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I) Introduction

•   Complementary picture: 

Wave         ⇔       N particles

In quantum gravity and in string theory some 
of these statements have to be refined.

Semiclassical limit: ~ = const. , N !1
    Distances can be still arbitrarily short and 
    energies can be arbitrarily high.

phase space quantization:•  Heisenberg‘s uncertainty:

[x, p] = i~ ) �x �p � ~

Quantum mechanics:
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In particular two questions and puzzles:

 •   What is the quantum nature of Black Holes ?

  •   What is the high energy behavior of graviton  
      scattering amplitudes ?

    Unitarity at tree level ?
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In particular two questions and puzzles:

 •   What is the quantum nature of Black Holes ?

  •   What is the high energy behavior of graviton  
      scattering amplitudes ?

    Unitarity at tree level ?
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Solve these problems (partially) within Einstein gravity! 

 
⇒   Classicalization & the black hole N-portrait
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Classicalization & the black hole N-portrait:   

  ..   where there is no need to modify gravity in the IR

•   Are described by IR physics, 
[G. Dvali, C. Gomez, .....]

Quantization of gravity in IR  ↔  semiclassical regime.
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Classicalization & the black hole N-portrait:   

  ..   where there is no need to modify gravity in the IR

•   Are described by IR physics, 

However there remain still some UV problems:

•  Precise coefficient coefficient in black hole entropy:

•  Renormalization, UV finiteness of loop amplitudes

   New UV degrees of freedom   ➮      String theory  !

S =
A

L2
P

1
4

[G. Dvali, C. Gomez, .....]

Quantization of gravity in IR  ↔  semiclassical regime.
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One possible solution:  Wilsonian approach:

It is known that tree level graviton scattering 
amplitudes grow like     (center of mass energy).s

  ⇒    Violation of unitarity at s = M2
P

Amplitude is unitarized by integrating in new weakly 
coupled degrees of freedom of shorter and shorter 
wave lengths (at higher and higher energies).

hµ⌫

hµ⌫

hµ⌫

hµ⌫

⇠ sL2
P

Graviton scattering:
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So we need a better understanding of how black holes 
are formed in graviton scattering amplitudes.

Classicalization:  Amplitudes get unitarized by classical 
black hole formation.

[G. Dvali, C. Gomez (2010); G. Dvali, G. Giudice, C. Gomez, A. Kehagias (2010)]

However it is expected that black holes will be 
produced in particle scattering processes with high 
energies of the order

 [´t Hooft (1987); Antoniadis, Arakani-Hamed,Dimopoulos, Dvali (1998); Banks, Fischler (1999); 
Dimopoulos, Landsberg (2001); Yoshino, Nambu (2002); Giddings, Thomas (2002); 

                           Eardley, Giddings (2002);  Giddings, Rychkov (2004); ...]

p
s > R�1

s ⌘ (
p

sL2
P )�1

(Gravity protects itself at high energies by black hole 
formation.)
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Black hole corpuscular N-portrait:

Quantum black hole    =    Bound state of N gravitons

(Bose-Einstein condensate)

[G. Dvali, C. Gomez (2011 - 2014); G. Dvali, C. Gomez, D.L. (2012)]
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 •   N is large and the gravitons are soft.
  •   Interaction strength among individual gravitons is small:

•  Black holes are formed at the quantum critical point:

Relevant properties:

↵ =
L2

P

R2
<< 1 R   (      ...  graviton wave length)

•  Collective (`t Hooft like) coupling: � = ↵N

� = 1 (R =
p

NLP )
[G. Dvali, C. Gomez,  arXiv:1207.4059;

Flassig, Pritzel, Wintergerst, arXiv:1212.3344]

Black hole corpuscular N-portrait:

Quantum black hole    =    Bound state of N gravitons

(Bose-Einstein condensate)

[G. Dvali, C. Gomez (2011 - 2014); G. Dvali, C. Gomez, D.L. (2012)]
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•  Semiclassical behavior:

black hole

excluded region

1

z }| {

energy levels

↵N
| {z }
weakly coupled graviton  

Bose-Einstein condensate

Black hole bound state (at          ):� = 1

•   Mass and size: MBH =
p

NMP , RBH =
p

NLP

•  Exponential degeneracy,  entropy: S ⇠ N

� =

N !1
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9

•  Semiclassical behavior:

black hole

excluded region

1

z }| {

energy levels

↵N
| {z }
weakly coupled graviton  

Bose-Einstein condensate

Black hole bound state (at          ):� = 1

•   Mass and size: MBH =
p

NMP , RBH =
p

NLP

•  Exponential degeneracy,  entropy: S ⇠ N

complex 
Bogoliubov 

frequencies, no viable 
S-matrix state

Bogoliubov 
modes become 

gapless, 
degeneracy of 

states

positive 
Bogoliubov 
frequencies, 

system of N free 
gravitons

� =

N !1
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Can we reconcile this picture in graviton scattering 
processes (expressed in terms of N and    )?�

Is there a signal of non-perturbative black hole 
physics in perturbative graviton amplitudes?
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So far: computation of graviton N-point amplitudes with 
small N  (N=4).
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So far: computation of graviton N-point amplitudes with 
small N  (N=4).

Our paper: new look at graviton scattering at trans-
Planckian energy  

 •  Explicit calculation of field theory and string   
    amplitudes in a new kinematical large N regime,    
    relevant for black hole production:

2 �! N with N !1
 •  We will argue that the perturbative                  
    amplitude  indeed contains relevant non-perturbative 
    information supporting the picture of black hole 
    production and classicalization.

2 �! N
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New trans-Planckian cross-over energy scale:

Crossing the UV barrier:

    The 2  →  N   string amplitude exhibits an interesting   
     transition property:

•  Soft final gravitons:    Unitarization by black holes.

•  Hard final gravitons:   Unitarization by string Regge states.

E = NMstringIR/UV
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Classicalization limit:  soft gravitons in the final state.

sij = (ki + kj)2 ⇠

8
>>>><

>>>>:

s , i, j 2 {1, N} ,

� s
N�2 , i 2 {1, N} , j /2 {1, N} ,

s
(N�2)2 , i, j /2 {1, N} .

pin ⇠
p

s and p
out

⇠
p

s

N � 2

k1

kN

k2

kN�1

           graviton amplitude with high center of mass s:2 �! N

II) Large N Graviton Scattering Amplitudes 

s!1 , ✏ =
1

N � 2
! 0 =) p

out

< M
P
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Double scaling limit: (  ⇒   small impact parameter)

N !1 , s!1 (
p

s >> MP ) with � =
s

M2
P N

6= 0
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To compute the graviton scattering amplitudes one can 
try on-shell methods and KLT techniques. [Kawai, Lewellen, Tye (1986)],

(i) Field theory

Problem:  KLT uses a double sum over (N-3)! squares of  Yang-Mills amplitudes 
=> in practice very hard to perform               limit N ! 1

certain determinant (Pfaffian) 
encoding external momenta    

 and polarizations ⇠
k

integral over  
N-punctered sphere 

delta-function support 
on solutions of 

scattering equations 

Scattering equations:

relate space of kinematic invariants of N gravitons to that of the positions of  N points on a sphere

X

b 6=a

sab
�a � �b

= 0 (N � 3)!
solutions

Instead we use CHY formula for N-graviton amplitude
Compact formula for tree-level gravitational S-matrix          in arbitrary dimensionsMN

MN =

Z
dN�

Vol SL(2,C)

NY

a=1

0
�

0

@
X

b 6=a

sab
�a � �b

1

A E2
N ({k, ⇠,�})
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N ({k, ⇠,�})

Instead we use the CHY formula for the N-graviton 
amplitude:
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Problem:  KLT uses a double sum over (N-3)! squares of  Yang-Mills amplitudes 
=> in practice very hard to perform               limit N ! 1

certain determinant (Pfaffian) 
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a=1

0
�

0

@
X

b 6=a

sab
�a � �b

1

A E2
N ({k, ⇠,�})

[cfr. with twistor approach by  E. Witten (2003)]

Problem: for N > 5 the scattering equations are very hard to 
solve for generic momenta. [See L. Dolan and P. Goddard (2013/2014),

C. Baadsgaard, N. Bjerrum-Bohr, J. Bourjaily, P. Damgaard, arXiv:1506.06137]
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Problem:  For N>5 equations are very hard to solve for generic momenta,  
cf.  Dolan, Goddard (2013,2014)

Fortunately in the classicalization limit, i.e. the limit we are 
interested in scattering equations can be solved explicitly

this parameterization can be mapped to a problem Kalousios (2013) has already studied

MN (1, . . . , N) = �N�2 28�N s

(N � 2)2
[(N � 3)!!]2

�
�
a
2

�
�
�
3
2 + b�N

2

�
�
�
1�N+a+b

2

�

�
�
1 + a�N

2

�
�
�
b�1
2

�
�
�
a+b�3

2

�

⇥
�
�
3
2 + a�N

2

�
�
�
b
2

�
�
�
a+b�2

2

�

�
�
1 + b�N
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�
�
�
a�1
2

�
�
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a+b�N

2

� HN (a, b)2
N!1�! N s

N2
N !
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2
(N � 3) (N � a� b) ,

sN�1,N = �1

2
(N � 3) (2� b) , s1,N�1 = �1

2
(N � 3) (2� a) ,

s1,i = �1

2
(N � 2� b) , si,N = �1

2
(N � 2� a) ,
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1

2
(4� a� b) , sij = 1 , i, j 2 {2, . . . , N � 2} ,

this gives rise to a two-parameter a,b solution, which is (N-3)!-fold degenerate 

classicalization limit can be 
parameterized as:  

( in  units of s/(N-2)^2 )

exact for any real a,b and N
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Problem: for N > 5 the scattering equations are very hard to 
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Exact in any real a,b and N 

This parametrization can be mapped to a problem 
Kalousios (2013) has already studied:

MN (1, . . . , N) = �N�2 28�N s
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�
�
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�

⇥
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�
�
�
b
2

�
�
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2

�

�
�
1 + b�N

2

�
�
�
a�1
2

�
�
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2
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N!1�! N s

N2
N !

Solutions of scattering equations are identified with the 
zeros of Jacobi polynomials.
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Solutions of scattering equations are identified with the 
zeros of Jacobi polynomials.

Note: Incidentally the solutions to the scattering 
equations describe the saddle point contributions in the 
high-energy limit of open and closed string amplitudes 
(Gross, Mende)        →    see next part of the talk.

Field 
theory 

amplitude!
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To obtain the physical probability, i.e. the S-matrix element, 
we have to consider phase space integral:

d|h2|S|N � 2i|2 =
1

(N � 2)!

N�1Y

i=2

dp4
i

|M
N

|2�4(P
total

)

pin ⇠
p

s p
out

⇠
p

s

N � 2(                  ,                   )

Collective coupling � ⌘ ↵N = s/M2
P N

|h2|S|N � 2i|2 =
✓

L2
P s

N2

◆N

N ! =
✓

�

N

◆N

N ! ⇠ e�N�N

Physical                    perturbative, scattering 
probability in classicalization regime:

2! N � 2
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This perturbative scattering probability possesses a 
maximum at the following critical value for N:

Ncrit = sL2
P , �crit = 1
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In this case the amplitudes show a different 
large N behavior:

A2
N ' �NN !

constant

Remark: similar calculations can be done for scalar 
field theories, like           . ��4

This perturbative scattering probability possesses a 
maximum at the following critical value for N:

Ncrit = sL2
P , �crit = 1
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Connection of the perturbative amplitude to the 
non-perturbative black hole bound state:
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Connection of the perturbative amplitude to the 
non-perturbative black hole bound state:

              The perturbative amplitude is suppressed by         .e�N

This is just the inverse of the degeneracy of states of a 
black hole with entropy               .S ⇠ N

ABH ⇠
X

j

|h2|S|Ni|2p |hN |BHij |2np ⇠ �Ne�N |p ⇥ eN |np

Therefore this suppression factor is compensated at the 
critical point              by          from the degeneracy of 
black hole states:

� = 1 eN
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Connection of the perturbative amplitude to the 
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Connection of the perturbative amplitude to the 
non-perturbative black hole bound state:

So, black hole is exactly dominating at            .  � = 1

              The perturbative amplitude is suppressed by         .e�N

This is just the inverse of the degeneracy of states of a 
black hole with entropy               .S ⇠ N

ABH ⇠
X

j

|h2|S|Ni|2p |hN |BHij |2np ⇠ �Ne�N |p ⇥ eN |np

Therefore this suppression factor is compensated at the 
critical point              by          from the degeneracy of 
black hole states:

� = 1 eN
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In summary:

 • Perturbative                  graviton amplitude:  2 �! N

|Mpert.
N |2 ' �Ne�N , � = s/(M2

P N)
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In summary:

 • Perturbative                  graviton amplitude:  2 �! N

|Mpert.
N |2 ' �Ne�N , � = s/(M2

P N)

black holes

z }| {
excluded region

1 �

field theory

z }| {

string theory

�Ng2s

z }| {

z }| {

weakly-coupled 
gravitons

(fully saturated at           )

 • Non-perturbative  enhancement at            due to 
   black hole entropy factor :

|Mn.p.
N |2 ' �N

� = 1
eN

� = 1
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black hole

excluded region

1

z }| {

energy levels

↵N
| {z }
weakly coupled graviton  

Bose-Einstein condensate

= �
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black hole

excluded region

1

z }| {

energy levels

↵N
| {z }
weakly coupled graviton  

Bose-Einstein condensate

Forbidden region, 
no viable S-matrix 

state

Formation of 
black hole, 
exponential 
degeneray of 

states

System of N 
essentially free 

gravitons

= �
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black hole

excluded region

1

z }| {

energy levels

↵N
| {z }
weakly coupled graviton  

Bose-Einstein condensate

Region that violates 
unitarity

Unitarity 
threshold, black 
hole production 
with extra non-

perturbative 
entropy factorr 

Region of 
perturbative 

unitarity,

= �
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For large s unitarization occurs if N increases appropriately:

This bound implies that

N should be larger than the corresponding entropy of a 
black hole with mass equal to the center of mass energy.

This is the core of the idea of classicalization!

N & Ncrit = sL2
P

2 −→ N − 2⇒
Increase energy s

Sonntag, 13. September 15
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However there remain still some UV problems:

What is happening in the regime where                 ? � > 1

N < Ncrit = sL2
P

Sonntag, 13. September 15
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(ii) Closed string theory
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High energy behavior of open/closed string amplitudes 
shows exponential fall off due to Regge modes.

Example:  4-point graviton amplitude

M4 ⇠ K
�(�↵0

4 s)�(�↵0

4 t)�(�↵0

4 u)

�(

↵0

4 s)�(

↵0

4 t)�(

↵0

4 u)

�!↵0!1 2|A4|2 ⇥ 4⇡↵0
st

u
exp

⇢
↵0

2

(s ln |s|+ t ln |t|+ u ln |u|)
�

[Veneziano (1968); Amati, Ciafaloni, Veneziano (1987); Gross, Mende (1987), Gross, Manes (1989]
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Example:  4-point graviton amplitude

M4 ⇠ K
�(�↵0

4 s)�(�↵0

4 t)�(�↵0

4 u)

�(

↵0

4 s)�(

↵0

4 t)�(

↵0

4 u)

�!↵0!1 2|A4|2 ⇥ 4⇡↵0
st

u
exp

⇢
↵0

2

(s ln |s|+ t ln |t|+ u ln |u|)
�

Square of 
YM-amplitude

[Veneziano (1968); Amati, Ciafaloni, Veneziano (1987); Gross, Mende (1987), Gross, Manes (1989]
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High energy behavior of open/closed string amplitudes 
shows exponential fall off due to Regge modes.

Example:  4-point graviton amplitude

M4 ⇠ K
�(�↵0

4 s)�(�↵0

4 t)�(�↵0

4 u)

�(

↵0

4 s)�(

↵0

4 t)�(

↵0

4 u)

�!↵0!1 2|A4|2 ⇥ 4⇡↵0
st

u
exp

⇢
↵0

2

(s ln |s|+ t ln |t|+ u ln |u|)
�

Momentum 
kernel

Square of 
YM-amplitude

[Veneziano (1968); Amati, Ciafaloni, Veneziano (1987); Gross, Mende (1987), Gross, Manes (1989]
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High energy behavior of open/closed string amplitudes 
shows exponential fall off due to Regge modes.
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M4 ⇠ K
�(�↵0

4 s)�(�↵0

4 t)�(�↵0

4 u)

�(

↵0

4 s)�(

↵0

4 t)�(

↵0

4 u)

�!↵0!1 2|A4|2 ⇥ 4⇡↵0
st

u
exp

⇢
↵0

2

(s ln |s|+ t ln |t|+ u ln |u|)
�

String 
form factorMomentum 

kernel

Square of 
YM-amplitude

[Veneziano (1968); Amati, Ciafaloni, Veneziano (1987); Gross, Mende (1987), Gross, Manes (1989]
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High energy behavior of open/closed string amplitudes 
shows exponential fall off due to Regge modes.

Example:  4-point graviton amplitude

M4 ⇠ K
�(�↵0

4 s)�(�↵0

4 t)�(�↵0

4 u)

�(

↵0

4 s)�(

↵0

4 t)�(

↵0

4 u)

�!↵0!1 2|A4|2 ⇥ 4⇡↵0
st

u
exp

⇢
↵0

2

(s ln |s|+ t ln |t|+ u ln |u|)
�

String 
form factorMomentum 

kernel

Square of 
YM-amplitude

(Note: this was basically the state of the art before our paper.)

[Veneziano (1968); Amati, Ciafaloni, Veneziano (1987); Gross, Mende (1987), Gross, Manes (1989]
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High energy limit:  use of scattering equations:

Generalization to arbitrary (large) N:

MN = (4⇡↵0)N�3
N�3Y

⌫=1

✓
⌫⌫(↵ + ⌫)↵+⌫(� + ⌫)�+⌫

(↵ + � + N � 3 + ⌫)↵+�+N�3+⌫

◆↵0s
4

⇥ MFT
N +O�

(↵0s)�1
�

sum over the (N-3)! solutions  
of scattering equations  

Koba-Nielsen factor  

Jacobian/Hessian from  
saddle point approximation  

N closed string 
tree-level 
amplitude  

Note:  Incidentally the solutions to scattering equations describe saddle point contributions 
in the high-energy limit of open and closed string amplitudes (Gross, Mende) 

M(1, . . . , N) = N�2 (4⇡↵0)
N�3

(N�3)!X

a=1

 
NQ
i<j

|z(a)ij |↵0
2 sij

!

det
0
�(z(a))1/2det

0
�(z(a))1/2

EN ({k, ⇠, z(a)})2 +O(↵0�1)

• High-energy string amplitude for arbitrary N 
compared to N=4 in Veneziano, Gross-Mende

Again in classicalization limit we obtain explicit result 
for arbitrary N:

M(1, . . . , N) = (4⇡↵0)
N�3

⇥
N�3Y

⌫=1

✓
⌫⌫ (a+ ⌫)a+⌫ (b+ ⌫)b+⌫

(a+ b+N � 3 + ⌫)a+b+N�3+⌫

◆↵0/4

MN (1, . . . , N) +O(↵0�1
)

• gives relation between SUGRA and string amplitude at high energies

Again in the classicalization limit we obtain the explicit 
result for arbitrary N: 
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N�3

(N�3)!X
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NQ
i<j

|z(a)ij |↵0
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0
�(z(a))1/2det

0
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• High-energy string amplitude for arbitrary N 
compared to N=4 in Veneziano, Gross-Mende

Again in classicalization limit we obtain explicit result 
for arbitrary N:

M(1, . . . , N) = (4⇡↵0)
N�3

⇥
N�3Y

⌫=1

✓
⌫⌫ (a+ ⌫)a+⌫ (b+ ⌫)b+⌫

(a+ b+N � 3 + ⌫)a+b+N�3+⌫

◆↵0/4

MN (1, . . . , N) +O(↵0�1
)

• gives relation between SUGRA and string amplitude at high energies

Again in the classicalization limit we obtain the explicit 
result for arbitrary N: 

String form 
factor
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Two different energy regimes:

Amplitude gets tamed by string states (Regge modes).

Field and ST theory amplitudes agree.

MN ⇠ N�2 ↵0N�3
s e�

↵0
2 (N�3) s ln(↵0s)

FN = 1 MN = MFT
N⇒     

This was already conjectured for the MHV case up to 5 points by [Cheung, O´Connell, Wecht (2010)]

„infrared“, field theory regime

„ultraviolet“, string theory regime

(i)
p

s

N
< Ms : () � < Ng2

s

(ii)
p

s

N
> Ms : () � > Ng2

s

String states dominate.
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black holes

z }| {
excluded region

1 �

field theory

z }| {

string theory

�Ng2s

z }| {

z }| {

weakly-coupled 
gravitons

Transition occurs at E = NMstringIR/UV

Gravitons in final state become hard: Efinal > Ms

p
sNMs
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black holes

z }| {

excluded 
 region

z }| {

�

z }| {

1

field theory

z }| {

string theory

�Ng2s

z }| {

1 Ng2s

field theory string theory

�
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black holes

z }| {

excluded 
 region

z }| {

�

z }| {

1

field theory

z }| {

string theory

�Ng2s

z }| {

1 Ng2s

field theory string theory

Consistency for all �
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What is happening at the point                          ?� = Ng2
s = 1

Here the IR is meeting the UV.

This the point where the string effects match the 
amplitude from the F.T. black hole formation. 

       ⇒    String - black hole correspondence:  

black hole can be described by a state of strings.

gs =
1p
N

Here the F.T. amplitude agrees with the string 
amplitude at the critical point           .� = 1

[Horowitz, Polchinski (1996); Dvali, D.L. (2009); Dvali, Gomez (2010)]
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What about loop corrections or higher order gravity (UV) 
corrections?

They should correspond to 1/N corrections to what we 
computed:

A
g�loop

⇠
✓

1
N

◆g

, ARg ⇠
✓

1
N

◆g
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What about loop corrections or higher order gravity (UV) 
corrections?

They should correspond to 1/N corrections to what we 
computed:

A
g�loop

⇠
✓

1
N

◆g

, ARg ⇠
✓

1
N

◆g

Scale invariant gravity:

- propagating, ghostfree spin-2 only on curved backgrounds
   (de Sitter or anti-De Sitter).

- flat backgrounds: only scalar mode, no gravitational 
                   interaction.       Non-trivial interplay between UV/IR !  

There is some recent interest in higher order         gravity:      Rg

S ⇠
Z

dx

4p�gR

2

[Alvarez-Gaume, Kehagias, Kounnas, D.L., Riotto, Toumbas]

These are 
captured in the 
string amplitude

These might 
be relevant in 
string theory
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Is there possibly any relation between the limit of 
large number N of gravitons and the large Nc limit 
in Yang-Mills gauge theories?

Sonntag, 13. September 15



32

Is there possibly any relation between the limit of 
large number N of gravitons and the large Nc limit 
in Yang-Mills gauge theories?

g
s

= g2
open

  •  Relation between open and closed string coupling:

  •  Planar limit of gauge theory: g2
open

= 1/N
c

  •  At point of string-bh correspondence: gs = 1/
p

N
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Is there possibly any relation between the limit of 
large number N of gravitons and the large Nc limit 
in Yang-Mills gauge theories?

So naively we get:

What is the interpretation of this relation?

N = N2
c

g
s

= g2
open

  •  Relation between open and closed string coupling:

  •  Planar limit of gauge theory: g2
open

= 1/N
c

  •  At point of string-bh correspondence: gs = 1/
p

N
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Summary:

 •  We found an interesting trans-Planckian transition   
    between field theory and string theory: string - 
    black hole correspondence.

  • New computation of N-point gravity (string)   
    amplitudes in trans-planckian large N region in closed form. 

  •  We found evidence for classicalization and 
     black hole production (black hole N-portrait).
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Summary:

 •  We found an interesting trans-Planckian transition   
    between field theory and string theory: string - 
    black hole correspondence.

  • New computation of N-point gravity (string)   
    amplitudes in trans-planckian large N region in closed form. 

  •  We found evidence for classicalization and 
     black hole production (black hole N-portrait).

[Dvali, Gomez, D.L.  (2013)]

Next steps:
 •  Mixed gauge boson (open)/gravity (closed) amplitudes:    
    Bh N-portrait with matter

[Stieberger (2009); Stieberger, Tayor (2014); Cachazo, He, Yuan (2014)]
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Summary:
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Next steps:
 •  Mixed gauge boson (open)/gravity (closed) amplitudes:    
    Bh N-portrait with matter

[Stieberger (2009); Stieberger, Tayor (2014); Cachazo, He, Yuan (2014)]

  •  There is a very interesting connection between the 
        BMS symmetry of GR and the gravitational scattering 
        amplitudes and the b.h. N-portrait [A. Strominger; S. Hawking, arXiv:1509.01147

Dvali, Gomez,D.L. arXiv:1509.02114]
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