The simplest case is:

AF = M2(H)⊕M4(C)

Hence an Hilbert space of dimension 2(2 · 2)2 = 32 , the dimen-

sion of HF for one generation.

The grading condition [a,Γ] = 0 reduces the algebra to the left-right algebra

ALR = HL ⊕ HR ⊕M4(C)

The order one condition reduces further the standard model algebra to Asm,

i.e. the algebra whose gauge group is U(1)×SU(2)×U(3)
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You may have recognized before a Pati-Salam kind of symmetry.
Its presence suggests the presence of a field which causes the
breaking to the standard model

This field, which we call σ should appear in the Dirac operator
in the position corresponding to the neutrino Majorana mass.
But unfortunately if I put a nonzero entry in that position the
cracking of the machine does not produce a field. Hence one
has to include it by hand. Which is unpleasant.

Doing again the running of the physical quantitates with this
field does change the Higgs mass, making it compatible with the
experimental value

Physics is therefore telling us that into his framework right handed
neutrinos, and Majorana masses are crucial
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Can we do better? Avoid adding this field by hand? There are
three solutions on the market

• Enlarge the Hilbert space introducing new fermions and new
interactions. Stephan

• Consider a Grand Symmetry based on M(H)4 ⊕M(C)8 Dev-

astato Lizzi Martinetti

• Violate one of the conditions (the order one conditions)
Chamseddine, Connes Van Suijlekom

The latter solutions allow the introduction of a new field σ which
not only fixes the mass of the Higges making it compatible with
126 GeV, but also solves the possible instability of the theory.
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A. Devastato, P. Martinetti and I proposed as solution: a grand symmetry.

In NCG the usual grand unified groups, such as SU(5) or SO(10) do not

work. There are very few representations of algebra as opposed to groups.

Finite dimensional algebras only have one nontrivial IRR

Fortunately in the standard model there are only weak doublets and colour

triplets, so it works

Recall that a finite “manifold” is an algebra: Ma(H)⊕M2a(C)

acting on a 2(2a)2 dimensional Hilbert space. So far we had

a = 2, 2(2a)2 = 32× 3 = 96

The numerology comes out correct
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For M4(H)⊕M8(C) one requires a 2(2 · 4)2 = 128 dimensional

space. (384 taking generations into account)

This is exactly the dimension of the Hilbert space if we take the

fermion doubling into account

It is necessary to look at Hilbert space with different eyes

H = sp(L2(R4))⊗HF = L2(R4)⊗ HF

where now the dimensions of HF is 384
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It is still possible to represent the grand algebra M4(H)⊕M8(C) satisfying

all of the manifold conditions. This is highly nontrivial if one keeps the same

Hilbert space.

But this time the algebra does not act diagonally on the spinor

indices. it mixes them.

If there is time I can show explicitly the details of the two representation (on

particle and anti particles). The key point is that in the process spacetime

indices, related to the Euclidean symmetries, mix with internal, gauge indices.

The suggestion is to consider this algebra to be some high energy

description, so that the standard model is some sort of effective

low energy theory, coming after the breaking due to the Dirac

operator
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In this scheme the σ field comes related to the Majorana masses of right

handed neutrinos, which are another “hot” (i.e. not well understood) topic

in high energy physics

Unfortunately we had to pay the price of the introduction of a new parameter.

And this limited our predictive power. So that we cannot say what the mass

of the Higgs is, but only that the theory is compatible with experiments

There are however several directions in which the physics might evolve, and

some input may again come form mathematics.

For example, what is the meaning of the violation of the order one condition

proposed by CC&vS? Can the spectral triple we are proposing be a twisted

one?

There is also more work being done on the spectral action itself, the expan-

sion, its relations with anomalies. . .
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Conclusions

• What remains to be seen is if from the particle physics point
of view the noncommutative geometry is Kepler’s law, the
theory of gravitation cum differential calculus, the law of
diminishing proportions of Hooke, some further epicycloid,
Kant’s theory of heavens, or phlogiston.

• I find that it is in any case a good example of how a view
deeply rooted in mathematics can try to say something about
the physical world.

• And I actually hope that sooner or later we can also say
something useful for phenomenology
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Details
There are several finite dimensional algebras in this game, and I
want to look at their representations

Ultimately we want to ge to the the standard model algebra

Asm = C⊕ H⊕M3(C),
H are the quaternions, which we represent as 2× 2 matrices

It is possible to have this emerge from the most general algebra
which satisfies the condition of being a noncommutative mani-
fold

AF = Ma(H)⊕M2a(C) a ∈ N.
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This algebra acts on a finite Hilbert space of dimension 2(2a)2 .

For a non trivial grading it must be a ≤ 2

AF = M2(H)⊕M4(C)

Hence an Hilbert space of dimension 2(2 · 2)2 = 32 , the dimen-

sion of HF for one generation.

The grading condition [a,Γ] = 0 reduces the algebra to the left-right algebra

ALR = HL ⊕ HR ⊕M4(C)

The order one condition reduces further the algebra to Asm, i.e. the algebra

whose unimodular group is U(1)×SU(2)×U(3)
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Let us look in detail to a vector in the Hilbert space:

ΨCIm
sṡα (x) ∈ H = L2(M)⊗ HF = sp(L2(M))⊗HF

Note the difference between HF , which is 96 dimensional, and

HF which is 384 dimensional. The meaning of the indices is as

follows:

ΨCIm
sṡα (x)

s = r , l
ṡ = 0̇ , 1̇

are the spinor indices. They are not internal indices in

the sense that the algebra AF acts diagonally on it. They take

two values each, and together they make the four indices on an

ordinary Dirac spinor.
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ΨCIm
sṡα (x)

I = 0, . . .3 indicates a “lepto-colour” index. The zeroth “colour”

actually identifies leptons while I = 1,2,3 are the usual three

colours of QCD.
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ΨCIm
sṡα (x)

α = 1 . . .4 is the flavour index. It runs over the set uR, dR, uL, dL

when I = 1,2,3 , and νR, eR, νL, eL when I = 0 . It repeats in

the obvious way for the other generations.
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ΨCIm
sṡα (x)

C = 0, 1 indicates whether we are considering “particles” ( C = 0 )

or “antiparticles” ( C = 1 ).
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ΨCIm
sṡα (x)

m = 1,2,3 is the generation index. The representation of the

algebra of the standard model is diagonal in these indices, the

Dirac operator is not, due to Cabibbo-Kobayashi-Maskawa mix-

ing parameters. For this seminar plays no role, and will ignored.
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We can now give explicitly the algebra representations in term of these indices.

We start from AF = M2(H)⊕M4(C) , a generic element will depend on 4× 4

complex matrix m , and a 2× 2 matrix of quaternions q , which we may

also see as a 4× 4 with some conditions

The representation in its fullness is

A
tṫCIβ
sṡDJα = δtsδ

ṫ
ṡ

(
δC0δ

I
JQ

β
α + δC1M

I
Jδ
β
α

)

Note the two δ ’s at the beginning which show that the algebra
acts trivially on the spacetime indices, and the fact that the
two matrices act on different indices. This ensures the order
zero condition, namely exchanging particles with antiparticles,
the job done by J , the two representations commute.
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The representations of the other algebra are similar, in the case of the stan-

dard model there is a differentiation with the leptocolour indices.

The order one condition and a ν Majorana mass cause the

reduction to C∞(M)⊗Asm , represented as

a = {m, q, c} with m ∈ C∞(M)⊗M3(C), q ∈ C∞(M)⊗ H, c ∈ C∞(M)⊗ C

is

a
tṫCIβ
sṡDJα = δtsδ

ṫ
ṡ

(
δC0δ

I
J

(
qβα + cβα

)
+ δC1

(
mI

J + c̃I
J

)
δ
β
α

)

where we use the following 4× 4 complex matrices:

q =

(
02

q

)

αβ

, c =



c

c̄
02



αβ

, c̃ =

(
c

03

)

IJ

, m =

(
0

m

)

IJ
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The breaking from AF to Asm goes with the chirality and first
order conditions

I can similarly write down the Dirac operator
D = /∂ ⊗ I96 + γ5 ⊗DF

DF =




08N M MR 08N

M† 08N 08N 08N

M†
R 08N 08N M̄

08N 08N MT 08N


 .

M contains the Dirac-Yukawa couplings. It links left with right particles.

MR =MT
R contains Majorana masses and links righr particles with right

antiparticles. M =

(
Mu 04N

04N Md

)
MR =

(
MR 04N

04N 04N

)
where Mu con-

tainins the masses of the up, charm and top quarks and the neutrinos (Dirac

mass), MR contains the Majorana neutrinos masses and Md the remaining

quarks and electrons, muon and tau masses, including mixings

41



I think by now you know the rules. With the algebra and D
one builds the one-form, which are the fluctuations of the Dirac
operator.The bosonic fields are coming from these one-form∑

i ai[D, bi]

But here we run into a problem: the elements of MR are the
ones which should give rise to the field σ as intermediate boson,
on a par with the Higgs, and relate to the breaking of the left-
right symmetry.

Except that this term either commutes with D or violates the
first order condition!

One alternative would is to have a combination of algebra and
Dirac operator violating the first order condition

Or we may look for a bigger algebra...
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Consider the case of Ma(H)⊕M2a(C) for the case a = 4

In this case we need a 2 · (2 · 4)2 = 128 dimensional space,

which for 3 generations gives a 384 dimensional Hilbert space.

I need a representation of the algebra M4(H)⊕M8(C) acting
on the spinors I gave earlier, and which can satisfy the stringent
order zero conditions

Consider Q ∈ M4(H) and M ∈ M8(C) with indices

Qṫβ
ṡα =

(
Q0̇β

0̇α
Q1̇β

0̇α

Q0̇β
1̇α

Q1̇β
1̇α

)

ṡṫ

, M tI
sJ =

(
M rI

rJ M lI
rJ

M rI
lJ M lI

lJ

)

st

where, for any ṡ, ṫ ∈
{

0̇, 1̇
}

and s, t ∈ {l, r} , the matrices

Qṫβ
ṡα ∈ M2(H), M tI

sJ ∈ M4(C) have the index structure defined above
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The representation of the element A = (Q,M) ∈ AG is:

AtṫC Iβ
sṡDJα =

(
δC0δ

t
sδ

I
JQ

ṫβ
ṡα + δC1M

tI
sJδ

ṫ
ṡδ
β
α

)

compare with the previous case

A
tṫCIβ
sṡDJα = δtsδ

ṫ
ṡ

(
δC0δ

I
JQ

β
α + δC1M

I
Jδ
β
α

)

The spinor indices and the internal gauge indices are mixed. We are in a

phase in which the Euclidean structure of space time has not yet emerged.

The fermions are not yet fermions
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We envisage this Grand Symmetry to belong to a pre geometric

phase. At this stage all elements of DF may be negligible,

and the sponsorial part of the direct operator /∂ will cause the

“breaking” to a phase in which the symmetries of the phase

space emerge

In particular, the order one condition for /∂ causes the reduction

of the algebra to M2(H)⊕M4(C)

And there is an added bonus:
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This grand algebra, and a corresponding D operator, have

“more room” to operate. Although the Hilbert space is the

same, the fact that we abandoned the factorization of the inter-

nal indices, gives us more entries to accommodate the Majorana

masses

Hence we can put a Majorana mass for the neutrino and at the

same time satisfy the order one condition. Then the one form

corresponding to this Dν will give us the by now famous field

σ , which can only appear before the transition to the geometric

spacetime

The natural scale for this mass is to be above a transition which

gives the geometric structure. Therefore it is natural that it may

be at a high scale. How high we can discuss
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The grand symmetry is no ordinary gauge symmetry, there is

never a SU(8) in the game for example

It represents a phase in which the internal noncommutative ge-

ometry contains also the spin structure, even the Lorentz (Eu-

clidean) structure of space time in a mixed way

The differentiation between the spin structure of spacetime, and

the internal gauge theory comes as a breaking of the symmetry,

triggered by σ , which now appears naturally has having to do

with the geometry of spacetime.
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In this scheme the σ field comes related to the Majorana masses of right

handed neutrinos, which are another “hot” (i.e. not well understood) topic

in high energy physics

Unfortunately we had to pay the price of the introduction of a new parameter.

And this limited our predictive power. So that we cannot say what the mass

of the Higgs is, but only that the theory is compatible with experiments

There are however several directions in which the physics might evolve, and

some input may again come form mathematics.

For example, what is the meaning of the violation of the order one condition

proposed by CC&vS? Can the spectral triple we are proposing be a twisted

one?

There is also more work being done on the spectral action itself, the expan-

sion, its relations with anomalies. . .
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The first version of the grand symmetry had a technical problem:

the commutator of the D0 with the elements of the algebra was

not a bounded operator. A mathematical requirement for the

consistency of the theory.

This has been solved in a more recent version (Devastato and

Martinetti) defining a twisted commutator

[D0, a]ρ = D0a− ρ(a)D0

where ρ is an automorphism of the algebra

Also in this case there is an added bonus, it is possible to see

that the breaking from AG → Asm is dynamical
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Conclusions

• What remains to be seen is if from the particle physics point
of view the noncommutative geometry is Kepler’s law, the
theory of gravitation cum differential calculus, the law of
diminishing proportions of Hooke, some further epicycloid,
Kant’s theory of heavens, or phlogiston.

• I find that it is in any case a good example of how a view
deeply rooted in mathematics can try to say something about
the physical world.

• And I actually hope that sooner or later we can also say
something useful for phenomenology
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