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e Outline

- Introduction: Scale invariance as a solution to the hierarchy problem

- Problem: Usual regularizations of quantum corrections break scale invariance
- Goal: Study implications of a special, scale-invariant regularization.

- Implications: New corrections to scalar potential beyond Coleman-Weinberg.

- Applications: the scalar potential in SM + dilaton.



[2]

e Introduction

- One approach to hierarchy problem: scale invariance (z — px, ¢ — p?¢): forbids (higgs) mass terms

- the real world is not scale invariant = this symmetry must be broken.

- at classical level: one can start with a scale invariant L

- at quantum level? — the need for a subtraction/renormalization scale (1)

Cutoff schemes: ImA/mz=InA/p+1Inpu/my, (A — 00).
DR scheme: Ao = [)\g) + > an /€], (e —0)

= At quantum level: scale symmetry is broken explicitly by:

a dimensionful scale (cutoff, Pauli Villars) or a dimensionful coupling (DR scheme).



e Problem: in theories with scale/conformal symmetry: regularization (DR, etc...) breaks explicitly

the very symmetry one wants to study at quantum level!

- impact, particulary in non-renormalizable case, and for the hierarchy problem
- usual (naive?) argument: “DR breaks scale symmetry more softly” (*)

[Bardeen 1995]

= Solution: replace ;1 — f(dilaton: o). [Deser 1970, Englert 1976, Shaposhnikov 2009]
Evanescent power 1*¢ in the last equation = need (o) =/0 — spontaneous breaking of scale invariance!

Goal: study its implications.

(*) if the DR breaking of scale symmetry were indeed soft the result should be similar to spontaneous
breaking of scale symmetry - see later
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e Scale invariance at classical level

L of two real scalar fields:

1 1
£:§ M¢8“¢+§8u08“0—\/(¢, o)
An example:
As 4 Am oo 9 As 4
V= 4gb + 5 Oo” + i

Extremum: (@) | Ap(d)? + A\n(0)2 ] =0, (o) [ (@) + Xo(0)? ]| =0,

a) The ground state is (o) =0, (¢) =0 and both fields are massless.
b) IF (o) # 0 a solution, then (¢) # 0; a non-trivial ground state exists if A2, = ApAy; Ay < 0.

=> Spontaneous breaking of scale symmetry = EWSB at tree-level, with a vanishing cosmo constant
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e Scale invariance at classical level

L of two real scalar fields:

1 1
L= 5 0,0 0" + 3 o0 0l'c —V(p,0)
An example: [Kobakhidze et al 2007, 2014]

_)‘¢4 Am 2 2 )‘04
V—4¢+2¢0+40

The mass eigenstates:

m2 = 2X0(1 = An/Xo) (8)° = —2X (1 = X/ Ag) (0)°
my = 0
= 0: Goldstone mode of scale invariance (dilaton). [Shaposhnikov et al 2009, Ross et al 2014]

Expect: (o) ~ Mpjanck = To ensure a hierachy mg ~ (p) ~ O(100) GeV, one tunes classically A, :

(0) < (o) if Ao M| > Ao, AL = Ao

A~ 1/(0)?, A\, ~ 1/{c)*. At quantum level: is extra tuning needed?
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e Scale invariance at quantum level

czé Mgb@“gb—l—%auaﬁ“a—‘/(gb,a)
-DRid=4—-2¢ [L]=d, [N=[VW=d—4d—-2)/2=4—d = \—p* I\

A scale invariant regularization: p— (0, ¢).  Then V — V=u(¢,0)* 1V

- 7 ddp ~ ~ 82‘7 ~
U V 9 /(27T)d r H[p (¢7O_)+Z€}a ( ) p 8&86 8>
I Z a2 2 v _
=V 6172 p UMS |:4_ p 1HMS/H{|, (M )aﬁ — Vaﬂ; 0476 — ¢7 g.

()5 = '~ (Mo + (4= d) > Nog,

Nooar = 2 [Tr M4 2 (4—d)p 2T (MQN)},
Nog = p(pta Vi + 1p Vo) + (1 prap — ta 13) V,

= “Evanescent” corrections to (M?),; bring finite quantum corrections to U, due to (4 —d) x ﬁ.
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e The scale-invariant one-loop potential

MZX(p,0) 3
Vi) = Ve {Z M!(6,0) |In <<¢ a>> =] +aU(,0)}
S= qba 9
—4
AU = ,LL_{V [(MLL(W - /%) Viso + 2 (phtso — totio) Voo + (fiies — Mg) Vgg}
_ Ou B 0?1
2 (pho Voo + tho Voo ) Vo + 201 (0 Voo + i Vo) Va}’ o = 50 Has = 555

with a, 6 = ¢, 0. If 4 = p(o) only:

—4

2 {za (Vi Vg + Vi Vi ) — VVM}

If i=constant, AU = 0. On tree-level ground state: AU = 0.

= AU: new, one-loop finite correction, beyond the Coleman-Weinberg term.
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e The scale-invariant one-loop potential. Minimal case: ;1 = z 0, z: constant. [,u = ZO'Q/(d_Q)}

Ao Am@°
- 2

AU — (16AsAm + 6A%, — 3XA,)@" — (16X, + 25X, ) Ay 970 — 21N.0"

o

- AU contains higher dimensional operators. It is independent of the subtraction parameter z!
- total U is unstable if \,, < 0, due to \,,,¢°/0? < 0! Higher orders can stabilize it.
- if )\72” = A Ao, Ay < O for tree-level EWSB, then:

A (D0 A 2 2 2 2 4
AU—A—¢(§+)\—¢>(>\¢¢ — A (A A+ M) 20 — 2102, )

- U can be Taylor expanded: ¢ = (o) + do, do = quantum fluctuation
- spectrum at quantum level: massive ¢ and a massless dilaton o (Goldstone) - flat direction

- can only predict the ratio (@) /(o).

= Potential unstable under quantum fluctuations. Higher orders may stabilize it.

= Quantum effective operators present, with known, finite coefficient, independent of z.
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e Minimizing the one-loop U: Ay > [A\,| > A,, and p=zo. (*)

Ao g Amog 9 Ao 4 S :
_ Mg Am M:
U= o +5dc+70 647{;:2 [ 2}
6
+ Aohm ﬂ — (16 XA + 6AZ, — BAA, ) 6" — 16 A2, ¢%0” } +O(A,)
] <¢> )\m 6)\¢ 2
L= s = 4In3\, — 1 A
min oy v [ 2 ( n3Ag 7/3>] +O(A;,)
1
m% = (U¢¢+Uaa>min; 5m§~5 — G472 (AU¢¢+AU0‘7)min
. 2
sm? = 3; >2 [4)\2 (44 13p) + 18Xs (TAg — Asp) + Am [25A (14 ) —3Asp(—32+ 5p+p2>]] ~ A (o)
T

- fixing the dimensionless subtraction parameter: take z = (¢) /(o) = pu = (¢), as usual.

= No tuning needed beyond (*) to keep 5m§~5 < (o)%. No dangereous \;(c)?. may hold to all orders

= Calla n—Syma nzik: z dU/dZ = 0. [see related work of C. Tamarit 2014]
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e Restrictions on other expressions for p(o, ¢):
Adding a term: ALg = —% (€5 0* + &, 0%) R, needed in some models to generate the Planck scale

[Shaposhnikov et al 2009]

w=z (60> + 500"

Then: AU = —(£,¢0° + &,07) 72 [(21 Ao s+ An &) EAg O° (210, &5 + A &) Ex Ny T4+ -

= negative coefficients of ¢°, o® for A2, = A\y\,. U unstable at large fields.

AU| = =36 0° 96 0% 4T €00 (646" + 6009

= in the classical decoupling limit: non-decoupling quantum effects, unless (o) — oo

More general case of: (¢, 0) = z 0 exp |h(¢/0)| - similar conclusion.

= The form of (¢, o) is restricted to avoid such non-decoupling effects = Minimal . = p(o) only!
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e Summary

- scale invariance often used to address the hierarchy problem but all regularizations break explicitly

the symmetry one wants to study at quantum level.

= we studied a scale-invariant regularization, with spontaneous breaking of this symmetry.

Implications:

=

¢ 44

¢4

4

One-loop scale invariant scalar potential U.
AU': new correction to U, beyond Coleman-Weinberg term ( “evanescent” origin).
AU independent of subtraction parameter;

AU ~ ¢°/0? finite, effective operator(s), destabilize U at large ¢.

mass correction to ¢ under control at one-loop (no extra tuning needed).

next: study the scalar potential for scale invariant SM (+ dilaton). Non-renormalizability?

applications to theories in which preserving scale invariance at loop level needed (CFT's, ....

)
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e Scale invariant Standard Model one-loop potential:
Ao
V=u", V= >\¢‘H’4+)\m’H‘20—2+IO_4; H=(0,0)/V2.

Mg = Nd” + Apo®, M, M;
1

1 1
My, = Zgzch, M = 1(92 +9%)¢?, M? = §y3¢2-

U = 224tq 2m Ao {—)\ " [1 ——]
A ¢0+4 o L a1+ AmoT) I 3
¢6

+ AsAm— — (16AsAn + 67, — 3AsA,) 0" — (16As, + 25X,) Ay 9707 — 21N20"

3
ZMHHZQOQ [(9A2+A2 )gb4+2)\m(3)\¢+4>\m+3>\0)¢202+(A%,L+9>\§)a4]
5=0¢,0
344[ 9§¢2 3 3, I2N2 4 92¢2 5 4 4 ¢2?st2 3
3] oo ] w23
g\ SmTg Tl o) sG] T3 a5

- Phenomenology?



