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The Universe is 
accelerating and 
yet we still really 
have little idea 
what is causing 

this acceleration.  

Is it a 
cosmological 
constant, an 

evolving scalar 
field, evidence of 
modifications of 

General 
Relativity on 

large scales or 
something yet to 
be dreamt up ?
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Brief reminder why the cosmological constant is regarded as a problem?

The CC gravitates in General 
Relativity:

Now:

Just as well because anything much bigger than we have and the 
universe would have looked a lot different to what it does look like. In 

fact structures would not have formed in it.  
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zero point energies of each particle

contributions from phase transitions in the early universe
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Estimate what the vacuum energy should be :

+
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zero point energies of each particle

For many fields (i.e. leptons, quarks, gauge fields etc...):
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where gi are the dof of the field (+ for bosons, - for fermions).
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contributions from phase transitions in the early universe
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Quantum Gravity cut-off fine tuning to 120 decimal places

SUSY cut-off fine tuning to 60 decimal places
EWK phase transition fine tuning to 56 decimal places

QCD phase transition fine tuning to 44 decimal places
Muon

electron fine tuning to 36 decimal places

Observed value of the effective cosmological 
constant today !
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Friedmann:
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a(t) depends on matter.
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Dark Energy

Nottingham, March 2013
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Dark Energy

Planck Collaboration: Planck Cosmological Parameters
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Fig. 34. Plot indicating marginalized posterior probabilities for
the dark energy equation-of-state parameter w (assumed con-
stant), for the indicated combinations of data sets. A flat prior
on w from �3 to �0.3 was assumed. The dashed grey line indi-
cates the “cosmological constant” solution.

still basically consistent with a cosmological constant, though
SNLS does lead to a slightly lower value of w than Union2.1.
If instead we combine Planck+WP with HST measurements of
H0, the di↵erence between the values of H0 preferred by CMB
and HST reflects itself in the joint constraint of

w = �1.24+0.18
�0.19 (95%,Planck +WP + HST), (93)

which is in tension with w = �1.
If w , �1 then it is likely to change with time. In order to in-

vestigate this we consider a linear model, w(a) = w0 +wa(1� a),
where w0 is the value of the equation of state today and wa deter-
mines how the equation of state evolves away from w0 near the
present epoch (Chevallier & Polarski, 2001; Linder, 2003). This
parametrization captures the low-redshift behaviour of our mod-
els (light minimally-coupled scalar fields) as well as many others
as long as they do not contribute significantly to the total energy
density at early times. The dynamical evolution of w(a) can lead
to distinctive imprints in the CMB (Caldwell et al., 1998) which
would show up in the Planck data.

In Fig. 35 we plot contours of the joint posterior probabilities
for w0 and wa using Planck +WP+BAO data. We use indepen-
dent flat priors of �3 < w0 < �0.3 and �2 < wa < 2. The
points are coloured by the value of H0, which shows a clear
variation with w0 and wa. The “cosmological constant” point
(w0,wa) = (�1, 0) lies within the 1� contour and the marginal-
ized posteriors for w0 and wa are

w0 = �1.04+0.72
�0.69 (95%,Planck +WP + BAO), (94)

wa < 1.32 (95%,Planck +WP + BAO). (95)

Including the H0 measurement from HST moves (w0,wa)
slightly away from a cosmological constant, but the constraints
are still consistent with ⇤CDM at 2�.

Fig. 36 shows likelihood contours for the same set of (w0,wa)
parameters, now adding SNe data to Planck. As discussed in de-
tail in Sect. 5, there is a dependence of the base parameters on
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Fig. 35. Plot illustrating the joint posterior for w0 and wa
for Planck, WMAP-polarization- and BAO data, marginalizing
over other parameters. The contours are set at 68% and 95%.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
were assumed. The colour of the scattered points indicates the
distribution of the Hubble parameter H0. Dashed grey lines guide
the eye to the “cosmological constant” solution.
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Fig. 36. Plot illustrating the joint posterior for w0 and wa,
marginalizing over other parameters, for di↵erent choices of ad-
ditional data to Planck and WMAP-polarization. Contour levels
are set at 68% and 95%. The grey contours use BAO. The red
contours use Union2.1 supernovae data. The blue contours use
SNLS supernovae data. Dashed grey lines guide the eye to the
“cosmological constant” solution.

the choice of dataset used for the SNe, and this continues with
the dark energy parameters. The results for Planck+Union2.1 are
in better agreement with a cosmological constant than those for
Planck+SNLS. We remark that the variations in the constraints
on dark energy parameters using di↵erent combinations of data
sets might be due to unmodelled systematics in the analysis, the
potential presence of which have been discussed in Sects. 5.3
and 5.4.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe at
early times. Such Early Dark Energy (EDE; Wetterich, 2004)
models may be very close to ⇤CDM recently but have a nonzero
dark energy density fraction, ⌦e, at early times. Such models
complement the (w0,wa) analysis by investigating how much
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► Parameterize dark energy using PPF framework of Hu and Sawicki (2007)
► No anisotropic stresses 

Planck Collaboration: Planck Cosmological Parameters

2.1.4. Dark energy

In our baseline model we assume that the dark energy is a cos-
mological constant with current density parameter ⌦⇤. When
considering a dynamical dark energy component, we parame-
terize the equation of state either as a constant w or as a function
of the cosmological scale factor, a, with

w(a) ⌘ p
⇢
= w0 + (1 � a)wa, (4)

and assume that the dark energy does not interact with other con-
stituents other than through gravity. Since this model allows the
equation of state to cross below �1, a single-fluid model can-
not be used self-consistently. We therefore use the parameterized
post-Friedmann (PPF) model of Fang et al. (2008a). For models
with w > �1, the PPF model agrees with fluid models to signif-
icantly better accuracy than required for the results reported in
this paper.

2.1.5. Power spectra

Over the last decades there has been significant progress in
improving the accuracy, speed and generality of the numerical
calculation of the CMB power spectra given an ionization
history and set of cosmological parameters (Sugiyama,
1995; Ma & Bertschinger, 1995; Seljak & Zaldarriaga, 1996;
Seljak, 1996; White & Scott, 1996; Hu & White, 1997;
Zaldarriaga et al., 1998; Hu et al., 1998; Bucher et al., 2000;
Hu, 2000; Lewis & Challinor, 2002; Seljak et al., 2003; Doran,
2005; Challinor & Lewis, 2005; Cyr-Racine & Sigurdson, 2011;
Blas et al., 2011; Lesgourgues & Tram, 2011; Howlett et al.,
2012). Our baseline numerical Boltzmann code is camb10

(March 2013; Lewis et al., 2000), a parallelized line-of-sight
code developed from cmbfast (Seljak & Zaldarriaga, 1996)
and Cosmics (Bertschinger, 1995; Ma & Bertschinger, 1995),
which calculates the lensed CMB temperature and polariza-
tion power spectra. The code has been publicly available for
over a decade and has been very well tested (and improved)
by the community. Numerical stability and accuracy of the
calculation at the sensitivity of Planck has been explored in
detail (Hamann et al., 2009; Lesgourgues, 2011b; Howlett et al.,
2012), demonstrating that the raw numerical precision is
su�cient for numerical errors on parameter constraints from
Planck to be less than 10% of the statistical error around the
assumed cosmological model. (For the high multipole CMB
data at ` > 2000 used in Sect. 4, the default camb settings are
adequate because the power spectra of these experiments are
dominated by unresolved foregrounds and have large errors at
high multipoles.) To test the potential impact of camb errors,
we importance-sample a subset of samples from the posterior
parameter space using higher accuracy settings. This confirms
that di↵erences purely due to numerical error in the theory
prediction are less than 10% of the statistical error for all param-
eters, both with and without inclusion of high-` data. We also
performed additional tests of the robustness and accuracy of our
results by reproducing a fraction of them with the independent
Boltzmann code class (Lesgourgues, 2011a; Blas et al., 2011).

In the parameter analysis, information from CMB lensing
enters in two ways. Firstly, all the CMB power spectra are mod-
elled using the lensed CMB power spectra, which includes the
approximately 5% smoothing e↵ect on the acoustic peaks due
to lensing. Secondly, for some results we include the Planck

10http://camb.info

lensing likelihood, which encapsulates the lensing information
in the (mostly squeezed-shape) CMB trispectrum via a lensing
potential power spectrum (Planck Collaboration 12, 2013). The
theoretical predictions for the lensing potential power spectrum
are calculated by camb, optionally with corrections for the non-
linear matter power spectrum, along with the (non-linear) lensed
CMB power spectra. For the Planck temperature power spec-
trum, corrections to the lensing e↵ect due to non-linear struc-
ture growth can be neglected, however the impact on the lens-
ing potential reconstruction is important. We use the halofit
model (Smith et al., 2003) as updated by Takahashi et al. (2012)
to model the impact of non-linear growth on the theoretical pre-
diction for the lensing potential power.

2.2. Parameter choices

2.2.1. Base parameters

The first section of Table 1 lists our base parameters that have
flat priors when they are varied, along with their default values
in the baseline model. When parameters are varied, unless oth-
erwise stated, prior ranges are chosen to be much larger than the
posterior, and hence do not a↵ect the results of parameter esti-
mation. In addition to these priors, we impose a “hard” prior on
the Hubble constant of [20, 100] km s�1 Mpc�1.

2.2.2. Derived parameters

Matter-radiation equality zeq is defined as the redshift at which
⇢� + ⇢⌫ = ⇢c + ⇢b (where ⇢⌫ approximates massive neutrinos as
massless).

The redshift of recombination, z⇤, is defined so that the op-
tical depth to Thomson scattering from z = 0 (conformal time
⌘ = ⌘0) to z = z⇤ is unity, assuming no reionization. The optical
depth is given by

⌧(⌘) ⌘
Z ⌘

⌘0

⌧̇ d⌘0, (5)

where ⌧̇ = �a�Tne (and ne is the density of free electrons, �T
is the Thomson cross section). We define ✓⇤ = rs(z⇤)/DA(z⇤),
where rs is the sound horizon

rs(z) =
Z ⌘(z)

0

d⌘0p
3(1 + R)

, (6)

with R ⌘ 3⇢b/(4⇢�).
Baryon velocities decouple from the photon dipole when

Compton drag balances the gravitational force, which happens
at ⌧d ⇠ 1, where (Hu & Sugiyama, 1996)

⌧d(⌘) ⌘
Z ⌘

⌘0

⌧̇ d⌘0/R. (7)

Here again ⌧ is from recombination only, without reioniza-
tion contributions. We define a drag redshift zdrag, so that
⌧d(⌘(zdrag)) = 1. The sound horizon at the drag epoch is an im-
portant scale which is often used in studies of baryon acoustic
oscillations; we denote this as rdrag = rs(zdrag). We compute zdrag
and rdrag numerically from camb (see Sect. 5.2 for details of ap-
plication to BAO data).

The characteristic wavenumber for damping, kD, is given by

k�2
D (⌘) = �1

6

Z ⌘

0
d⌘0

1
⌧̇

R2 + 16(1 + R)/15
(1 + R)2 . (8)
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► Degeneracy with H0 means Planck alone can only weakly constrain dark energy
► Can be broken by CMB lensing (see later) and other probes 

► Setting wa = 0 obtain
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Fig. 32. The 2D joint posterior distribution betweenNe↵ and
Yp with both parameters varying freely, determined from the
Planck+WP+highL likelihood. The colour of each sample in
Markov chain indicates the associated value of ✓d/✓s. The Ne↵-
Yp relation from the BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with Yp > 0.294 is highlighted in gray delineating the re-
gion of the plot exceeding the 2� upper limit of the recent mea-
surement of initial Solar helium abundance (Serenelli & Basu,
2010).

is thus an approximate degeneracy between these two parame-
ters. It can be partially broken by the phase shift of the acoustic
oscillations that arises due to the free streaming of the neutri-
nos (Bashinsky & Seljak, 2004). The other, less important de-
generacy breaking e↵ect, is the early ISW e↵ect discussed by
Hou et al. (2011).

The joint posterior distribution between Ne↵ and Yp from the
Planck+WP+highL likelihood is shown in Figure 32 with the
colour of each MCMC sample coding the value of ✓d/✓s = rd/rs.
The major constraint on Ne↵ and Yp comes from the precise mea-
surement of this ratio, leaving the degeneracy along the constant
✓d/✓s direction. The relation between Ne↵ and Yp from BBN
theory is shown by the dashed curve31. The standard BBN pre-
diction with Ne↵ = 3.046 is contained within the 68% confi-
dence region. The gray region is for Yp > 0.294 which is the 2�
conservative upper bound on the primordial helium abundance
from (Serenelli & Basu, 2010). Most of the samples are consis-
tent with this bound. The inferred estimates of Ne↵ and Yp from
the Planck+WP+HighL data are

Ne↵ = 3.33+0.59
�0.83, (68% CL), (89a)

Yp = 0.254+0.041
�0.033. (68% CL). (89b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓d/✓s. Instead, it is constrained due, at least in
part, to the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As shown in Hou et al. (2012b), this e↵ect
explains the observed correlation between Ne↵ and ✓s. This cor-
relation is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵
model is also plotted in the figure showing that the Ne↵-Yp de-
generacy makes the phase shift e↵ect much more significant.

31For constant Ne↵ , the variation due to the uncertanty of the baryon
density is too small to show given the thickness of the curve.

Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s
from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models,
using Planck+WL+HighL data.

6.5. Dark Energy Constraints

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
The most prosaic explanation is that dark energy is a cosmo-
logical constant. An alternative is dynamical dark energy mod-
els (Wetterich, 1988; Ratra & Peebles, 1988), usually based on
a scalar field. In the simplest models the field is very light, has a
canonical kinetic energy term and is minimally coupled to grav-
ity. In such models the dark energy speed of sound equals the
speed of light and it has zero anisotropic stress. It thus con-
tributes very little to clustering. We shall only consider such
models in the following.

A simple way to parametrize dark energy is through its equa-
tion of state w ⌘ p/⇢ (Turner & White, 1997). A cosmolog-
ical constant has w ⌘ �1 while scalar field models typically
have time varying w with w � �1. The analysis performed here
is based on the “parameterized post-Friedmann” (PPF) frame-
work of Hu & Sawicki (2007) and Hu (2008) as implemented
in CAMB (Fang et al., 2008b,a) and discussed earlier in Sect. 2.
This allows us to investigate both regions of parameter space in
which w is less than minus one and models for which w changes
in time.

To begin we plot in Fig. 34 the marginalized posterior prob-
abilities for models with w =constant. For these runs we have
taken a flat prior on w from �3 to �0.3. (Note that adding in
high-` data, not illustrated, results in little change to the poste-
riors.) As expected, Planck alone does not strongly constrain w,
due to the degeneracy of this parameter with the Hubble expan-
sion. We can then attempt to break the degeneracy by combin-
ing Planck with other datasets. Adding in BAO data tightens the
posterior probability, giving

w = �1.13 ± 0.24 (95%,Planck +WP + BAO), (90)

in good agreement with the ⇤CDM model. Using supernovae
data leads to the stronger constraints

w = �1.09 ± 0.17 (95%,Planck +WP + Union2.1), (91)
w = �1.13+0.13

�0.14 (95%,Planck +WP + SNLS), (92)
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Fig. 32. The 2D joint posterior distribution betweenNe↵ and
Yp with both parameters varying freely, determined from the
Planck+WP+highL likelihood. The colour of each sample in
Markov chain indicates the associated value of ✓d/✓s. The Ne↵-
Yp relation from the BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with Yp > 0.294 is highlighted in gray delineating the re-
gion of the plot exceeding the 2� upper limit of the recent mea-
surement of initial Solar helium abundance (Serenelli & Basu,
2010).

is thus an approximate degeneracy between these two parame-
ters. It can be partially broken by the phase shift of the acoustic
oscillations that arises due to the free streaming of the neutri-
nos (Bashinsky & Seljak, 2004). The other, less important de-
generacy breaking e↵ect, is the early ISW e↵ect discussed by
Hou et al. (2011).

The joint posterior distribution between Ne↵ and Yp from the
Planck+WP+highL likelihood is shown in Figure 32 with the
colour of each MCMC sample coding the value of ✓d/✓s = rd/rs.
The major constraint on Ne↵ and Yp comes from the precise mea-
surement of this ratio, leaving the degeneracy along the constant
✓d/✓s direction. The relation between Ne↵ and Yp from BBN
theory is shown by the dashed curve31. The standard BBN pre-
diction with Ne↵ = 3.046 is contained within the 68% confi-
dence region. The gray region is for Yp > 0.294 which is the 2�
conservative upper bound on the primordial helium abundance
from (Serenelli & Basu, 2010). Most of the samples are consis-
tent with this bound. The inferred estimates of Ne↵ and Yp from
the Planck+WP+HighL data are

Ne↵ = 3.33+0.59
�0.83, (68% CL), (89a)

Yp = 0.254+0.041
�0.033. (68% CL). (89b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓d/✓s. Instead, it is constrained due, at least in
part, to the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As shown in Hou et al. (2012b), this e↵ect
explains the observed correlation between Ne↵ and ✓s. This cor-
relation is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵
model is also plotted in the figure showing that the Ne↵-Yp de-
generacy makes the phase shift e↵ect much more significant.

31For constant Ne↵ , the variation due to the uncertanty of the baryon
density is too small to show given the thickness of the curve.

Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s
from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models,
using Planck+WL+HighL data.

6.5. Dark Energy Constraints

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
The most prosaic explanation is that dark energy is a cosmo-
logical constant. An alternative is dynamical dark energy mod-
els (Wetterich, 1988; Ratra & Peebles, 1988), usually based on
a scalar field. In the simplest models the field is very light, has a
canonical kinetic energy term and is minimally coupled to grav-
ity. In such models the dark energy speed of sound equals the
speed of light and it has zero anisotropic stress. It thus con-
tributes very little to clustering. We shall only consider such
models in the following.

A simple way to parametrize dark energy is through its equa-
tion of state w ⌘ p/⇢ (Turner & White, 1997). A cosmolog-
ical constant has w ⌘ �1 while scalar field models typically
have time varying w with w � �1. The analysis performed here
is based on the “parameterized post-Friedmann” (PPF) frame-
work of Hu & Sawicki (2007) and Hu (2008) as implemented
in CAMB (Fang et al., 2008b,a) and discussed earlier in Sect. 2.
This allows us to investigate both regions of parameter space in
which w is less than minus one and models for which w changes
in time.

To begin we plot in Fig. 34 the marginalized posterior prob-
abilities for models with w =constant. For these runs we have
taken a flat prior on w from �3 to �0.3. (Note that adding in
high-` data, not illustrated, results in little change to the poste-
riors.) As expected, Planck alone does not strongly constrain w,
due to the degeneracy of this parameter with the Hubble expan-
sion. We can then attempt to break the degeneracy by combin-
ing Planck with other datasets. Adding in BAO data tightens the
posterior probability, giving

w = �1.13 ± 0.24 (95%,Planck +WP + BAO), (90)

in good agreement with the ⇤CDM model. Using supernovae
data leads to the stronger constraints

w = �1.09 ± 0.17 (95%,Planck +WP + Union2.1), (91)
w = �1.13+0.13

�0.14 (95%,Planck +WP + SNLS), (92)
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Fig. 34. Plot indicating marginalized posterior probabilities for
the dark energy equation-of-state parameter w (assumed con-
stant), for the indicated combinations of data sets. A flat prior
on w from �3 to �0.3 was assumed. The dashed grey line indi-
cates the “cosmological constant” solution.

still basically consistent with a cosmological constant, though
SNLS does lead to a slightly lower value of w than Union2.1.
If instead we combine Planck+WP with HST measurements of
H0, the di↵erence between the values of H0 preferred by CMB
and HST reflects itself in the joint constraint of

w = �1.24+0.18
�0.19 (95%,Planck +WP + HST), (93)

which is in tension with w = �1.
If w , �1 then it is likely to change with time. In order to in-

vestigate this we consider a linear model, w(a) = w0 +wa(1� a),
where w0 is the value of the equation of state today and wa deter-
mines how the equation of state evolves away from w0 near the
present epoch (Chevallier & Polarski, 2001; Linder, 2003). This
parametrization captures the low-redshift behaviour of our mod-
els (light minimally-coupled scalar fields) as well as many others
as long as they do not contribute significantly to the total energy
density at early times. The dynamical evolution of w(a) can lead
to distinctive imprints in the CMB (Caldwell et al., 1998) which
would show up in the Planck data.

In Fig. 35 we plot contours of the joint posterior probabilities
for w0 and wa using Planck +WP+BAO data. We use indepen-
dent flat priors of �3 < w0 < �0.3 and �2 < wa < 2. The
points are coloured by the value of H0, which shows a clear
variation with w0 and wa. The “cosmological constant” point
(w0,wa) = (�1, 0) lies within the 1� contour and the marginal-
ized posteriors for w0 and wa are

w0 = �1.04+0.72
�0.69 (95%,Planck +WP + BAO), (94)

wa < 1.32 (95%,Planck +WP + BAO). (95)

Including the H0 measurement from HST moves (w0,wa)
slightly away from a cosmological constant, but the constraints
are still consistent with ⇤CDM at 2�.

Fig. 36 shows likelihood contours for the same set of (w0,wa)
parameters, now adding SNe data to Planck. As discussed in de-
tail in Sect. 5, there is a dependence of the base parameters on
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Fig. 35. Plot illustrating the joint posterior for w0 and wa
for Planck, WMAP-polarization- and BAO data, marginalizing
over other parameters. The contours are set at 68% and 95%.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
were assumed. The colour of the scattered points indicates the
distribution of the Hubble parameter H0. Dashed grey lines guide
the eye to the “cosmological constant” solution.
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Fig. 36. Plot illustrating the joint posterior for w0 and wa,
marginalizing over other parameters, for di↵erent choices of ad-
ditional data to Planck and WMAP-polarization. Contour levels
are set at 68% and 95%. The grey contours use BAO. The red
contours use Union2.1 supernovae data. The blue contours use
SNLS supernovae data. Dashed grey lines guide the eye to the
“cosmological constant” solution.

the choice of dataset used for the SNe, and this continues with
the dark energy parameters. The results for Planck+Union2.1 are
in better agreement with a cosmological constant than those for
Planck+SNLS. We remark that the variations in the constraints
on dark energy parameters using di↵erent combinations of data
sets might be due to unmodelled systematics in the analysis, the
potential presence of which have been discussed in Sects. 5.3
and 5.4.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe at
early times. Such Early Dark Energy (EDE; Wetterich, 2004)
models may be very close to ⇤CDM recently but have a nonzero
dark energy density fraction, ⌦e, at early times. Such models
complement the (w0,wa) analysis by investigating how much
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► Mild tension for w<-1 but not 
significant 

► With variable w(a) similar conclusion

Wednesday, 20 March 13

Parameterise eos:

Planck alone weak constraints on DE because of degeneracy of w with H0: 

Break with other probes including lensing, SN, BAO ... 

Example - if assume wa = 0, 95% CL

How should we parameterise w?

Planck Collaboration: Cosmological parameters

Fig. 27. Samples from the distribution of the dark energy pa-
rameters w0 and wa using Planck TT+lowP+BAO+JLA data,
colour-coded by the value of the Hubble parameter H0. Contours
show the corresponding 68 % and 95 % limits. Dashed grey lines
intersect at the point in parameter space corresponding to a cos-
mological constant.

This constraint is unchanged at the quoted precision if we add
the JLA supernovae data and the H0 prior of Eq. (30).

Figure 26 illustrates these results in the ⌦m–⌦⇤ plane. We
adopt Eq. (50) as our most reliable constraint on spatial curva-
ture. Our Universe appears to be spatially flat to an accuracy of
0.5%.

6.3. Dark energy

The physical explanation for the observed accelerated expansion
of the Universe is currently not known. In standard ⇤CDM the
acceleration is provided by a cosmological constant satisfying an
equation of state w ⌘ pDE/⇢DE = �1. However, there are many
possible alternatives, typically described either in terms of extra
degrees of freedom associated with scalar fields or modifications
of general relativity on cosmological scales (for reviews see e.g.,
Copeland et al. 2006; Tsujikawa 2010). A detailed study of these
models and the constraints imposed by Planck and other data is
presented in a separate paper, Planck Collaboration XIV (2015).

Here we will limit ourselves to the most basic extensions
of ⇤CDM, which can be phenomenologically described in
terms of the equation of state parameter w alone. Specifically
we will use the camb implementation of the “parameterized
post-Friedmann” (PPF) framework of Hu & Sawicki (2007) and
Fang et al. (2008) to test whether there is any evidence that w
varies with time. This framework aims to recover the behaviour
of canonical (i.e., those with a standard kinetic term) scalar field
cosmologies minimally coupled to gravity when w � �1, and
accurately approximates them for values w ⇡ �1. In these mod-
els the speed of sound is equal to the speed of light so that the
clustering of the dark energy inside the horizon is strongly sup-
pressed. The advantage of using the PPF formalism is that it is
possible to study the “phantom domain”, w < �1, including tran-
sitions across the “phantom barrier”, w = �1, which is not pos-
sible for canonical scalar fields.

The CMB temperature data alone does not strongly constrain
w, because of a strong geometrical degeneracy even for spatially-
flat models. From Planck we find

w = �1.54+0.62
�0.50 (95%,Planck TT+lowP), (51)

i.e., almost a 2� shift into the phantom domain. This is partly,
but not entirely, a parameter volume e↵ect, with the average ef-
fective �2 improving by h��2i ⇡ 2 compared to base ⇤CDM.
This is consistent with the preference for a higher lensing am-
plitude discussed in Sect. 5.1.2, improving the fit in the w < �1
region, where the lensing smoothing amplitude becomes slightly
larger. However, the lower limit in Eq. (51) is largely determined
by the (arbitrary) prior H0 < 100 km s�1Mpc�1, chosen for the
Hubble parameter. Much of the posterior volume in the phan-
tom region is associated with extreme values for cosmological
parameters,which are excluded by other astrophysical data. The
mild tension with base ⇤CDM disappears as we add more data
that break the geometrical degeneracy. Adding Planck lensing
and BAO, JLA and H0 (“ext”) gives the 95 % constraints:

w = �1.023+0.091
�0.096 Planck TT+lowP+ext ; (52a)

w = �1.006+0.085
�0.091 Planck TT+lowP+lensing+ext ; (52b)

w = �1.019+0.075
�0.080 Planck TT,TE,EE+lowP+lensing+ext .

(52c)

The addition of Planck lensing, or using the full Planck tem-
perature+polarization likelihood together with the BAO, JLA,
and H0 data does not substantially improve the constraint of
Eq. (52a). All of these data set combinations are compatible with
the base ⇤CDM value of w = �1. In PCP13, we conservatively
quoted w = �1.13+0.24

�0.25, based on combining Planck with BAO,
as our most reliable limit on w. The errors in Eqs. (52a)–(52c) are
substantially smaller, mainly because of the addition of the JLA
SNe data, which o↵er a sensitive probe of the dark energy equa-
tion of state at z <⇠ 1. In PCP13, the addition of the SNLS SNe
data pulled w into the phantom domain at the 2� level, reflecting
the tension between the SNLS sample and the Planck 2013 base
⇤CDM parameters. As noted in Sect. 5.3, this discrepancy is no
longer present, following improved photometric calibrations of
the SNe data in the JLA sample. One consequence of this is the
tightening of the errors in Eqs. (52a)–(52c) around the ⇤CDM
value w = �1 when we combine the JLA sample with Planck.

If w di↵ers from �1, it is likely to change with time. We
consider here the case of a Taylor expansion of w at first order in
the scale factor, parameterized by

w = w0 + (1 � a)wa. (53)

More complex models of dynamical dark energy are discussed
in Planck Collaboration XIV (2015). Figure 27 shows the 2D
marginalized posterior distribution for w0 and wa for the com-
bination Planck+BAO+JLA. The JLA SNe data are again cru-
cial in breaking the geometrical degeneracy at low redshift and
with these data we find no evidence for a departure from the
base ⇤CDM cosmology. The points in Fig. 27 show samples
from these chains colour-coded by the value of H0. From these
MCMC chains, we find H0 = (68.2 ± 1.1) km s�1Mpc�1. Much
higher values of H0 would favour the phantom regime, w < �1.

As pointed out in Sects. 5.5.2 and 5.6 the CFHTLenS weak
lensing data are in tension with the Planck base ⇤CDM parame-
ters. Examples of this tension can be seen in investigations of
dark energy and modified gravity, since some of these mod-
els can modify the growth rate of fluctuations from the base
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Fig. 28. Marginalized posterior distributions for (w0,wa) for var-
ious data combinations. We show Planck TT+lowP in combi-
nation with BAO, JLA, H0 (“ext”), and two data combinations
which add the CFHTLenS data with ultra-conservative cuts as
described in the text (denoted “WL”). Dashed grey lines show
the parameter values corresponding to a cosmological constant.

⇤CDM predictions. This tension can be seen even in the sim-
ple model of Eq. (53). The green regions in Fig. 28 show 68 %
and 95 % contours in the w0–wa plane for Planck TT+lowP com-
bined with the CFHTLenS H13 data. In this example, we have
applied “ultra-conservative” cuts, excluding ⇠� entirely and ex-
cluding measurements with ✓ < 170 in ⇠+ for all tomographic
redshift bins. As discussed in Planck Collaboration XIV (2015),
with these cuts the CFHTLenS data are insensitive to modelling
the nonlinear evolution of the power spectrum, but this reduc-
tion in sensitivity comes at the expense of reducing the statistical
power of the weak lensing data. Nevertheless, Fig. 28 shows that
the combination of Planck+CFHTLenS pulls the contours into
the phantom domain and is discrepant with base⇤CDM at about
the 2� level. The Planck+CFHTLenS data also favours a high
value of H0. If we add the (relatively weak) H0 prior of Eq. (30),
the contours (shown in cyan) in Fig. 28 shift towards w = �1.
It therefore seems unlikely that the tension between Planck and
CFHTLenS can be resolved by allowing a time-variable equa-
tion of state for dark energy.

A much more extensive investigation of models of dark
energy and also models of modified gravity can be found in
Planck Collaboration XIV (2015). The main conclusions of that
analysis are as follows:

• an investigation of more general time-variations of the equa-
tion of state shows a high degree of consistency with w = �1;
• a study of several dark energy and modified gravity models

either finds compatibility with base⇤CDM, or mild tensions,
which are driven mainly by external data sets.

6.4. Neutrino physics and constraints on relativistic
components

In the following subsections, we update Planck constraints on
the mass of standard (active) neutrinos, additional relativistic de-

grees of freedom, models with a combination of the two, and
models with massive sterile neutrinos. In each subsection we
emphasize the Planck-only constraint, and the implications of
the Planck result for late-time cosmological parameters mea-
sured from other observations. We then give a brief discussion of
tensions between Planck and some discordant external data, and
assess whether any of these model extensions can help to resolve
them. Finally we provide constraints on neutrino interactions.

6.4.1. Constraints on the total mass of active neutrinos

Detection of neutrino oscillations has proved that neutrinos have
mass (see e.g., Lesgourgues & Pastor 2006, for a review). The
Planck base ⇤CDM model assumes a normal mass hierarchy
with

P
m⌫ ⇡ 0.06 eV (dominated by the heaviest neutrino mass

eigenstate) but there are other possibilities including a degen-
erate hierarchy with

P
m⌫ >⇠ 0.1 eV. At this time there are no

compelling theoretical reasons to prefer strongly any of these
possibilities, so allowing for larger neutrino masses is perhaps
one of the most well-motivated extensions to base ⇤CDM con-
sidered in this paper. There has also been significant interest
recently in larger neutrino masses as a possible way to lower
�8, the late-time fluctuation amplitude, and thereby reconcile
Planck with weak lensing measurements and the abundance of
rich clusters (see Sects. 5.5 and 5.6). Though model dependent,
neutrino mass constraints from cosmology are already signifi-
cantly stronger than those from tritium beta decay experiments
(see e.g., Drexlin et al. 2013).

Here we give constraints assuming three species of degener-
ate massive neutrinos, neglecting the small di↵erences in mass
expected from the observed mass splittings. At the level of sensi-
tivity of Planck this is an accurate approximation, but note that it
does not quite match continuously on to the base ⇤CDM model
(which assumes two massless and one massive neutrino withP

m⌫ = 0.06 eV). We assume that the neutrino mass is con-
stant, and that the distribution function is Fermi-Dirac with zero
chemical potential.

Masses well below 1 eV have only a mild e↵ect on the shape
of the CMB power spectra, since they became non-relativistic af-
ter recombination. The e↵ect on the background cosmology can
be compensated by changes in H0 to ensure the same observed
acoustic peak scale ✓⇤. There is, however, some sensitivity of
the CMB anisotropies to neutrino masses as the neutrinos start
to become less relativistic at recombination (modifying the early
ISW e↵ect), and from the late-time e↵ect of lensing on the power
spectrum. The Planck power spectrum (95 %) constraints are
X

m⌫ < 0.72 eV Planck TT+lowP ; (54a)
X

m⌫ < 0.21 eV Planck TT+lowP+BAO ; (54b)
X

m⌫ < 0.49 eV Planck TT,TE,EE+lowP ; (54c)
X

m⌫ < 0.17 eV Planck TT,TE,EE+lowP+BAO . (54d)

The Planck TT+lowP constraint has a broad tail to high masses,
as shown in Fig. 29, which also illustrates the acoustic scale
degeneracy with H0. Larger masses imply a lower �8 through
the e↵ects of neutrino free streaming on structure formation,
but the larger masses also require a lower Hubble constant,
leading to possible tensions with direct measurements of H0.
Masses below about 0.4 eV can provide an acceptable fit to
the direct H0 measurements, and adding the BAO data helps
to break the acoustic scale degeneracy and tightens the con-
straint on

P
m⌫ substantially. Adding Planck polarization data at
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The acceleration has not been forever -- pinning down the 
turnover will provide a very useful piece of information.

Help address cosmic coincidence problem ! A region 
hopefully DES and EUCLID will be able to probe

Huterer 2010
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Approaches to Dark Energy:
! A true cosmological constant -- but why this value? 
! Time dependent solutions arising out of evolving scalar fields 

-- Quintessence/K-essence. 
! Modifications of Einstein gravity leading to acceleration today. 
! Anthropic arguments. 
! Perhaps GR but Universe is inhomogeneous. 
! Hiding the cosmological constant -- its there all the time but 

just doesn’t gravitate 
! Yet to be proposed ...
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String - theory -- where are the realistic models?
`No go’ theorem: forbids cosmic acceleration in cosmological solutions 

arising from compactification of pure SUGR models where internal space is time-
independent, non-singular compact manifold without boundary --[Gibbons] 

Avoid no-go theorem by relaxing conditions of the theorem.
1. Allow internal space to be time-dependent scalar fields (radion) 

2. Brane world set up require uplifting terms to achieve de Sitter vacua hence accn
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s
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V

100 150 200 250 300 350 400
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0.2

0.4

0.6

0.8

1

1.2

V

AdS minimum Metastable dS minimum

Example of stabilised scenario: Metastable de Sitter string vacua in TypeIIB string 
theory, based on stable highly warped IIB compactifications with NS and RR three-

form fluxes. [Kachru, Kallosh, Linde and Trivedi 2003] 

Metastable minima arises from adding positive energy of anti-D3 brane in warped 
Calabi-Yau space.
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The String Landscape approach
Type IIB String theory compactified from 10 dimensions to 4.  

Internal dimensions stabilised by fluxes. Assumes natural AdS vacuum 
uplifted to de Sitter vacuum through additional fluxes ! 

Many many vacua ~ 10500 ! Typical separation ~ 10-500 Λpl 

Assume randomly distributed, tunnelling allowed between vacua --> 
separate universes .  

Anthropic : Galaxies require vacua < 10-118 Λ pl [Weinberg] Most likely to 
find values not equal to zero! 

Landscape gives a realisation of the multiverse picture.  

There isn’t one true vacuum but many so that makes it almost impossible to find 
our vacuum in such a Universe which is really a multiverse. 

So how can we hope to understand or predict why we have our particular particle 
content and couplings when there are so many choices in different parts of the 

universe, none of them special ?
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SUSY large extra dimensions and Lambda - Burgess et al 2013, 2015
Soln to 6D Einstein-Maxwell-scalar with chiral gauged sugr. 

In more than 4D, the 4D vac energy can curve the extra dimensions. 

Proposal: Physics is 6D above 0.01eV scale with SUSY bulk. We live in 4D 
brane with 2 extra dim. 4D vac energy cancelled by Bulk contributions - 

quintessence like potential generated by Qu corrections leading to late time accn. 

Sequestering Lambda - Kaloper and Padilla 2013,14,15 

IR soln to the problem - initial version adds a global term to Einstein action

Our proposal 

Introduce global dynamical variables Λ

S =
�

d4x
�
�g

�
M2

pl

2
R� �� �4L(��2gµ� , �)

�

, λ

+�

�
�

�4µ4

�

λ sets the hierarchy between matter scales and Mpl

mphys

Mpl
=

�m

Mpl Padilla 2015
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Equations of motion

Tµ
⌫ = �Vvac�

µ
⌫ + ⌧µ

⌫

M2
plG

µ
⌫ = ⌧µ

⌫ � 1
4
�µ

⌫h⌧↵
↵i

Eq of motion: 
Equations of motion

⇤ =
1
4
hT↵

↵i, hQi =
R

d

4
xQ

p
gR

d

4
x

p
g

⇤ equation :

� equation :

gµ⌫ equation : M2
plG

µ
⌫ = �⇤�µ

⌫ + Tµ
⌫

where: spacetime volume must be finite 

Padilla 2015

M4
plG

µ
� = �1

4
���

� ��µ
� + �µ

�

Residual cosmological constant �eff =
1
4
���

� �

Vacuum energy drops out at each and every loop order 
!

No hidden equations — this is everything!Universe has finite spacetime volume

�0

�4µ4
=

Z
d4pg

space-time volume must be finite or else �! 0

mphys

Mpl
=

�m

Mpl

if �! 0 particle masses go to zero

Universe has finite spacetime volume

Ends in a crunch
w=-1 is transient 
Ωk>0

COLLAPSE TRIGGER DARK ENERGY=

Linear potential V=m3φ        form protected by shift symmetry, 
size of m3 technically natural

collapse triggered by dominating dark energy
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Self tuning - with the Fab Four 

In GR the vacuum energy gravitates, and the theoretical estimate suggests that it 
gravitates too much.  

Basic idea is to use self tuning to prevent the vacuum energy gravitating at all.  

The cosmological constant is there all the time but is being dealt with by the 
evolving scalar field.

with Charmousis, Padilla and Saffin 

PRL 108 (2012) 051101; PRD 85 (2012) 104040 

Most general scalar-tensor theory with second order field equations:
[G.W. Horndeski, Int. Jour. Theor. Phys. 10 (1974) 363-384]

The action which leads to required self tuning solutions :

In other words it can be seen to reside in terms of the four arbitrary potential 
functions of ϕ coupled to the curvature terms.  

Covers most scalar field related modified gravity models studied to date.



N = ln(a); x = H↵�0
; yn = H�nVn; � =

p
�k

Ha

�n = H�n
V 0
n

Vn
; h = ln(H)

0 µn =

VnV
00
n

(V 0
n)

2

For µ = const ! V ⇠ �
1

1�µ , eA�

x0
= . . . , y0 = . . . ,�0

= . . . , µ0
= . . . ,�0

= . . . , h0
= ...17

In general system is complicated to solve.  

Try dynamical systems approach to find scaling solutions.

Possible to have a self tuning `classical’ solution in which the system adjusts itself to the 
Minkowski vacuum irrespective of the magnitude of the cosmological constant and 

whether it changes. It relies on breaking the assumption of Poincare invariance demanded 
by Weinberg in his original no-go theorem. In particular we have to have the scalar field 

evolving in time. 
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fab four cosmology
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ȧ2

“matter”“radiation”

a ⇠ tp ⇠ t�1/h

q = �p(p� 1)

p2
= �(1 + h)

Thursday, 28 February 2013Appleby et al JCAP 1210 (2012) 060; Amendola et al PRD 87 (2013) 2, 023501; Martin-Moruno et al PRD 91 (2015) 8, 
084029; Babichev et al arXiv:1507.05942 [gr-qc] , 

See also:  
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Particle physics inspired models? 
Pseudo-Goldstone Bosons -- approx sym φ --> φ + const.  

Leads to naturally small masses, naturally small couplings

Barbieri et al

V (⇥) = �4(1 + cos(⇥/Fa))
Axions could be useful for strong CP problem, dark matter and dark 

energy.



Evac = (10�3 eV)4 ⇥ maxion � 10�33 eV

ma =
�2

QCD

Fa
; Fa � decay constant
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Axions could be useful for strong CP problem, dark matter and dark 
energy.

Strong CP problem intro axion : 

PQ axion ruled out but invisible 
axion still allowed: 109 GeV � Fa � 1012 GeV

String theory has lots of antisymmetric tensor fields in 10d, hence 
many light axion candidates. 

Can have  Fa ~ 1017-1018 GeV

Sun stability CDM constraint

Quintessential axion -- dark energy candidate [Kim & Nilles]. 

Requires Fa ~ 1018 GeV which can give:

Because axion is pseudoscalar -- mass is protected, hence avoids fifth 
force constraints 



21

Slowly rolling scalar fields -- Quintessence

Dashed line - radiation 
and matter 

Solid line - Quintessence 
enters tracking regime (4) 
and dominates (5)

Attractors make initial conditions less important 
Nunes

Peebles and Ratra; Wetterich; 
Ferreira and Joyce 

Zlatev, Wang and Steinhardt

As of 14 Mar 2013, can really use this language !
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Scaling for wide range of i.c.

Fine tuning: 

Mass:
Generic issue Fifth force - 

require screening mechanism!



23

1. Chameleon fields [Khoury and Weltman (2003) …]

Non-minimal coupling of scalar to matter in order to avoid fifth force type 
constraints on Quintessence models: the effective mass of the field 
depends on the local matter density, so it is massive in high density 

regions and light (m~H) in low density regions (cosmological scales). 

2. K-essence [Armendariz-Picon et al …]

Scalar fields with non-canonical kinetic terms. Includes models with 
derivative self-couplings which become important in vicinity of 

massive sources.  The strong coupling boosts the kinetic terms so 
after canonical normalisation the coupling of fluctuations to matter is 

weakened -- screening via Vainshtein mechanism

Similar fine tuning to Quintessence -- vital in brane-world modifications of 
gravity, massive gravity, degravitation models, DBI model, Gallileons, ....

3. Symmetron fields [Hinterbichler and Khoury 2010 ...]

vev of scalar field depends on local mass density: vev large in low density 
regions and small in high density regions. Also coupling of scalar to matter 

is prop to vev, so couples with grav strength in low density regions but 
decoupled and screened in high density regions.     
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Ex: Including neutrinos -- 2 distinct DM families -- resolve coincidence problem 
Amendola et al (2007)

Depending on the coupling, find that the neutrino mass grows at late times and this 
triggers a transition to almost static dark energy. 

Trigger scale set by time when neutrinos become non-rel 

mν

4. Interacting Dark Energy  
[Kodama & Sasaki (1985), Wetterich (1995), Amendola (2000) + many others… ]



⇥̈c +

�
2H � 2�

⇤̇

M

⇥
⇥̇c �

3
2
H2[(1 + 2�2)�c⇥c + �b⇥b] = 0
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Perturbations in Interacting Dark Energy Models [Baldi et al (2008), Tarrant et al 
(2010)]

Perturb everything linearly : Matter fluid example

modified 
grav 

interaction 
extra 

friction 
vary DM 
particle 

mass 

Include in simulations of structure formation : GADGET [Springel (2005)]

Density decreases as coupling β increases

Halo mass function modified. 

Halos remain well fit by NFW profile. 

Density decreases compared to ΛCDM as coupling β 
increases. 

Scale dep bias develops from fifth force acting between 
CDM particles. enhanced as go from linear to smaller non-

linear scales.  

Still early days -- but this is where I think there should 
be a great deal of development (Puchwein et al 2013, 

Barreira et al 2014)
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Dark Energy Effects 

Interactions with standard model particles inevitable even if indirect.  

Light scalar fields that interact with std model fields mediate fifth forces 

but we dont see any long range fifth forces on earth or in the solar 
system. 

Screening ! 

Dark energy changes the way photons propagate through B fields. The 
polarised photon can fluctuate into a DE scalar particle leading to a 
modification of apparent polarisation and luminosity of the sources. 

Two tests [Burrage, Davis, Shaw 2008,2009]  

Look for evidence of DE through changes in the scatter of luminosities of  
high energy sources. 

Look for evidence of correlation between poln and freq of starlight . 
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Dark Energy Direct Detection Experiment [Burrage, EC, Hinds 2015,Hamilton 
et al 2015] 

Atom Interferometry 

Idea: Individual atoms in a high vacuum chamber are too small to screen the 
chameleon field and so are very sensitive to it - can detect it with high 

sensitivity. Can use atom interferometry to measure the chameleon force - or 
more likely constrain the parameters !

r2� = �⇤2

�2
+

⇢

M

Sph source A and test object B 
near middle of chamber 

experience force between them 
- usually ƛ<<1 in cosmology 
but for atom ƛ=1 - reduced 

suppression
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Figure 2: Avaliable parameter space ⇤�M for the chameleon. Atomic deflection experiments18, 19

exclude the top left region above the dotted line. The contour plot shows the acceleration of a
rubidium atom in the vacuum chamber of Fig. 1, due to the chameleon force outside a sphere A
having �A < 1. Here we take RA = 1 cm and normalise the acceleration to the g of free fall on
earth. The heavy solid line shows how far a first atom interferometer experiment can penetrate into
this parameter space, while the heavy dashed line shows how far one can expect the measurement
to be extended with attention to systematic errors. For ⇤ ' 1meV, as suggested by the Planck
survey8, atom interferometry should be able to detect chameleon physics up to the mass scale
M ' 2⇥ 10

�2MP = 5⇥ 10

16 GeV.

being insignificant in comparison. Above the dashed line in Fig. 1, �B = 1 for a caesium atom.
The dotted line is for lithium atoms.

Atoms in high vacuum have already been used to measure gravitational forces with high
precision, e.g.16, 17, but with source masses that are outside the vacuum chamber. Because of the
intervening vacuum wall, the chameleon field within the chamber is essentially unaffected by the
external source, in close analogy with Faraday shielding in electrostatics, as we discuss more fully
in the supplementary material. Consequently, these experiments place no useful constraints on the
chameleon parameters.

By contrast, measurements of the van der Waals18–20 and Casimir-Polder21, 22 forces on in-
dividual atoms use macroscopic sources inside the vacuum. However, the more recent, and more
sensitive, measurements cannot detect the chameleon field because they use plane sources, which

4
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Any theory deviating from GR must do so at late times yet remain consistent with 
Solar System tests. Potential examples include: 

•f(R), f(G) gravity -- coupled to higher curv terms, changes the dynamical eqns for 
the spacetime metric. Need chameleon mechanism  [Starobinski 1980, Carroll et al 2003, ...]

• Modified source gravity -- gravity depends on nonlinear function of the energy. 

•  Gravity based on the existence of extra dimensions -- DGP gravity  

We live on a brane in an infinite extra dimension. Gravity is stronger in the bulk, 
and therefore wants to stick close to the brane -- looks locally four-dimensional.  

Tightly constrained -- both from theory [ghosts] and observations  

•  Scalar-tensor theories including higher order scalar-tensor lagrangians -- recent 
examples being Galileon models 

• Massive gravity - single massive graviton bounds m>O(1meV) from demand 
perturbative down to O(1)mm - too large to conform with GR at large distances

Modifying Gravity rather than looking for Dark Energy - non trivial

[Burrage et al 2013]
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Designer f (R) or f(G) models [Hu and Sawicki (2007), ...]

Construct a model to satisfy observational requirements: 

1. Mimic LCDM at high z as suggested by CMB 

2. Accelerate univ at low z 

3. Include enough dof to allow for variety of low z phenomena 

4. Include phenom of LCDM as limiting case.

Effective chameleon mechanism 
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1. We need to define properly theoretically predicted observables, or 
determine optimum ways to parameterise consistency tests (i.e. how 

should we parameterise w(z)?) 

2. Need to start including dynamical dark energy, interacting dark matter-
dark energy and modified gravity models in large scale simulations -

[Wyman et al 2013, Li et al 2013 Puchwein et al 2013, Jennings et al 2012, Barreira et al 2012, Brax et 
al 2013].  

3. Include the gastrophysics + star formation especially when 
considering baryonic effects in the non-linear regimes - `mud wrestling’.  

4. On the theoretical side, develop models that go beyond illustrative toy 
models. Extend Quintessential Axion models. Are there examples of 

actual Landscape predictions? De Sitter vaccua in string theory is non 
trivial. 

5. Recently massive gravity and galileon models have been developed 
which have been shown to be free of ghosts. What are their self-

acceleration and consistency properties? 

What should we do to help determine the nature of DE ?
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6. Will we be able to reconstruct the underlying Quintessence potential 
from observation?  

7. Will we ever be able to determine whether w≠-1 ? 

8. Look for alternatives, perhaps we can shield the CC from affecting 
the dynamics through self tuning-- The Fab Four  

9. Given the complexity (baroque nature ?) of some of the models 
compared to that of say Λ, should we be using Bayesian model 

selection criterion to help determine the relevance of any one model.   

Things are getting very exciting with DES beginning to take data and 
future Euclid missions, LSST, as well as proposed giant telescopes, 

GMT, ELT, SKA - travelling in new directions ! 



w(z)� wb(z) =
X

i

↵iei(z)

wb � baseline eos

ei � Fischer matrix eig modes
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What’s the best way to parameterise the DE eqn of state ? 

Important for surveys like DES, EUCLID, LSST

NonPC Caveats on PCs
• Principal component decomposition of w(z) shows many components

can in principle be measured (Euclid, LSST, WFirst)
• Yet even models like Albrecht-Skordis (oscillating w) are still 

dominated by first component - average w or pivot - plus 1-2 weaker
• Should a multidimensional parameterization be the basis for

optimizing an experiment?  

1. Principal components -  
[Mortonson,Hu 

and Huterer 
2011]

2.  w(z) 
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2

us to consider a completely free function w(z). As this
corresponds to an infinite number of new degrees of free-
dom, we have to simplify the problem. We use a physi-
cally motivated parametrisation where w = p/ρ is defined
by its present value, w0, its value at high redshift, wm,
the value of the scale factor where w changes between
these two values, at and the width of the transition, ∆.
Namely:

w(a) = w0 + (wm − w0)Γ(a, at, ∆) (1)

where Γ, the transition function, has the limits Γ(a =
0) = 1 and Γ(a = 1) = 0 and varies smoothly be-
tween these two limits in a way that depends on the
two parameters at and ∆ (see figure 1). Such a choice
has been shown to allow adequate treatment of generic
quintessence and to avoid the biasing problems inherent
in assuming that w is constant. Two choices for Γ have
been given in the literature [23, 26] as discussed in Ap-
pendix A. Here we use the form advocated in [26].

!
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FIG. 1: Schematic plot of the equation of state paratrisation
Eq. (1).

Using this general prescription has a profound advan-
tage in attempts to detect dark energy dynamics since,
unlike simpler parametrisations based on only one or
two variables, it can accurately describe both slowly and
rapidly varying equation of states [27]. Detecting dark
energy dynamics and distinguishing it from a cosmolog-
ical constant is difficult and is clear only when there are
rapid, late-time, changes in w [28], which then needs a
formalism capable of describing such rapid transitions.

In order to compute the CMB power spectra, we use a
modified version of the CMBfast Boltzmann solver [29].

This is a non-trivial step in the case where Γ changes
rapidly (such as in our best-fit model!). In fact using a
numerical method that is not able to track rapid transi-
tions can lead to errors significantly larger than the error
bars on the data, of order 5%, and consequently lead
to completely wrong results. Our tests are described in
detail in Appendix B and C.

Several degeneracies amongst the cosmological param-
eters prevent us from accurately constraining cosmologi-
cal models using CMB data only. Specific features of the

anisotropy power spectrum can provide information on
particular combinations of the cosmological parameters.
For instance the relative height of the Doppler peaks de-
pends on the baryon density and the scalar spectral in-
dex. In order to break such degeneracies it is necessary to
add external information. Since our goal is to constrain
the properties of the dark energy, in a flat geometry the
main limitation comes from the geometric degeneracy be-
tween w0, the dark energy density ΩDE and the Hubble
parameter h. This degeneracy can be broken by assum-
ing an HST prior on the value of h [30] or/and combining
the CMB with other data sets such as the matter power
spectrum measurements from the 2dF galaxy survey [31]
or the SN-Ia data. In our analysis we use the “gold” sub-
set of the recent compilation of supernova data of [25]
in addition to the WMAP TT and TE spectra. An im-
portant point which we want to stress here is that CMB
and SN data can be treated at a fundamental level with-
out any prior assumption on the underlying cosmological
model. For instance, this is the case for the matter power
spectrum data from galaxy surveys which implicitely as-
sumes a ΛCDM model when passing from redshift space
to real space. For this reason we add the 2dFGRS large
scale structure data only in order to check the stability
of our results. We also remark that the use of secondary
observables such as the age of the Universe, the size of
the sound horizon at the decoupling, the clustering am-
plitude σ8 (as quoted by the WMAP-team) or the growth
factor of matter density perturbations should not be used
without thought to infer constraints on the dark energy
since their quoted value is usually derived by implicitly
assuming a ΛCDM cosmology. This leads to biased re-
sults since these observables depend on the nature of the
dark energy [28, 32, 33]. In principle CMB constraints
can be easily added by using the position of the Doppler
peaks, which provide an estimate of the angular diameter
distance to the last scattering surface. But it is a well
known fact that pre-recombination effects can shift the
peaks from their true geometrical position [32].

The Integrated Sachs-Wolfe (ISW) effect also induces
an additional shift in the position of the first peak, in a
way that is strongly dependent on the evolution of the
dark energy equation of state and is generally larger than
in ΛCDM models [28]. Therefore a consistent dark en-
ergy data analysis of the CMB indeed requires the com-
putation of the CMB power spectrum (and TE cross-
correlation).

Each of our models is then characterised by the dark
energy parameters WDE = (w0, wm, at, ∆) and the cos-
mological parameters WC = (ΩDE , Ωbh2, h, nS, τ, As),
which are the dark energy density, the baryon density,
the Hubble parameter, the scalar spectral index, the op-
tical depth and the overall amplitude of the fluctuations
respectively. We therefore end up with ten parameters
which can be varied independently.

There is a remaining degeneracy in nS, τ and Ωbh2,
which allows the models to reach unphysically high values
of the baryon density and the reionisation optical depth.

allows for tracker like behaviour 
although very tight bounds 

emerging from Planck on allowed 
density of early dark energy

3.  w(ΩDE) 

good for dynamical DE such as 
Quintessence as long as monotonic 

evolution. 
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FIG. 5. The 2D 68% (dark shading) and 95% (light shad-
ing) marginalised contours in the w

e

|z=0

–w0

e

|z=0

plane for
the 1EXP and SUGRA quintessence models superimposed
upon the corresponding contours of the dark energy clock
parametrisation.

ever w
e

= 0. Many scalar field models of dark energy
possess scaling solutions on which the dark energy equa-
tion of state w

e

‘tracks’ that of the dominant background
component (see e.g. [29, 30]). In such models, mono-
tonicity of ⌦

e

would be spoiled as w
e

evolves through
the radiation and matter dominated eras and transitions
towards w

e

⇠ �1 today. In this paper, we have used
our parametrisation to probe the dynamics of dark en-
ergy at low redshifts, z = 0� 1.75. It is presumably safe
to assume that ⌦

e

remains monotonic over this redshift
range, since to break monotonicity between z = 0 and
z ⇠ 2 would require a rapidly varying w

e

, which is not
favoured by existing analysis [14, 23]. Hence, in our fit-
ting to data we imposed the hard prior w

e

(z) < 0 for
z = 0� 1.75.

To probe the high redshift behaviour of dark energy
this prior would need to be removed, since it would be un-
realistic to say with any sort of certainty that w

e

(z) < 0
throughout the entire cosmic history. Hence, to accom-
modate high redshift data the non–monotonicity of ⌦

e

would need to be accounted for. This could be achieved
by piece–wise parametrising w

e

in regions of monotonic
⌦

e

. For example, if radiation can be neglected, these re-
gions are defined by the roots of the polynomial w

e

(⌦
e

) =P
1

n w̃nŨn(⌦e

) = 0. If w
e

(⌦
e

) = w
0

+ w
1

⌦
e

and w
1

> 0,
then there would be two distinct regions: ⌦̇

e

> 0 for
⌦

e

< �w
0

/w
1

(I) and ⌦̇
e

< 0 for ⌦
e

> �w
0

/w
1

(II). One
would then write

w
e

(⌦
e

) =

(
w

(I)

0

+ w
(I)

1

⌦
e

, ⌦
e

< �w
0

w
1

w
(II)

0

+ w
(II)

1

⌦
e

, ⌦
e

> �w
0

w
1

(36)

and so there would be four free parameters in total. To
accommodate CMB data, radiation can not be neglected,
but such regions of monotonicity can still be defined: one
would need to compute the roots of Eq. (3) exactly, which

could be performed numerically.
Finally, it is interesting to make the connection be-

tween our parametrisation and the dark energy ‘flow pa-
rameter’

F ⌘ 1 + w
e

⌦
e

�2

, (37)

that was introduced in [45, 46] (see also [47]). Here,
� = �V�/V , where V (�) is the scalar field dark energy
potential and V� is the derivative of V with respect to
�. By considering general dark energy models where the
field either accelerates or decelerates down its potential
toward its minimum (dubbed ‘thawing’ or ‘freezing’ field
evolution [48]), the authors of [45] were able to demon-
strate that F remains nearly conserved until quite recent
times, z ⇡ 1 � 2, after which dark energy finally begins
to take over. This is despite w

e

, ⌦
e

and � all being dy-
namical. This constant nature of the flow parameter is a
direct consequence of the fact that the dark energy field
does not exist in a vacuum: instead it has been influenced
by the long periods of radiation and matter dominated
epochs prior to the current day.
If the parameter � is a constant, (as is the case for ex-

ponential potentials) or remains approximately constant,
then we have w

e

= �1 + F�2⌦
e

, which looks very much
like our dark energy clock parametrisation with w

0

= �1
and w

1

= F�2. This indicates that, so long as F re-
mains approximately constant throughout the long radi-
ation and matter dominated eras, then the behaviour of
a wide range of scalar field dark models should be well
captured by w

e

(⌦
e

) = w
0

+ w
1

⌦
e

.
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Appendix A: The Chebyshev Polynomials of the
Second Kind

The Chebyshev polynomials of the second kind are de-
fined by the recurrence relation

U
0

(x) = 1 , U
1

(x) = 2x ,

Un+1

(x) = 2xUn(x)� Un�1

(x) , (A1)

and obey the following orthogonality condition
Z

1

�1

Un(x)Um(x)
p

1� x2dx =
⇡

2
�nm . (A2)
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B. EDE 1

The first parametrization that we investigate numerically (EDE1) is the one proposed in [6] and tested in refs.[7–9].
The dependence of the dark energy fraction, ⌦de, on the scale parameter a is given by

⌦de(a) =
⌦

(0)
de � ⌦e(1� a�3w0

)

⌦

0
de + ⌦

0
ma3w0

+ ⌦e(1� a�3w0
). (5)

Eq. (5) uses three parameters, the present matter fraction ⌦m0, the early dark energy fraction ⌦e and the present
dark energy equation of state w0, with ⌦de0 = 1� ⌦m0. For any given function ⌦de(a) the scale dependent equation
of state w(a) obtains as a simple derivative [33]

w(a) = � 1

3[1� ⌦de(a)]

d ln⌦de

d ln a
+

aeq
3(a+ aeq)

, (6)

where aeq ⇠ 3200 is the scale factor at matter-radiation equality, while the energy density is given by

⇢de(a) =
⇢de0
a3

⌦de

⌦de0

⌦de � 1

⌦de0 � 1

⇣
1 +

aeq
a

⌘
1

1 + aeq
. (7)

C. EDE 2

The second parametrization (EDE2), that we propose here for the first time, reads as follows:

⌦de(a) =

⇢
⌦e a < ac ,
⌦de0

⌦de0+⌦m0a�3+⌦r0a�4 a � ac .
(8)

Here ac is determined by continuity at ac, such that (neglecting ⌦r0):

ac =


⌦e⌦m0

⌦de0(1� ⌦e)

�1/3
. (9)

In this way ⌦e is the only additional parameter, beyond ⌦m0. This is a minimal parametrization of EDE. Similar
to other two-parameter settings for dark energy, as the ones using ⌦m0 and w0, it is useful if data allow only for a
rough distinction of dynamical dark energy from ⇤CDM. This second parametrization considers a somewhat sharper
transition between a phase in which there is a constant ⌦e contribution and the epoch in which dark energy looks
close to a cosmological constant. We recall that in models of growing neutrino quintessence [3, 4, 31, 32] explain the
“why now” problem by a cosmological trigger event, namely neutrinos becoming non-relativistic; for such models one
typically finds a rather sharp transition between the two epochs.

D. EDE 3

For the EDE3-parametrization EDE becomes important only for a > ae. Beyond ⌦m0 it has two parameters, ⌦e

and ae, according to

⌦de(a) =

8
>>>><

>>>>:

⌦de0
⌦de0+⌦m0a�3+⌦r0a�4 a  ae

⌦e ae < a < ac

⌦de0
⌦de0+⌦m0a�3+⌦r0a�4 a > ac .

(10)

In this case, early dark energy is present in the time interval between ae < a < ac while outside this interval it behaves
as in ⇤CDM. In that interval, there is a non negligible EDE contribution, whose amount is parametrized by ⌦e. As
in EDE2, ac is fixed by the continuity condition, so that the parameters characterizing this case are (⌦e, ae), that is
to say how much EDE there is and how long its presence lasted. We note that for ae ⌧ ac one has ⌦de(a  ae) ⇡ 0.
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How early is early dark energy? [Pettorino,Amendola and Wetterich 2013]

Intro nice parameterisation of 
EDE which shows how CMB 
constraints depend on epoch 

when DE was non-negligible - 
the later it occurs the weaker the 

bounds.  

Ωe<0.05 if occurs for z<100 

Ωe<0.01 if  present at least 
scattering.  

EDE2 model

EDE in the CMB

Not really - heat map from 
yesterdays Champions League game, 

Chelsea v Maccabi Tel Aviv  
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Testing models - consider coupled dark energy-dark matter.  

Have seen provides a nice way to explain coincidence problem.  

What is most general phenomenological model we can construct?  

Three distinct classes of mixed models with couplings intro at the level 
of the action [Pourtsidou, Skordis , EC 2013] 

Coupled CDM/DE models

Consider Dark Energy (DE) coupled to Cold Dark Matter (c)
[e.g. Kodama & Sasaki ’84, Ma & Bertschinger ’95]

T (c) and T (DE) are not separately conserved:

rµT
(c)µ

⌫ = �rµT
(DE)µ

⌫ = J⌫ 6= 0

Various forms of coupling have been considered. Examples:

J⌫ / ⇢cr⌫� [Amendola ’00]

J⌫ / ⇢c u
(c)

⌫ [Valiviita et al ’08]

FRW background with J̄⌫ = (J̄
0

, J̄i) and linear perturbations
(�J

0

, �Ji). Note that J̄i = 0 because of isotropy. The CDM energy
density equation becomes

˙̄⇢
c

+ 3H⇢̄
c

= �J̄
0

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

With thanks to my collaborator Alkistis Pourtsidou for lending me some of the following slides.
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Using the fluid pull back formalism we consider the fluid/particle number density n.Fluids in General Relativity

The action for GR and a fluid is

S =
1

16⇡G

Z
d4x

p�gR�
Z

d4x
p�gf(n)

f(n) is (in principle) an arbitrary function, whose form determines
the equation of state and speed of sound of the fluid

For pressureless matter (CDM) f(n) / n

Stress-energy tensor is given by

Tµ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫

Can match ⇢, P to the fluid function f(n) as

) ⇢ = f, P = n
df

dn
� f

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

Coupled Lagrangian: general case

[AP, Skordis & Copeland (2013)]

We want to construct a model where the fluid with number density
n (e.g. CDM) is explicitly coupled to a DE field �

Invariants: Y = 1

2

(rµ�)2, Z = uµrµ�

Our general Lagrangian has the form

L = L(n, Y, Z,�)

Example: Usual quintessence has

L = Y + V (�) + f(n)

We can now consider di↵erent classes of theories by “breaking” the
general Lagrangian we constructed in di↵erent ways.
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Type 1 models.

Type 1

Type-1 models are classified via

L(n, Y, Z,�) = F (Y,�) + f(n,�)

f(n) = g(n)e↵(�)

Note there is no Z dependence.

These models describe a K-essence scalar field coupled to matter. If
F = Y + V (�), we describe coupled quintessence models.

Coupling current Jµ = �⇢ d↵(�)
d� rµ� [generalized Amendola model]

Choose ↵(�) = ↵
0

� with ↵
0

const and study observational
signatures in CMB and matter power spectra (modified CAMB code).

Note the evolution of CDM density: ⇢̄c = ⇢̄c,0a
�3e↵(�)
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Type 1

Type-1 models are classified via

L(n, Y, Z,�) = F (Y,�) + f(n,�)

f(n) = g(n)e↵(�)

Note there is no Z dependence.

These models describe a K-essence scalar field coupled to matter. If
F = Y + V (�), we describe coupled quintessence models.

Coupling current Jµ = �⇢ d↵(�)
d� rµ� [generalized Amendola model]

Choose ↵(�) = ↵
0

� with ↵
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const and study observational
signatures in CMB and matter power spectra (modified CAMB code).

Note the evolution of CDM density: ⇢̄c = ⇢̄c,0a
�3e↵(�)
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ex:

Could be K-essence scalar field coupled to matter, or Quintessence if F=Y+V(ϕ)

Type 1

Type-1 models are classified via

L(n, Y, Z,�) = F (Y,�) + f(n,�)

f(n) = g(n)e↵(�)

Note there is no Z dependence.

These models describe a K-essence scalar field coupled to matter. If
F = Y + V (�), we describe coupled quintessence models.

Coupling current Jµ = �⇢ d↵(�)
d� rµ� [generalized Amendola model]

Choose ↵(�) = ↵
0

� with ↵
0

const and study observational
signatures in CMB and matter power spectra (modified CAMB code).

Note the evolution of CDM density: ⇢̄c = ⇢̄c,0a
�3e↵(�)
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Type 1: Evolution of ⌦cdm
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The CDM density is higher at early times for the coupled case, in order
to evolve to the same cosmological parameters today. The
matter-radiation equality occurs earlier in the coupled case.
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Type 1: Matter power spectra
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P (k) a↵ected on small scales. There is more dark matter at early times,
matter-radiation equality earlier. Only small scale perturbations have
time to enter the horizon and grow during radiation-dominated era. The
growth is enhanced, small scale power increases, larger �

8

.
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P(k)ΩC

More DM at early times, equality earlier - only small scale pertns have time to 
enter horizon and grow during radiation dom - growth enhanced, small scale 

power increases, larger sigma8
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Type 2 models.

Type 2

Type-2 models are classified via

L(n, Y, Z,�) = F (Y,�) + f(n, Z)

We choose a sub-case for which the background CDM equation is
solved to give

⇢̄c = ⇢̄c,0a
�3Z̄

�0
1��0

Since Z̄ = � ˙̄�/a, ⇢̄c depends on the time derivative ˙̄� instead of �̄
itself which is a notable di↵erence from the Type-1 case.
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ex:

Type 2

Type-2 models are classified via

L(n, Y, Z,�) = F (Y,�) + f(n, Z)

We choose a sub-case for which the background CDM equation is
solved to give

⇢̄c = ⇢̄c,0a
�3Z̄

�0
1��0

Since Z̄ = � ˙̄�/a, ⇢̄c depends on the time derivative ˙̄� instead of �̄
itself which is a notable di↵erence from the Type-1 case.
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Type 2: Matter power spectra
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Type 2: CMB temperature spectra
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Type 3 models.

Type 3

Type-3 models are classified via

L(n, Y, Z,�) = F (Y, Z,�) + f(n)

Type 3 is special: J̄
0

= 0

no coupling at the background field equations!

˙̄⇢
c

+ 3H⇢̄
c

= 0

Furthermore, the energy-conservation equation remains uncoupled
even at the linear level, i.e. � ⌘ �⇢/⇢̄ obeys uncoupled equation.

Type-3 is a pure momentum-transfer theory.
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ex:

Cosmology: Type 3

We consider F = Y + V (�) + �(Z)

We choose a sub case with �(Z) = �
0

Z2

Type 3 is special ! no coupling appears at the background level
fluid equations

We also derive the perturbed KG and perturbed CDM equations.
This is a pure momentum-transfer coupling up-to linear order.

�̇c = �✓c � 1

2
ḣ

✓̇c = �H✓c � S(�
0

)
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Cosmology: Type 3

We consider F = Y + V (�) + �(Z)

We choose a sub case with �(Z) = �
0

Z2

Type 3 is special ! no coupling appears at the background level
fluid equations

We also derive the perturbed KG and perturbed CDM equations.
This is a pure momentum-transfer coupling up-to linear order.

�̇c = �✓c � 1

2
ḣ

✓̇c = �H✓c � S(�
0

)
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Type 3 models have 

Type 3

Type-3 models are classified via

L(n, Y, Z,�) = F (Y, Z,�) + f(n)

Type 3 is special: J̄
0

= 0

no coupling at the background field equations!

˙̄⇢
c

+ 3H⇢̄
c

= 0

Furthermore, the energy-conservation equation remains uncoupled
even at the linear level, i.e. � ⌘ �⇢/⇢̄ obeys uncoupled equation.

Type-3 is a pure momentum-transfer theory.
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They involve pure momentum transfer 

Type 3

Type-3 models are classified via

L(n, Y, Z,�) = F (Y, Z,�) + f(n)

Type 3 is special: J̄
0

= 0

no coupling at the background field equations!

˙̄⇢
c

+ 3H⇢̄
c

= 0

Furthermore, the energy-conservation equation remains uncoupled
even at the linear level, i.e. � ⌘ �⇢/⇢̄ obeys uncoupled equation.

Type-3 is a pure momentum-transfer theory.
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Type 3: Matter power spectra
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Type 3: CMB temperature spectra

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy



40

Parameterising these mixed models - extend the PPF formalism [Hu 08, Skordis 08]

Formalism

Start from [Hu ’08, Skordis ’08, Baker, Ferreira & Skordis ’13]

Gµ⌫ = T (known)

µ⌫ + Uµ⌫

Tensor Uµ⌫ contains the unknown fields/modifications, i.e. e↵ective
dark energy. Can depend on additional fields, metric etc. Example
f(R) gravity with fR = df

dR :

Uµ⌫ = rµr⌫fR � fRRµ⌫ +

✓
1

2
f �r2fR

◆
gµ⌫

Assuming that there are no interactions between the two sectors, use
rµG

µ
⌫ = 0 and rµT

µ
⌫ = 0 to get

rµU
µ
⌫ = 0

! Field equations for the modifications.
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Coupled DM/DE

Recap:

Consider Dark Energy (DE) coupled to Cold Dark Matter (c).

rµG
µ
⌫ = 0 still true, but T = T (c) and U = T (DE) not separately

conserved

rµT
(c)µ

⌫ = �rµT
(DE)µ

⌫ = J⌫

Split J⌫ = J̄⌫ + �J⌫ (note �Ji = riS).

FRW background with J̄
0

, J̄i = 0

We want to parameterise �J
0

and S in terms of metric and fluid
variables.

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

[Skordis, Pourtsidou, EC 2015]
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Parameterising coupled CDM/DE models

�J
0

and S are written in terms of the DM and DE fluid variables,
the metric variables and their derivatives.

Notation: � = �⇢/⇢̄

�J
0

=� 6A
1

�̂� 6A
2

( ˙̂�+H ̂) +A
3

�
DE

+A
4

�c

+A
5

✓
DE

+A
6

✓c + J̄
0

 ,

S =� 6B
1

�̂� 6B
2

( ˙̂�+H ̂) +B
3

�
DE

+B
4

�c

+B
5

✓
DE

+B
6

✓c,

We have 12 free functions. Di↵erent models have di↵erent sets of
non-zero (Ai, Bi).
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Worked examples

J̄
0

= �⇢̄c [Valiviita et al]. This model has

�J
0

= J̄
0

(�c + ); S = J̄
0

✓c

) The only non-zero coe�cients are:

A
4

= B
6

= J̄
0

J̄
0

= ��⇢̄c
˙̄� [Amendola]

) The non-zero coe�cients are:

A
3

=
J̄
0

1 + w�
, A

4

= J̄
0

, A
5

= �⇢̄ca
2

dV

d�

B
5

= J̄
0
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9

Model/Coe�cients Q A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6

Coupled Quintessence ��A⇢̄c ˙̄� - - Q
1+w Q �A⇢̄ca

2V� - - - - - Q -

Jµ / uµ a�int⇢̄c - - - Q - - - - - - - Q

elastic scattering - - - - - - - - - - - �⇢DE(1 + w)anD�D �B5

Type-1 �⇢̄c↵�
˙̄� - -

Qc2s
1+w Q Q


↵��

↵�
� c2s

˙̄�K̄�

(1+w)K̄

�
- - - - - Q -

Type-2 Z̄�Z ⇢̄c
1+Z̄�

˙̄Z - A2 A3 A4 A5 - - - - - Q -

Type-3 - - - - - - - - - B3 - B5 �B5 +
3HZ̄FZc2s

1� Z̄F̄Z
⇢̄c

TABLE II: Specific models and their PPF coe�cients. The coupled Quintessence model is a subcase of Type 1 with ↵� = �A.
The elastic scattering model is in fact distinct from Type-3 (see text at the end of section IIID). For the coe�cients A2, A3,
A4 and A5 in the case of Type-2 see (70). For the coe�cients B3 and A5 in the case of Type-3 see (86). For the remaining
functions the reader is referred to each specific example in the text.

The above equations are then inserted into (76) to give
the required coe�cients as

B1 = B2 = B4 = 0

B3 =
1

1� Z̄F̄Z
⇢̄c

Z̄F̄Zc
2
s

1 + w

B5 =
a

1� Z̄F̄Z
⇢̄c


X̄

✓
F̄Z

F̄Y
� Z̄

◆
+ F̄Z


µ

aF̄Z
� F�

FY

� �

B6 = �B5 +
3HZ̄FZc

2
s

1� Z̄F̄Z
⇢̄c

(86)

It would seem tempting to try model the elastic scat-
tering model [33] discussed above (section IIIA 3) into
the Type 3 class. However, this is in fact impossible. As
we can easily check, the elastic scattering model requires
B3 = 0. Within the Type 3 class this is possible only
if F is independint of Z (i.e. FZ = 0). This implies
that B5 and B6 are also zero, in other words, the model
becomes completely uncoupled. Hence, it is impossible
construct a model of elastic scattering between CDM and
DE within the Type-3 class of coupled Dark Energy.

IV. CONCLUSIONS

We have presented the most general parametrisation
of models of Dark Energy which is explicitly coupled to
Dark Matter using the Parameterized Post-Friedmannian
framework, and have shown that it is able to encapsulate
a rich variety of theories.

Starting from the linearised Einstein equations and us-
ing the Bianchi identities we managed to express the
modifications to GR coming from the dark sector cou-
pling as a collection of new terms containing the met-
ric potentials and their derivatives as well as the scalar
modes of the two dark sector components, i.e. the fluid
variables of (generalised) Dark Matter and Dark Energy.
Of course, our formalism is based on a few basic as-
sumptions: the background cosmology has an FRW solu-
tion, all field equations are at most second-order in time

derivatives, and the field equations are gauge-invariant.
Completing the parametrisation we were left with 24 free
functions, but demanding gauge invariance we derived 4
constraint equations which eliminated 4 free functions.
Twenty free functions in our general parametrisation is

certainly a big number, but by imposing certain well mo-
tivated assumptions, for instance that the Dark Matter
is Cold, that the Dark Energy is shear-less and that the
pressure perturbation is not a dynamical quantity we re-
duced the number of free functions to 12. Furthermore,
we showed that only a handful of these functions are
non-zero when one considers known models. We demon-
strated this by investigating a number of specific models
in the literature, as well as the classes of theories we
constructed in [38]. It is useful to note that, although
our theories in [38] are derived from an action, the PPF
parametrisation does not require knowledge of the action,
but only knowledge of the field equations. This means
that the PPF parametrisation is a very useful tool for
phenomenological model building (see [41] for further dis-
cussion in the context of modified gravity theories). The
full list of models we consider in this work is displayed in
table II along with their coe�cients.
Our Type 1, 2 and 3 theories contain a fairly general

coupling function and hence they encapsulate many dif-
ferent models. The parametrisation coe�cients for these
theories can depend, of course, on the chosen coupling
function and its derivatives, and other quantities such as
the background coupling Q, the background field energy
density ⇢̄�, the quintessence potential V (�), the speed of
sound c

2
s etc. For Type 1 theories there is only 1 non-

zero B coe�cient and 3 non-zero A coe�cients, for Type
2 there is 1 non-zero B coe�cient and 4 non-zero A co-
e�cients, while for Type 3 all A’s are automatically zero
and there are 3 non-zero B’s: di↵erent classes of theories
correspond to di↵erent non-zero functions. In particular,
from all the cases we have studied, the coe�cients A1,
A6, B1, B2 and B4 are always zero. It would be indeed
very interesting to find models for which any of these
coe�cients is non-zero.

It would also be interesting to consider the inverse
problem, i.e. given Q(t) and a set of PPF coe�cients

Basic assumptions: Bgd cosmology is FRW soln, field eqns are at most 2nd order 
in time derivatives and are gauge invariant.  

Once you know the field eqns PPF parameterisation is useful tool for 
phenomenological model building. 

Interesting that in all the models we looked at A1, A6, B1, B2, B4 are all zero. What 
models are there where they are non-zero?  

See also very nice related work in Amendola, Barreiro and Nunes 2014 [Assisted coupled 
quintessence]; Amendola et al 2013 [Observables and unobservables in DE cosmologies]
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Summary
1.Depending on your faith in string landscape approach we have a solution to 
CC problem. If not, its solution remains to be determined. 

2. Sequestering cancels CC at all orders - impact of gravity loops ? 

3. Fab Four - provides a way of living with a large changing cosmological 
constant ! Realistic models ?  

4. Quintessence type approaches require light scalars which bring with them 
fifth force constraints that need satisfying. 

5. Need to screen this which leads to models such as axions, chameleons,non-
canonical kinetic terms etc.. -- these have their own issues. 

6. Alternatively could consider modified gravity such as massive gravity but this 
brings with it constraints.  

7. Increased interest in coupled DE-DM models which can be analysed by PPF 
formalism and can include new couplings such as scalar field to velocity 
components. 


