A manifestly scale-invariant regularization and quantum effective operators

D. Ghilencea

Corfu Summer Institute, Greece - 8 Sep 2015

E-print: arXiv:1508.00595

 $^{^{\}ast}$ sponsored by RRC grant - project PN-II-ID-PCE-2011-3-0607

Outline

- Introduction: Scale invariance as a solution to the hierarchy problem

- Problem: Usual regularizations of quantum corrections break scale invariance

- Goal: Study implications of a special, scale-invariant regularization.

- Implications: New corrections to scalar potential beyond Coleman-Weinberg.

- Applications: the scalar potential in SM + dilaton.

Introduction

- One approach to hierarchy problem: scale invariance $(x \to \rho x, \phi \to \rho^d \phi)$: forbids (higgs) mass terms
- the real world is not scale invariant \Rightarrow this symmetry must be broken.
 - at classical level: one can start with a scale invariant L
 - at quantum level? \rightarrow the need for a subtraction/renormalization scale (μ)

Cutoff schemes:
$$\ln \Lambda/m_Z = \ln \Lambda/\mu + \ln \mu/m_Z, \quad (\Lambda \to \infty).$$

DR scheme:
$$\lambda_{\phi} = \mu^{2\epsilon} \left[\lambda_{\phi}^{(r)} + \sum_{n} a_{n} / \epsilon^{n} \right], \quad (\epsilon \to 0)$$

⇒ At quantum level: scale symmetry is broken explicitly by:

a dimensionful scale (cutoff, Pauli Villars) or a dimensionful coupling (DR scheme).

- Problem: in theories with scale/conformal symmetry: regularization (DR, etc...) breaks explicitly the very symmetry one wants to study at quantum level!
 - impact, particulary in non-renormalizable case, and for the hierarchy problem
 - usual (naive?) argument: "DR breaks scale symmetry more softly" (*)

[Bardeen 1995]

 \Rightarrow Solution: replace $\mu \rightarrow f(\text{dilaton: } \sigma)$.

[Deser 1970, Englert 1976, Shaposhnikov 2009]

Evanescent power $\mu^{2\epsilon}$ in the last equation \Rightarrow need $\langle \sigma \rangle \neq 0 \rightarrow$ spontaneous breaking of scale invariance! Goal: study its implications.

^(*) if the DR breaking of scale symmetry were indeed soft the result should be similar to spontaneous breaking of scale symmetry - see later

Scale invariance at classical level

 \mathcal{L} of two real scalar fields:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi + \frac{1}{2} \partial_{\mu} \sigma \, \partial^{\mu} \sigma - V(\phi, \sigma)$$

An example:

$$V = \frac{\lambda_{\phi}}{4}\phi^4 + \frac{\lambda_m}{2}\phi^2\sigma^2 + \frac{\lambda_{\sigma}}{4}\sigma^4$$

Extremum: $\langle \phi \rangle \left[\lambda_{\phi} \langle \phi \rangle^2 + \lambda_m \langle \sigma \rangle^2 \right] = 0$, $\langle \sigma \rangle \left[\lambda_m \langle \phi \rangle^2 + \lambda_{\sigma} \langle \sigma \rangle^2 \right] = 0$,

- a) The ground state is $\langle \sigma \rangle = 0$, $\langle \phi \rangle = 0$ and both fields are massless.
- b) IF $\langle \sigma \rangle \neq 0$ a solution, then $\langle \phi \rangle \neq 0$; a non-trivial ground state exists if $\lambda_m^2 = \lambda_\phi \lambda_\sigma$; $\lambda_m < 0$.

$$\frac{\langle \phi \rangle^2}{\langle \sigma \rangle^2} = -\frac{\lambda_m}{\lambda_\phi}, \quad \Rightarrow \quad V = \frac{\lambda_\phi}{4} \left(\phi^2 + \frac{\lambda_m}{\lambda_\phi} \sigma^2 \right)^2$$

 \Rightarrow Spontaneous breaking of scale symmetry \Rightarrow EWSB at tree-level, with a vanishing cosmo constant

Scale invariance at classical level

 \mathcal{L} of two real scalar fields:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi + \frac{1}{2} \, \partial_{\mu} \sigma \, \partial^{\mu} \sigma - V(\phi, \sigma)$$

An example:

[Kobakhidze et al 2007, 2014]

$$V = \frac{\lambda_{\phi}}{4}\phi^4 + \frac{\lambda_m}{2}\phi^2\sigma^2 + \frac{\lambda_{\sigma}}{4}\sigma^4$$

The mass eigenstates:

$$m_{\tilde{\phi}}^{2} = 2 \lambda_{\phi} (1 - \lambda_{m}/\lambda_{\phi}) \langle \phi \rangle^{2} = -2\lambda_{m} (1 - \lambda_{m}/\lambda_{\phi}) \langle \sigma \rangle^{2}$$

$$m_{\sigma} = 0$$

 $\Rightarrow \sigma$: Goldstone mode of scale invariance (dilaton).

[Shaposhnikov et al 2009, Ross et al 2014]

Expect: $\langle \sigma \rangle \sim M_{\rm Planck} \Rightarrow$ To ensure a hierarchy $m_{\tilde{\phi}} \sim \langle \phi \rangle \sim \mathcal{O}(100)$ GeV, one tunes classically λ_m :

$$\langle \phi \rangle \ll \langle \sigma \rangle$$
 if $\lambda_{\phi} \gg |\lambda_m| \gg \lambda_{\sigma}$, $\lambda_m^2 = \lambda_{\phi} \lambda_{\sigma}$

 $\lambda_m \sim 1/\langle \sigma \rangle^2$, $\lambda_\sigma \sim 1/\langle \sigma \rangle^4$. At quantum level: is extra tuning needed?

• Scale invariance at quantum level

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi + \frac{1}{2} \partial_{\mu} \sigma \, \partial^{\mu} \sigma - V(\phi, \sigma)$$

- DR:
$$d = 4 - 2\epsilon$$
: $[\mathcal{L}] = d$, $[\lambda] = [V^{(4)}] = d - 4(d-2)/2 = 4 - d \Rightarrow \lambda \rightarrow \mu^{4-d} \lambda$.

A scale invariant regularization: $\mu \to \mu(\sigma,\phi)$. Then $V \to \tilde{V} \equiv \mu(\phi,\sigma)^{4-d} V$

$$U = \tilde{V} - \frac{i}{2} \int \frac{d^d p}{(2\pi)^d} \operatorname{Tr} \ln \left[p^2 - \tilde{M}^2(\phi, \sigma) + i\varepsilon \right], \qquad (\tilde{M}^2)_{\alpha\beta} = \frac{\partial^2 \tilde{V}}{\partial \alpha \partial \beta} \equiv \tilde{V}_{\alpha\beta},$$
$$= \tilde{V} - \frac{1}{64\pi^2} \sum_{s=\phi, \sigma} \tilde{M}_s^4 \left[\frac{2}{4-d} - \ln \tilde{M}_s^2 / \kappa \right], \qquad (M^2)_{\alpha\beta} = V_{\alpha\beta}; \quad \alpha, \beta = \phi, \sigma.$$

$$(\tilde{M}^{2})_{\alpha\beta} = \mu^{4-d} \left[(M^{2})_{\alpha\beta} + (4-d) \mu^{-2} N_{\alpha\beta} \right],$$

$$\sum_{s=\phi,\sigma} \tilde{M}_{s}^{4} = \mu^{2(4-d)} \left[\operatorname{Tr} M^{4} + 2 (4-d) \mu^{-2} \operatorname{Tr} (M^{2}N) \right],$$

$$N_{\alpha\beta} \equiv \mu \left(\mu_{\alpha} V_{\beta} + \mu_{\beta} V_{\alpha} \right) + \left(\mu \mu_{\alpha\beta} - \mu_{\alpha} \mu_{\beta} \right) V,$$

 \Rightarrow "Evanescent" corrections to $(M^2)_{\alpha\beta}$ bring finite quantum corrections to U, due to $(4-d) \times \frac{2}{(4-d)}$.

The scale-invariant one-loop potential

$$U(\phi,\sigma) = V(\phi,\sigma) + \frac{1}{64\pi^2} \left\{ \sum_{s=\phi,\sigma} M_s^4(\phi,\sigma) \left[\ln \frac{M_s^2(\phi,\sigma)}{\mu^2(\phi,\sigma)} - \frac{3}{2} \right] + \Delta U(\phi,\sigma) \right\}$$

$$\Delta U = \frac{-4}{\mu^2} \left\{ V \left[(\mu \mu_{\phi\phi} - \mu_{\phi}^2) V_{\phi\phi} + 2 (\mu \mu_{\phi\sigma} - \mu_{\phi}\mu_{\sigma}) V_{\phi\sigma} + (\mu \mu_{\sigma\sigma} - \mu_{\sigma}^2) V_{\sigma\sigma} \right] + 2\mu \left(\mu_{\phi} V_{\phi\phi} + \mu_{\sigma} V_{\phi\sigma} \right) V_{\phi} + 2\mu \left(\mu_{\phi} V_{\phi\sigma} + \mu_{\sigma} V_{\sigma\sigma} \right) V_{\sigma} \right\}, \qquad \mu_{\alpha} = \frac{\partial \mu}{\partial \alpha}, \quad \mu_{\alpha\beta} = \frac{\partial^2 \mu}{\partial \alpha \partial \beta},$$

with $\alpha, \beta = \phi, \sigma$. If $\mu = \mu(\sigma)$ only:

$$\Delta U = \frac{-4}{\mu(\sigma)^2} \left\{ 2\sigma \left(V_{\sigma} V_{\sigma\sigma} + V_{\phi} V_{\phi\sigma} \right) - V V_{\sigma\sigma} \right\}$$

If μ =constant, $\Delta U = 0$. On tree-level ground state: $\Delta U = 0$.

 $\Rightarrow \Delta U$: new, one-loop finite correction, beyond the Coleman-Weinberg term.

• The scale-invariant one-loop potential. Minimal case: $\mu=z\,\sigma,\ z$: constant. $\left[\mu=z\,\sigma^{2/(d-2)}\right]$

$$\Delta U = \frac{\lambda_{\phi} \lambda_{m} \phi^{6}}{\sigma^{2}} - \left(16\lambda_{\phi} \lambda_{m} + 6\lambda_{m}^{2} - 3\lambda_{\phi} \lambda_{\sigma}\right) \phi^{4} - \left(16\lambda_{m} + 25\lambda_{\sigma}\right) \lambda_{m} \phi^{2} \sigma^{2} - 21\lambda_{\sigma}^{2} \sigma^{4}$$

- ΔU contains higher dimensional operators. It is independent of the subtraction parameter z!
- total U is unstable if $\lambda_m < 0$, due to $\lambda_m \phi^6/\sigma^2 < 0$! Higher orders can stabilize it.
- if $\lambda_m^2 = \lambda_\phi \, \lambda_\sigma$, $\lambda_m < 0$ for tree-level EWSB, then:

$$\Delta U = \frac{\lambda_m}{\lambda_\phi} \left(\frac{\phi^2}{\sigma^2} + \frac{\lambda_m}{\lambda_\phi} \right) \left(\lambda_\phi^2 \phi^4 - 4 \lambda_\phi \left(4 \lambda_\phi + \lambda_m \right) \phi^2 \sigma^2 - 21 \lambda_m^2 \sigma^4 \right)$$

- U can be Taylor expanded: $\sigma = \langle \sigma \rangle + \delta \sigma, \qquad \delta \sigma =$ quantum fluctuation
- spectrum at quantum level: massive ϕ and a massless dilaton σ (Goldstone) flat direction
- can only predict the ratio $\langle \phi \rangle / \langle \sigma \rangle$.
- \Rightarrow Potential unstable under quantum fluctuations. Higher orders may stabilize it.
- \Rightarrow Quantum effective operators present, with known, finite coefficient, independent of z.

• Minimizing the one-loop U: $\lambda_{\phi}\gg |\lambda_m|\gg \lambda_{\sigma},$ and $\mu=z\,\sigma.$ (*)

$$U = \frac{\lambda_{\phi}}{4} \phi^{4} + \frac{\lambda_{m}}{2} \phi^{2} \sigma^{2} + \frac{\lambda_{\sigma}}{4} \sigma^{4} + \frac{1}{64\pi^{2}} \left\{ \sum_{s=1,2} M_{s}^{4} \left[\ln \frac{M_{s}^{2}}{z^{2} \sigma^{2}} - \frac{3}{2} \right] + \lambda_{\phi} \lambda_{m} \frac{\phi^{6}}{\sigma^{2}} - \left(16 \lambda_{\phi} \lambda_{m} + 6 \lambda_{m}^{2} - 3 \lambda_{\phi} \lambda_{\sigma} \right) \phi^{4} - 16 \lambda_{m}^{2} \phi^{2} \sigma^{2} \right\} + \mathcal{O}(\lambda_{m}^{3})$$

min:
$$\rho \equiv \frac{\langle \phi \rangle^2}{\langle \sigma \rangle^2} = -\frac{\lambda_m}{\lambda_\phi} \left[1 - \frac{6\lambda_\phi}{64\pi^2} \left(4\ln 3\lambda_\phi - 17/3 \right) \right] + \mathcal{O}(\lambda_m^2)$$

$$m_{\tilde{\phi}}^{2} = (U_{\phi\phi} + U_{\sigma\sigma})_{\text{min}}; \qquad \delta m_{\tilde{\phi}}^{2} = \frac{1}{64\pi^{2}} \left(\Delta U_{\phi\phi} + \Delta U_{\sigma\sigma}\right)_{\text{min}}$$

$$\delta m_{\tilde{\phi}}^{2} = \frac{-\langle \sigma \rangle^{2}}{32\pi^{2}} \left[4\lambda_{m}^{2} (4 + 13\rho) + 18\lambda_{\sigma} \left(7\lambda_{\sigma} - \lambda_{\phi}\rho\right) + \lambda_{m} \left[25\lambda_{\sigma} (1 + \rho) - 3\lambda_{\phi}\rho (-32 + 5\rho + \rho^{2})\right] \right] \sim \lambda_{m}^{2} \langle \sigma \rangle^{2}$$

- fixing the dimensionless subtraction parameter: take $z=\langle\phi\rangle/\langle\sigma\rangle\Rightarrow\mu=\langle\phi\rangle$, as usual.
- \Rightarrow No tuning needed beyond (*) to keep $\delta m_{\tilde{\phi}}^2 \ll \langle \sigma \rangle^2$. No dangereous $\lambda_{\phi} \langle \sigma \rangle^2$. may hold to all orders
- \Rightarrow Callan-Symanzik: z dU/dz = 0.

[see related work of C. Tamarit 2014]

• Restrictions on other expressions for $\mu(\sigma, \phi)$:

Adding a term: $\Delta \mathcal{L}_G = -\frac{1}{2} \left(\xi_\phi \, \phi^2 + \xi_\sigma \, \sigma^2 \right) R$, needed in some models to generate the Planck scale

[Shaposhnikov et al 2009]

$$\mu = z \left(\xi_{\phi} \, \phi^2 + \xi_{\sigma} \, \sigma^2 \right)^{1/2}$$

Then:
$$\Delta U = -(\xi_{\phi}\phi^2 + \xi_{\sigma}\sigma^2)^{-2} \Big[(21\,\lambda_{\phi}\,\xi_{\phi} + \lambda_{m}\,\xi_{\sigma})\,\xi_{\phi}\lambda_{\phi}\,\phi^8 + (21\lambda_{\sigma}\,\xi_{\sigma} + \lambda_{m}\,\xi_{\phi})\,\xi_{\sigma}\lambda_{\sigma}\,\sigma^8 + \cdots \Big]$$

 \Rightarrow negative coefficients of ϕ^8 , σ^8 for $\lambda_m^2 = \lambda_\phi \lambda_\sigma$. U unstable at large fields.

$$\Delta U\Big|_{\lambda_m=0} = -3 \lambda_{\phi}^2 \xi_{\phi} \phi^6 \Big[9 \xi_{\sigma} \sigma^2 + 7 \xi_{\phi} \phi^2 \Big] (\xi_{\phi} \phi^2 + \xi_{\sigma} \sigma^2)^{-2}$$

 \Rightarrow in the classical decoupling limit: non-decoupling quantum effects, unless $\langle \sigma \rangle \to \infty$ More general case of: $\mu(\phi,\sigma)=z\,\sigma\,\exp\left[h(\phi/\sigma)\right]$ - similar conclusion.

 \Rightarrow The form of $\mu(\phi, \sigma)$ is restricted to avoid such non-decoupling effects \Rightarrow Minimal $\mu = \mu(\sigma)$ only!

Summary

- scale invariance often used to address the hierarchy problem but all regularizations break explicitly the symmetry one wants to study at quantum level.
- ⇒ we studied a scale-invariant regularization, with spontaneous breaking of this symmetry.

Implications:

- \Rightarrow One-loop scale invariant scalar potential U.
- $\Rightarrow \Delta U$: new correction to U, beyond Coleman-Weinberg term ("evanescent" origin).
- $\Rightarrow \Delta U$: independent of subtraction parameter;
- $\Rightarrow \Delta U \sim \phi^6/\sigma^2$ finite, effective operator(s), destabilize U at large ϕ .
- \Rightarrow mass correction to ϕ under control at one-loop (no extra tuning needed).
- \Rightarrow next: study the scalar potential for scale invariant SM (+ dilaton). Non-renormalizability?
- ⇒ applications to theories in which preserving scale invariance at loop level needed (CFT's,)

• Scale invariant Standard Model one-loop potential:

$$\tilde{V} = \mu^{4-d}V, \quad V = \lambda_{\phi}|H|^4 + \lambda_m|H|^2\sigma^2 + \frac{\lambda_{\sigma}}{4}\sigma^4; \qquad H = (0,\phi)/\sqrt{2}.$$

$$M_G^2 = \lambda_{\phi}\phi^2 + \lambda_m\sigma^2, \qquad M_{\phi}^2, M_{\sigma}^2$$

$$M_W^2 = \frac{1}{4}g^2\phi^2, \qquad M_Z^2 = \frac{1}{4}(g^2 + g'^2)\phi^2, \qquad M_t^2 = \frac{1}{2}y_t^2\phi^2.$$

$$U = \frac{\lambda_{\phi}}{4} \phi^{4} + \frac{\lambda_{m}}{2} \phi^{2} \sigma^{2} + \frac{\lambda_{\sigma}}{4} \sigma^{4} + \frac{1}{64\pi^{2}} \left\{ \frac{3}{2} (\lambda_{\phi} \phi^{2} + \lambda_{m} \sigma^{2})^{2} \left[\ln \frac{\lambda_{\sigma} \phi^{2} + \lambda_{m} \sigma^{2}}{z^{2} \sigma^{2}} - \frac{3}{2} \right] \right.$$

$$+ \lambda_{\phi} \lambda_{m} \frac{\phi^{6}}{\sigma^{2}} - \left(16\lambda_{\phi} \lambda_{m} + 6\lambda_{m}^{2} - 3\lambda_{\phi} \lambda_{\sigma} \right) \phi^{4} - \left(16\lambda_{m} + 25\lambda_{\sigma} \right) \lambda_{m} \phi^{2} \sigma^{2} - 21\lambda_{\sigma}^{2} \sigma^{4}$$

$$+ \sum_{s=\phi,\sigma} M_{s}^{4} \ln \frac{M_{s}^{2}}{z^{2} \sigma^{2}} - \frac{3}{2} \left[\left(9\lambda_{\phi}^{2} + \lambda_{m}^{2} \right) \phi^{4} + 2\lambda_{m} \left(3\lambda_{\phi} + 4\lambda_{m} + 3\lambda_{\sigma} \right) \phi^{2} \sigma^{2} + \left(\lambda_{m}^{2} + 9\lambda_{\sigma}^{2} \right) \sigma^{4} \right]$$

$$+ \frac{3}{8} g^{4} \phi^{4} \left[\ln \frac{g_{2}^{2} \phi^{2}}{4z^{2} \sigma^{2}} - \frac{5}{6} \right] + \frac{3}{16} \left(g^{2} + g'^{2} \right)^{2} \phi^{4} \left[\ln \frac{g^{2} \phi^{2}}{4z^{2} \sigma^{2}} - \frac{5}{6} \right] - 3\phi^{4} y_{t}^{4} \left[\ln \frac{\phi^{2} y_{t}^{2}}{2z^{2} \sigma^{2}} - \frac{3}{2} \right] \right\}$$

- Phenomenology?