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Space-time algebras

Space-time algebras: Poincaré
Relativistic quantum field theory has global Poincaré symmetry:

Lorentz and translations

• On coordinates:

xµ −→ xµ′ = Λµν x
ν + aµ ηµν Λµρ Λνσ = ηρσ

Variation: Λµν = δµν + ηµρωρν ωρν = −ωνρ

δxµ = ωµν xν + aµ =

[
i

2
ωρσMρσ + i aνPν

]
xµ

Poincaré generators on coordinates: linear differential operators

Mµν = i(xµ∂ν − xν∂µ) Pµ = −i∂µ
Poincaré Lie algebra

[Mµν ,Mρσ] = −i (ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ)

[Pµ,Mνρ] = i (ηµνP ρ − ηµρP ν) [Pµ, P ν ] = 0
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Space-time algebras

Space-time algebras: Poincaré

• On fields: Φ(x): a set of fields

Translations:

Φ′(x+ a) = Φ(x) Φ′(x+ a) = Φ′(x) + aµ∂µΦ(x)

δΦ(x) = Φ′(x)− Φ(x) = −i aµPµΦ(x) Pµ = −i∂µ

Lorentz:

Φ′(Λµνx
ν) = S(Λ)Φ(x) S(Λ) = I−

i

2
ωµνΣµν

δΦ(x) = −
i

2
ωρσΣρσΦ(x)− δxµ∂µΦ(x)

The Casimir operator PµPµ = −∂µ∂µ = −� gives the field masses2

The matrix representation Σµν contains the spins (for P 2 > 0) and/or
helicities (P 2 = 0) of the fields.
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Space-time algebras

Space-time algebras: Poincaré

There are ten conserved currents:

Translations: τµν ∂µτµν = 0

Lorentz: jµ,νρ = −jµ,ρν ∂µjµ,νρ = 0

The energy-momentum tensor τµν can be improved: (Belinfante)

Use the six Lorentz symmetries to obtain a new symmetric
energy-momentum tensor Tµν = Tνµ

The corresponding Lorentz currents are jµ,νρ = xρTµν − xνTµρ

Summary: for fields Φ(x) the information of Poincaré symmetry is:

• in the eigenvalues of P 2 (masses2, Klein-Gordon equation),

• in Lorentz representation Σµν (spins/helicities) and

• in the symmetric energy-momentum tensor Tµν .
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Space-time algebras

Space-time algebras

• Poincaré algebra: a contraction of either de Sitter (dS) or Anti de Sitter
(AdS) algebras.

[Mµν ,Mρσ] = −i (ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ)

[Mµν , P ρ] = −iηµρP ν + iηνρPµ

[Pµ, P ν ] = −i v2∆Mµν

v is an energy-scale, an inverse radius
∆ = 1: Anti-de Sitter algebra, SO(2, 3)
∆ = −1: de Sitter algebra, SO(1, 4)

The infinite radius limit v = 0 for both ∆ is Poincaré algebra, as Minkowski
space-time is the infinite radius limit of dS or AdS space-time.

Background geometry has cosmological constant Λ = −3∆v2
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Space-time algebras

Space-time algebras

• Quantum field theory admits (in principle) the extension of Poincaré
algebra to the conformal algebra SO(2, 4) ∼ SU(2, 2)

[Mµν ,Mρσ] = −i (ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) ,

[Mµν , P ρ] = −i (ηµρP ν − ηνρPµ) , [Pµ, P ν ] = 0,

[Mµν , D] = 0, [D,Pµ] = iPµ,

[Mµν ,Kρ] = −i (ηµρKν − ηνρKµ) , [Kµ,Kν ] = 0,

[Pµ,Kν ] = −2i (ηµνD +Mµν), [D,Kµ] = −iKµ.

D: generator of scale transformations (dilatation generator)
Kµ: generator of conformal boosts (or conformal transformations)

Either explicitly broken (Higgs mass for instance), or spontaneously (scalar
expectation values) or generically by quantum effects (scale dependence of
interactions, renormalisation-group effects, scale anomalies . . . )
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Supersymmetry

Space-time superalgebras, supersymmetry

Space-time superalgebras are extensions of the space-time algebras with a
fermionic sector. Schematically:

i : [B,B] ⊂ B ii : [B,F ] ⊂ F iii : {F , F} ⊂ B

i : B is a subalgebra ⊃ a space-time algebra
ii : F is a representation of B, the fermionic sector: F are Lorentz spinors
iii : Fermionic operators: anticommutators

Two cases:

Poincaré or Anti-de Sitter supersymmetry: superalgebra OSp(N , 4).
B = Sp(4,R)× SO(N ) or its infinite radius (super-Poincaré)
contraction. Anti-de Sitter since Sp(4,R) ∼ SO(2, 3).

Superconformal algebra: superalgebra SU(2, 2|N ).
B = SU(2, 2)× SU(N )× U(1) and SU(2, 2) ∼ SO(2, 4).
No U(1) ifN = 4

De Sitter supersymmetry ?

Jean-Pierre Derendinger (AEC, Bern) Supersymmetry and supergravity September 8, 2015 9 / 64



Supersymmetry

Supersymmetry algebra

Construction:

• Start with Lorentz algebra

[Mµν ,Mρσ] = −i (ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ)

• Add supercharges Qiα (i = 1, . . . ,N ), Lorentz spinors:

[Mµν , Qiα] = −
i

4
([σµ, σν ]Qi)α

• Obtain [Pµ, Q
i
α] from Jacobi identities.

• Find the most general {Qiα, Q
j
β} which solves all Jacobi identities.

For the OSp(4,N ) superalgebra, assume that the spinor charges Qiα are
Majorana
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Supersymmetry

Supersymmetry algebra: [Pµ, Q
i
α]

• Jacobi identity

0 = [Mµν , [P ρ, Qiα]] + [P ρ, [Qiα,M
µν ]] + [Qiα, [M

µν , P ρ]]

is solved by [Pµ, Qiα] = [(a+ ibγ5)γµ]αβQ
i
β

for arbitrary real (Majorana condition) numbers a and b

• Using then [Pµ, P ν ] = −i v2∆Mµν

Jacobi identity

0 = [Pµ, [P ν , Qiα]] + [P ν , [Qiα, P
µ]] + [Qiα, [P

µ, P ν ]]

implies a2 + b2 = 1
4
v2∆

Minkowski supersymmetry: v = 0

Anti-de Sitter supersymmetry: v2 > 0 ∆ = 1

De Sitter supersymmetry, v2 > 0 ∆ = −1 is not allowed

=⇒ With parity [Pµ, Qiα] = 1
2
v (γµQi)α

Jean-Pierre Derendinger (AEC, Bern) Supersymmetry and supergravity September 8, 2015 11 / 64



Supersymmetry

Supersymmetry algebra

From here on: Minkowski-space supersymmetry only

N–extended supersymmetry algebra (with central charges)

[Mµν ,Mρσ] = −i (ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ)

[Mµν , P ρ] = −i (ηµρP ν − ηνρPµ) [Pµ, P ν ] = 0,

[Mµν , Qiα] = − i
4
([γµ, γν ]Qi)α [Pµ, Qiα] = 0

{Qiα, Q
j
β} = −2(γµC)αβPµδ

ij + iCαβV
ij + (γ5C)αβZ

ij

Pµ: dimension (mass)1 Qiα: (mass)1/2.

V ij = −V ji and Zij = −Zji: central charges, commute with all operators.
Exist only forN ≥ 2 Dimension (mass)1

Central charges introduce mass parameters in massive representations of the
supersymmetry algebra.
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Supersymmetry

Representations of the supersymmetry algebra
Two general properties:

1 All states have same mass, since [P 2, Qiα] = 0

2 In each representation, same number of bosons and fermions, nB = nF

[Pµ, Pν ] = 0: consider eigenstates of Pµ with momentum pµ, p2 = M2

Massless supermultiplets: M = 0 pµ = (E, 0, 0, E)

N fermionic creation–annihilation pairs, SU(N ) invariance:

{Qi, Qj†} = 4Eδij {Qi, Qj} = {Qi†, Qj†} = 0

2N states with helicities λ̂, λ̂− 1/2, λ̂− 1, . . . , λ̂−N/2

Massive representations: M 6= 0 pµ = (M, 0, 0, 0)

2N fermionic creation–annihilation pairs, Sp(2N ) invariance,
A multiple of 22N states in representation

+ Doubling of the representation usually required by CPT: λ̂ ⇐⇒ N/2− λ̂
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Supersymmetry

Massless supermultiplets
Helicity states of supersymmetric gauge theory multiplets (2N+1 states)

States of given helicity λ are labelled by their SU(N ) representation.

N = 1 N = 1 N = 2 N = 2 N = 3 N = 4

λ λ̂ = 1/2 λ̂ = 1 λ̂ = 1/2 λ̂ = 1 λ̂ = 1 λ̂ = 1
1 1 1 1 1

1/2 1 1 1 + (1) 2 3 + 1 4
0 1 + 1 2 + (2) 1 + 1 3 + 3 6

-1/2 1 1 1 + (1) 2 1 + 3 4
-1 1 1 1 1

i ii iii iv v vi

i, iii: Matter multiplets with maximal helicity 1/2 (chiral and hyper multiplets)
ii, iv, vi: Vector or gauge multiplets (maximal helicity 1) ofN = 1, 2, 4

v: Same as vi, a lagrangian withN = 3 has actuallyN = 4

The chiral multiplet i only admits chiral representations (R 6= R), as in SM
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Supersymmetry

Supergravity supermultiplets
All massless multiplets with one state at maximal helicity 2.
States are labelled by SU(N ) representations (antisymmetric tensors).

λ N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 8
2 1 1 1 1 1 1 1
3
2

1 2 3 4 5 6 8
1 1 3 6 10 15 + 1 28

1/2 1 4 10 + 1 20 + 6 56
0 1 + 1 5 + 5 15 + 15 70

-1/2 1 4 1 + 10 6 + 20 56
-1 1 3 6 10 1 + 15 28

-3/2 1 2 3 4 5 6 8
-2 1 1 1 1 1 1 1

4 8 16 32 64 128 256

• N = 7 leads to the same multiplet and theory asN = 8.
• In contrast to gauge theories,N = 3 andN = 4 are different theories.
• Multiplets have 2NB + 2NF states. But forN = 8: 27

B + 27
F .
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Supersymmetry

Some massive supermultiplets

Massive multiplets with maximal spin 2 forN = 1, 2, 4 theories

Zero central charges.

States are labelled by Sp(2N ) representations (antisymmetric traceless tensors).

Spin N = 1 N = 2 N = 4
2 1 1 1

3/2 1 2 1 4 8
1 1 2 1 1 4 5 + 1 27

1/2 1 2 1 4 5 + 1 4 48
0 2 1 5 4 1 42

total = 4 8 12 16 16 32 48 256

These are “long multiplets". Massive multiplets with central charges have less
states (“short multiplets") in general.
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Supersymmetric field theories

N = 1 supersymmetric field theories

A supersymmetricN = 1 field theory describes:

Vector multiplets (gauge fields Aaµ + gauginos λa) in the adjoint
representation of a gauge group G

Chiral multiplets (Weyl fermions ψi + complex scalars zi) in
representation r of the gauge group.

Condition: r should be free of chiral anomalies.

Supersymmetry relates the interactions (and the masses) of superpartners in
the lagrangian.

Exists in two forms:

Renormalizable: defined by G, r and a gauge-invariant cubic polynomial
(the superpotential) [ MSSM, NMSSM, . . . ]

SUSY sigma-model: defined by G, r and three gauge-invariant functions
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Supersymmetric field theories

The simplest, chiral supermultiplet
Describes 2B + 2F on-shell states, helicities 0, 0,±1/2

Off-shell fields z ψ f
M = 0, helicity: 0, 0 ±1/2 0, 0
M 6= 0, spin: 0, 0 1/2 0, 0

f is auxiliary, see later

1st step: Free, massless lagrangian

L0 = (∂µz)(∂µz) +
i

2
ψσµ∂µψ −

i

2
∂µψσ

µψ

Invariant, up to a derivative, under [ε: susy parameter, Majorana spinor]

δz =
√

2 εψ δψα = −
√

2i ∂µz(σµε)α,

Susy algebra: [δ1, δ2]z = −2i(ε2σ
µε1 − ε1σµε2)∂µz

Result is a translation δz = i∆µ Pµz Pµ = −i∂µ

∆µ = 2(ε2σ
µε1 − ε1σµε2)
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Supersymmetric field theories

The simplest, chiral supermultiplet

For the spinor, algebra holds on-shell only: Dirac: ∂µψσµ = 0

[δ1, δ2]ψα = −2i(ε2σ
µε1 − ε1σµε2)∂µψα

+2i(∂µψσ
µε2)ε1α − 2i(∂µψσ

µε1)ε2α

2nd step: Modify with the auxiliary field f :

δz =
√

2 εψ δψα = −
√

2fεα −
√

2i∂µz(σµε)α

δf = −
√

2i ∂µ(ψσµε) ⇐ a derivative

and then:

[δ1, δ2]z = −i∆µ∂µz [δ1, δ2]ψα = −i∆µ∂µψα [δ1, δ2]f = −i∆µ∂µf

as expected: a linear, off-shell representation of susy
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Supersymmetric field theories

The simplest, chiral supermultiplet

3rd step: The modified δf imposes to modify the lagrangian:

L = (∂µz)(∂µz) +
i

2
ψσµ∂µψ −

i

2
∂µψσ

µψ + ff

=⇒ L invariant (up to a derivative), f auxiliary with field equation f = 0

4th step: Introduce masses:

−m[fz +
1

2
ψψ]−m[fz +

1

2
ψψ]

is invariant (up to a derivative) under the same susy variations

Eliminate the auxiliary f with field equation f = mz leads to the free
lagrangian of z and ψ with mass m.
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Supersymmetric field theories

The simplest, chiral supermultiplet

5th step: Introduce interactions: Superpotential W (z) = m
2
z2 + λ

3
z3.

−f
dW

dz
−

1

2

d2W

dz2
ψψ + h.c.

is invariant (up to a derivative) under the same susy variations

Eliminating f with field equation f = mz + λz2 (nonlinear now) leads to

Lm,λ = (∂µz)(∂µz)− V (z, z)

+ i
2
ψσµ∂µψ − i

2
∂µψσ

µψ − m
2

[ψψ + ψψ]− λzψψ − λzψψ

Scalar potential:

V (z, z) = |f |2 = |mz + λz2|2 =

∣∣∣∣ ddzW (z)

∣∣∣∣2
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Supersymmetric field theories

The gauge, vector supermultiplet

Describes 2B + 2F on-shell states, helicities ±1,±1/2

Aµ λ D
M = 0, helicity: ±1, 0 ±1/2 0
M 6= 0, spin: 0, 0 1/2 0, 0

λ: gaugino spinor
D: auxiliary

Under supersymmetry variations

δAµ = iεσµλ− iλσµε δλ = iDε+ 1
2
Fµν σ

µσνε

δD = ∂µ(εσµλ+ λσµε) ⇐ a derivative again

the super-Yang-Mills lagrangian

LSYM = Tr

[
−

1

4
FµνF

µν +
i

2
λσµ∂µλ−

i

2
∂µλσ

µλ+
1

2
DD

]
is invariant up to a derivative.
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Superspace, superfields

N = 1 superspace, superfields

At this point:

The component with highest mass dimension in an off-shell
supermultiplet is an auxiliary scalar which transforms with a derivative

Precisely what is needed for a supersymmetric lagrangian

Wanted: a systematic method to combine supermultiplets into
supermultiplets.
Then, auxiliary fields provide contributions to lagrangian field theories

Two options:
Tensor calculus
Superspace and superfield techniques
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Superspace, superfields

N = 1 superspace, superfields
• Space-time translations: φ(x) −→ φ(x+a) δφ(x) = iaµPµφ(x)

Generators are derivatives Pµ = −i∂µ [ Pµ: energy, aµ: energy−1]

• Leibniz rule: Combine fields into fields:

δφ(x) = aµ∂µφ =⇒ δ F (φ(x)) =
dF

dφ
δφ = aµ

dF

dφ
∂µφ = aµ∂µF

• Supersymmetry ∼ “square root of translation":

{Qα, Qα̇} = −2i (σµ)αα̇∂µ δΦ = (iεQ+ εQ)Φ

Φ: a linear (off-shell) representation (supermultiplet)

• Superspace: extend formally space-time to superspace with coordinates

( xµ , θα , θα̇ ) {θα, θβ} = {θα̇, θβ̇} = {θα, θβ̇} = 0

θα (θα̇) left-handed (right-handed) Weyl spinor:
Grassmann (anticommuting) coordinates.
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Superspace, superfields

N = 1 superspace, superfields
Lorentz algebra, SO(1, 3) ∼ Sl(2,C): θα: (2, 1) θα̇: (1, 2)

θαθβ = −θβθα = 1
2
εαβθθ: [(2, 1)× (2, 1)]A → (1, 1), θθ = εβαθαθβ

θα̇θβ̇ = −θβ̇θα̇ = 1
2
εαβθθ: [(1, 2)× (1, 2)]A → (1, 1), θθ = εα̇β̇θα̇θβ̇

θα × θβ̇: (2, 1)× (1, 2) = (2, 2), a vector: θσµθ σµαβ̇

θαθβθγ = 0 θα̇θβ̇θρ̇ = 0

A superfield is a function in superspace, with coordinates (x, θ, θ) (or
with any other set of coordinates): Φ(x, θ, θ)

It has a polynomial expansion in θ, θ which stops at θθθθ.

The expansion includes 16 fields (functions of x)

8 fields are bosons, 8 fields are fermions
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Superspace, superfields

N = 1 superspace, superfields

An example: the real, or vector (since it includes a vector field) superfield:

V (x, θ, θ) = C(x) + iθχ(x)− iθχ(x) + θσµθ vµ(x)

+
i

2
θθ[M(x) + iN(x)]−

i

2
θθ[M(x)− iN(x)]

+iθθθ[λ(x) +
i

2
∂µχ(x)σµ]− iθθθ[λ(x)−

i

2
σµ∂µχ(x)]

+
1

2
θθθθ[D(x)−

1

2
�C(x)]

V (x, θ, θ) is Lorentz invariant (scalar, zero spin)
(by assumption, it could be spinor, vector, . . . )

Since V is scalar, bosons are red, fermions are green:
C,M,N,D: four real scalars (4B), vµ: vector field (4B),
χ, λ: two Weyl spinors (8F ).
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Superspace, superfields

N = 1 superspace, superfields

On superfields, supersymmetry variations are represented by derivatives in
superspace:

iQα =
∂

∂θα
+ i(σµθ)α∂µ iQα̇ = −

∂

∂θ
α̇
− i(θσµ)α̇∂µ

Pµ = −i∂µ {Qα, Qα̇} = −2i (σµ)αα̇∂µ

δΦ(x, θ, θ) = i[aµPµ + εαQα + εα̇Q
α̇

] Φ

A supersymmetry variation induces a translation is superspace:
xµ −→ xµ + aµ − iθσµε+ iεσµθ

θα −→ θα + εα

θα̇ −→ θα̇ + εα̇

And a function of superfields is a superfield.
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Superspace, superfields

N = 1 superspace, superfields
Chiral superfields describe chiral supermultiplets (helicities ±1/2, 0, 0)

Susy covariant derivatives

Dα =
∂

∂θα
− i(σµθ)α∂µ Dα̇ =

∂

∂θ
α̇
− i(θσµ)α̇∂µ

Since {Dα, Qβ} = {Dα, Qβ̇} = {Dα̇, Qβ} = {Dα̇, Qβ̇} = 0, constraints

Dα̇Φ = 0 (chiral superfield) DαΦ = 0 (antichiral superfield)

are compatible with supersymmetry variations.
Expansion is: [ yµ = xµ − iθσµθ ]

Φ(y, θ) = z(y) +
√

2 θψ(y)− θθ f(y)

= z(x)− iθσµθ ∂µz(x)− 1
4
θθθθ�z(x)

+
√

2 θψ(x) + i√
2
θθ∂µψ(x)σµθ − θθ f(x)
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Supersymmetric gauge theories

Supersymmetric gauge theories
Field content:
• Chiral superfields in representation r of the gauge group (“matter")

Φ −→ eΛΦ, Dα̇Λ = 0, Λ = ΛaT ar

• Gauge fields in real superfield A = AaT ar , with gauge transformation

eA −→ e−ΛeAe−Λ

The abelian (Maxwell) case: A −→ A− Λ− Λ

Then:

ΦeAΦ is gauge invariant. Its highest component is the gauge-invariant
(renormalizable) kinetic lagrangian of the chiral multiplet:

Lkin. = [ΦeAΦ]θθθθ or Lkin. =

∫
d2θd2θΦeAΦ

The same holds for the real superfield K(ΦeA,Φ).
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Supersymmetric gauge theories

A parenthesis on integrals over θ, θ

Under
∫
d4x, all derivatives ∂µ(. . .) are irrelevant.

In a lagrangian, a derivative ∂µ(. . .) is irrelevant.

For a chiral superfield Φ:∫
d4x [Φ]θθ = −

1

4

∫
d4xDDΦ ≡

∫
d4x

∫
d2θΦ

For a real superfield A:∫
d4x [A]θθθθ =

1

16

∫
d4xDDDDA ≡

∫
d4x

∫
d2θd2θA

These equalities can be used as definitions of the integration over
Grassmann variables θ, θ (Berezin integral).
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Supersymmetric gauge theories

Supersymmetric gauge theories

Next, we need gauge kinetic terms and the super-Yang-Mills lagrangian

Gauge field strengths (or curvatures) F aµν are in the chiral superfields:

Wα = −
1

4
DDe−ADαe

A Wα̇ =
1

4
DDeADα̇e

−A

with Dα̇Wα = DαWα̇ = 0 (and susy Bianchi identity)
Then:

LSYM =
1

4

∫
d2θ TrWαWα +

1

4

∫
d2θ TrWα̇W

α̇

Or:

LSYM = Tr

[
−

1

4
FµνF

µν +
i

2
λσµ∂µλ−

i

2
∂µλσ

µλ+
1

2
DD

]
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Supersymmetric gauge theories

Supersymmetric gauge theories
The (almost) most general two-derivative lagrangian withN = 1
supersymmetry and gauge invariance:

L =

∫
d2θd2θ

[
K(ΦeA,Φ) + ξaAa

]
K: Kähler potential

+

∫
d2θ

[
W (Φ) +

1

4
f(Φ) TrWW

]
W : superpotential

+

∫
d2θ

[
W (Φ) +

1

4
f(Φ) TrWW

]
f : gauge kinetic function

Defined in terms of three gauge-invariant functions.
ξa: Fayet-Iliopoulos terms for abelian gauge fields only.
A moderately interesting generalization is

f(Φ) TrWW =⇒ f̃(Φ,TrWW)
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Supersymmetric gauge theories

Supersymmetric gauge theories
• Scalar kinetic terms: Kzz(∂µz)∂µz) Kzz =

∂2K
∂z∂z

A scalar field theory on a Kähler manifold.

• Scalar potential: V (z, z) = Kzz ff +
1

2
f(z)DaDa ≥ 0

( of course, the value “0“ in the bound is not meaningful )

Auxiliary fields (field equations):

f = (Kzz)−1∂W

∂z
Da = Re f(z)−1

[
∂K
∂z

T ar z + ξa
]

If 〈f〉 = 〈Da〉 = 0: the true ground state, supersymmetric.

If no such solution, 〈f〉 or 〈Da〉 6= 0 do not vanish, susy spontaneously
broken

δψ = −
√

2 f ε+ . . . δλa = iDa ε+ . . .

and there is a massless Goldstone spinor (the Goldstino)
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Supersymmetric gauge theories

The renormalizable theory
Renormalizability is obtained if K = ΦeAΦ and f(Φ) = 1 (to get canonical
kinetic terms) and with a cubic, gauge-invariant, polynomial for the
superpotential:

W (Φi) = αiΦ
i +

1

2
mijΦ

iΦj +
1

3
λijkΦ

iΦjΦk

Linear terms only exist for gauge-singlet chiral superfields.

This theory has exceptional renormalization properties:

Non-renormalization theorems: only wave function renormalization for
gauge and chiral multiplets needed: the parameters of the superpotential
are not renormalized. Holds to all orders of perturbation theory.
Soft breaking terms: terms breaking susy which only affect logarithmic
divergences are gaugino masses, scalar masses (zz and µ2z2 + h.c.),
analytic trilinear couplings βz3 + h.c.

Generated by susy breaking in supergravity, as required for realistic
models
Non-perturbative results, subtleties with massless chiral superfields, . . .
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Supergravity

Supergravity
Local supersymmetry: variation parameter εα local =⇒ εα(x)

The space-time translation induced by [δ1, δ2] is local

∆µ = 2(ε2σ
µε1 − ε1σµε2) = ∆µ(x)

Follows from the superalgebra {Qα, Qα̇} = −2i (σµ)αα̇∂µ = 2(σµ)αα̇Pµ

Local supersymmetry ⇐⇒ local translations or
general coordinate transformations (GCT)

and the gauge theory of supersymmetry is a theory of GRAVITATION.

Non-renormalizable . . . an effective theory of “something"

Natural cut-off scale where gravitation is expected to feel quantum
physics, the Planck scale MP ∼ 1019 GeV

The maximalN = 8 theory has exceptional finiteness properties, under
difficult investigations (but not the right physics)
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Supergravity

Supergravity

There are independent motivations to consider supergravity theories

Bottom-up: It provides a source and suggests structures for the
supersymmetry breaking needed in (realistic) supersymmetric quantum
field theories (like MSSM, NMSSM, . . . )

Top-down: It can be used as an effective, low-energy (E �MP )
description of a more fundamental microscopic quantum theory with
gravitation (like superstring theories)

Curiosity, model for microscopic gravitation with gauge and matter fields
(scattering amplitudes, . . . ) . . .

A vast and complicated subject.
At first sight, for “realistic models", the existence of fermions in chiral representations
excludesN > 1.
But, for instance, string models suggest more supersymmetries with quite elaborate
breaking patterns, still under study.
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Supergravity

Preamble: spinors, vierbein
Supersymmetric theories (and Nature) have fermions and spinor fields.

GCT: space-time with (Riemann) metric gµν(x) in coordinates xµ

and GCT-invariant line element ds2 = gµνdx
µdxν .

Spinors ψ live in the (Minkowski) tangent-space at each point x.

Tangent-space coord. ζa(x), line element ds2 = ηabdζ
a(x)dζb(x),

ds2 has local Lorentz invariance.

Vierbein:
gµν(x) = ηab e

a
µ(x)ebν(x) eaµ = ∂µζ

a(x)

Inverse: eµae
b
µ = δba eµae

a
ν = δνµ

Local Lorentz: δψ(x) = − i
2
ωab(x)σabψ(x) σab = i

4
[γa, γb]

Dirac lagrangian: requires the gauge field of local Lorentz: the spin connection

L = ie ψγµDµψ Dµψ = ∂µψ +
1

2
ωµab σ

abψ e = det eaµ
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Supergravity

SimpleN = 1 supergravity
Simply the sum of the covariantized Einstein and Rarita-Schwinger
lagrangians

Symmetries are:
Local coordinate transformations (GCT) =⇒ General relativity
Local Lorentz (tangent space)
Local supersymmetry

Fields are the gauge fields of:
Translations, GCT: the vierbein eaµ

Local Lorentz: the spin connection ωabµ = −ωbaµ
Supersymmetry: the gravitino ψαµ

[ This is the first-order formalism ]

Explicitly: γµνρ = γ[µγνγρ]

L = e eµae
ν
bRµν

ab(ω) + eψµγ
µνρD̃νψρ e = det eaµ
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Supergravity

Gravitino, Rarita-Schwinger lagrangian
ψµα: gravitino, gauge field of supersymmetry, vector–spinor:

spinor ⊗ vector = gravitino ⊕ spinor
[(2, 1)⊕ (1, 2)] ⊗ (2, 2) = [(3, 2)⊕ (2, 3)] ⊕ [(1, 2)⊕ (2, 1)]

To isolate the spinor, projection condition:

(γaψa)α = (γµψµ)α = 0 =⇒ ψ̃αa = ψαa −
1

4
(γaγ

bψb)α

This condition follows from the lagrangian (in Minkowski space)

LRS =
1

2κ2
ψaγ

abc∂bψc Rarita-Schwinger [κ−1: mass scale]

Majorana condition on ψa • Gauge invariance δψa = ∂aλ

Field equation: γabc∂bψc = 0

Propagates two massless states with helicities ±3/2
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Supergravity

Gravitino, Rarita-Schwinger lagrangian
Counting states: starting with 4× 4 = 16F hermitian fields in ψαa

Rarita-Schwinger:

LRS =
1

2κ2
ψaγ

abc∂bψc δψa = ∂aλ γabc∂bψc = 0

Use gauge invariance with γa∂aλ = −γaψa to impose γaψa = 0

Defines λ up to a solution of γa∂aλ̃ = 0 (massless Dirac)

In gauge γaψa = 0: field equation γa∂bψ
b = γb∂bψ

a

And then multiply by γa to obtain:

γaψa = 0 (gauge choice) ∂bψ
b = 0 γb∂bψa = 0 (Dirac)

δψa = ∂aλ̃ γa∂aλ̃ = 0 (residual gauge symmetry)

Counting on-shell states: 16F − 4F − 4F − 4F − 2F = 2F

and these two states have helicities ±3/2 (use plane waves to check)
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Supergravity

The spin connection, Einstein-Hilbert lagrangian
Einstein gravitation formulated in terms of the vierbein eaµ and the spin
connection ωµab.

• Spin connection curvature (Lorentz gauge field)

Rµν
ab = ∂µων

ab − ∂νωµab + ωµ
acων c

b − ωνacωµ cb

• Lagrangian Lgrav. = 1
2κ2 eR R = eµae

ν
bRµν

ab

• The spin connection has an algebraic field equation (does not propagate):

ωµ cd = −1
2
(∂µeνc − ∂νeµc)eνd + 1

2
(∂µeνd − ∂νeµd)eνc

−1
2
eρce

ν
d(∂ρeνa − ∂νeρa)eaµ ≡ ωµ cd(e)

• Rewrite then R as a function of the vierbein and its derivative.
and Lgrav. propagates two states with helicities ±2 (graviton)

• If the spin connection appears in other lagrangian terms, its algebraic
field equation leads to contorsion:

ωµ
ab = ωµ

ab(e) + κµ
ab
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Supergravity

PureN = 1 supergravity, construction
PureN = 1 supergravity is very simple:

Einstein-Hilbert + Rarita-Schwinger

SERS[eaµ, ψµ, ωµab] =
1

2κ2
D

∫
dDx e

(
R+ ψµγ

µνρD̃νψρ

)

But: local symmetries imply covariant derivatives

D̃µψν = ∂µψν + 1
2
ωµ

abσabψν (spin connection)

ωµab = ωµab(e) + κµab (contorsion tensor)

D̃µψν − D̃νψµ = Dµψν −Dνψµ + 2Sλµνψλ (torsion tensor)

with gravitino torsion (for a D = 4 Majorana gravitino)

Sλµν = −1
4
ψµγ

λψν

κµab = −1
4

[
ψµγaψb − ψµγbψa + ψaγµψb

]
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Supergravity

PureN = 1 supergravity, construction

Covariantization =⇒ four-gravitino interaction, and then:

Four-dimensional pure N = 1 supergravity is not so simple:

L =
1

2κ2
4

eR (ω(e)) +
1

2κ2
4

eψµγ
µνρDν(ω(e))ψρ

+
e

32κ2
4

[
4(ψ

µ
γµψρ)(ψ

ν
γνψ

ρ)− (ψµγνψρ)(ψ
µ
γνψρ)

−2(ψµγνψρ)(ψ
µ
γρψν)

]
with now D̃νψρ = ∂νψρ + 1

2
ων ab(e)σ

abψρ, the usual spin connection of
pure gravitation theory.

In four space-time dimensions:

Gravitino: 4× 4− 4 = 12F off-shell. 2F with helicities ±3/2 on-shell.
Graviton: 10− 4 = 6B on-shell. 2B with helicities ±2 on-shell.
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Supergravity

PureN = 1 supergravity, variations, auxiliary fields
More complications: auxiliary fields of N = 1 supergravity

The N = 1 supergravity action is invariant under local susy variations

δeaµ = −1
2
εγaψµ δeµa = 1

2
εγµψa

δψµ = Dµε δψµ = Dµε

With standard covariant derivative Dµε = ∂µε+ 1
2
ωµabσ

abε

But it is not an off-shell representation of the supersymmetry algebra:
[δ1, δ2] is a diffeomorphism only for fields solving the field equations

Another sign is the number of off-shell field components: 12F 6= 6B.

More (auxiliary) fields needed for a linear off-shell representation, with
nauxB − nauxF = 6

By field equations, vanish for pure supergravity, but produce interactions when
coupled to matter or gauge multiplets.
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Supergravity

PureN = 1 supergravity, auxiliary fields
Several choices of auxiliary fields:

Minimal schemes with 12B + 12F (nauxB = 6, nauxF = 0)
Old minimal: Aµ, not a gauge field (4B), couples to a non-conserved (in
general) current and f0, complex scalar (2B)

New minimal: Aµ with gauge symmetry (3B), couples to a conserved
current, antisymmetric tensor Bµν with gauge symmetry (3B).

Non minimal schemes have 16B + 16F (somewhat, loosely relevant to
superstring theories), 20B + 20F , . . .

Each scheme generates a particular class of interactions. For instance:
R–symmetric with new minimal.

The most general is the simplest, old minimal (describes all classes).

Each scheme can be constructed from superconformal theories with
various compensating fields to gauge-fix dilatation, special conformal and
R symmetries
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Supergravity

Supergravities, summary
Four-dimensional supersymmetry (linear) representations

SUSY Supergravity |Hel.|≤ 1 |Hel.|≤ 1/2 Chirality
N = 1 2B + 2F X X ∗ X
N = 2 4B + 4F X ∗ X ∗ - D = 6
N = 3 8B + 8F X ∗ - -
N = 4 16B + 16F

∗ X ∗ - - D = 10
N = 5 32B + 32F

∗ - - -
N = 6 64B + 64F

∗ - - -
N = 8 128B + 128F

∗ - - - D = 11

∗: scalar fields in supermultiplet
Number of supercharges is 4N
16 supercharges (N = 4): type I, heterotic strings
32 supercharges (N = 8): type IIA, IIB strings, M–“theory"
N = 7 does not exist (it is theN = 8 theory)
N = 0, 1 only for realistic models, or nonlinear, (or truncated. . . )
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N = 1 supergravity-matter couplings

N = 1 supergravity and matter couplings

N = 1 supergravity couples to:

all gauge groups (gauge superfield Aµ, λ, helicities ±1,±1/2)

all representations for chiral multiplets (ψ and z, helicities ±1/2, 0, 0)

and allows chirality of fermion representations.

The idea is then:
Couple the SSM to supergravity, add a “hidden" sector to break
supersymmetry.
Generate a susy breaking scale m3/2 and scalar vev’s in the hidden
sector 〈φ〉
Decouple gravity: expand, take MP −→∞, keep m3/2 fixed, . . .
The result is a globalN = 1 theory with soft breaking terms.
However: N = 1 Poincaré only if the cosmological constant at the
breaking point is zero. In general, AdS globalN = 1 . . .
A severe constraint on the hidden sector . . .
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N = 1 supergravity-matter couplings

N = 1 supergravity and matter couplings

The complete Lagrangian has been obtained by Cremmer, Ferrara, Girardello
and Van Proeyen (1982). It needs 1.5 pages in Nucl. Phys. B 212.

In the superconformal formulation, it is symbolically

L = −
3

2

[
S0S0 e

−K/3
]
D

+
[
S3

0W (Φ) +
1

4
f(Φ) TrWW

]
F

where S0 is the chiral compensating multiplet of the old minimal formalism.

• Similar to the global superspace Lagrangian

L =

∫
d2θd2θK(Φ

A
,Φ) +

∫
d2θ

[
W (Φ) +

1

4
f(Φ) TrWW

]
+ h.c.

Superconformal and superspace calculus turn these symbolic expressions
into Lagrangians . . . . . . . . .

Curiously, most applications use only the scalar potential and few fermion
mass terms.
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N = 1 supergravity-matter couplings

Local versus global, Kähler symmetry
• Global supersymmetry: three independent functions

L =

∫
d2θd2θK(Φ

A
,Φ) +

∫
d2θ [W (Φ) +

1

4
f(Φ) TrWW] + h.c.

Invariant under Kähler transformations K −→ K+ Λ(Φ) + Λ(Φ).

• N = 1 supergravity, in the superconformal formulation:

L = −
3

2

[
S0S0 e

−K/3
]
D

+
[
S3

0W +
1

4
f(Φ) TrWW

]
Kähler transformation is a gauge invariance:

K′ = K+ Λ(Φ) + Λ(Φ) S0
′ = S0e

Λ(Φ)/3 W ′ = We−Λ(Φ)

Supergravity depends then on two functions only:

L = −
3

2

[
S0S0 e

−G/3
]
D

+
[
S3

0 +
1

4
TrWW

]
G = K+ ln |W |2

Also true for global susy in an Anti-de Sitter geometry,
an effect of the large radius limit to Poincaré
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N = 1 supergravity-matter couplings

TheN = 1 supergravity scalar potential

V =
1

κ4

[
eK K−1i

j(Wi +KiW )(W j +KjW )−3 eKWW
]

+
1

2
f(Φ)−1Ki(TAz)iKj(TAz)j

Blue terms are positive or zero: they are generated by chiral (f ) or gauge
(D) auxiliary fields. Susy breaks if they are not zero.

The red term is negative or zero, it is generated by a supergravity
auxiliary field. Unbroken susy: Anti-de Sitter or Minkowski (W = 0).

Supergravity and supersymmetry are actually extensions of Anti-de Sitter
symmetry: SO(2, 3) ∼ Sp(4,R) −→ OSp(n|4)
Poincaré is obtained in the large AdS radius limit only.

De Sitter ground state: with broken supersymmetry only.
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Supersymmetry breaking

Supersymmetry breaking
In Nature, supersymmetry is at best a broken symmetry . . .

• GlobalN = 1 supersymmetry

Spontaneous susy breaking induced by auxiliary field vev’s: 〈f〉, 〈Da〉

Scalar potential: V = ff + 1
2
DaDa ≥ 0

An algebraic problem: f = ∂W
∂z

= 0 and Da = 0 should have no solution.

Disastrous mass relations:
〈f〉 ⇒ STrM2 = 0 (STrM2 = TrbosonsM2 − TrfermionsM2)
〈Da〉: needs Fayet-Iliopoulos terms for gauged U(1)

in conflict with data, phenomenology, anomalies, esthetics . . .
STrM2 ∼ −〈Da〉Tr T a

And anyway a massless Goldstino spinor.

Consider then spontaneous breaking of local susy in supergravity models
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Supersymmetry breaking

Spontaneous breaking of local supersymmetry

• Analogy: U(1) gauge theory with a charged complex φ(x):

φ(x) = eiσ(x)[v + h(x)]

v: U(1)-breaking order parameter (gauge-invariant)
gauge symmetry: δσ = Λ δAµ = −∂µΛ

(Dµφ)†(Dµφ) −→ v2(Aµ + ∂µσ)(Aµ + ∂µσ) + . . .

The gauge-invariant massive field is Ãµ = Aµ + ∂µσ, σ is the Goldstone
boson, and the helicity zero component of the spin one Ãµ

• Super-higgs mechanism: (neither Higgs nor “et al." found this)

Induced by auxiliary field vev’s 〈f i〉, 〈Da〉
Massless Goldstino would be ηG = 〈Kjif j〉ψi −

i
2
〈Re f(z)Da〉λa

Use local susy parameter ε to gauge-away ηG.
Since δψµ = ∂µε+ . . . ηG absorbed in ψµ: a massive spin 3/2 state.

Susy-breaking order parameter. m2
3/2 = 1

κ2 〈|W |2eK〉
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Supersymmetry breaking

A “no-scale" example
Two chiral supermultiplets with scalar fields S and T , and

K = −n ln(T + T ) + K̂(S, S) Kähler potential,

W = W (S) Superpotential.

Scalar potential (using κ = 1 in Einstein frame)

V = (T + T )−n eK̂
[
K̂−1

SS
|WS + K̂SW |2 + (n− 3)WW

]
Positive if n ≥ 3. Choose n = 3 and solve 〈WS + K̂SW 〉 = 0

=⇒ A stable ground state with 〈V 〉 = Λ = 0

〈WS + K̂SW 〉 = 0: fixes 〈S〉 (in general), 〈fS〉 = 0, leaves 〈T + T 〉
arbitrary, as well as 〈fT 〉 = 〈(T + T )−1/2eK̂/2W 〉

〈W 〉 6= 0: susy broken by T with arbitrary susy-breaking order parameter

m3/2 = 〈eK/2W 〉 = 〈(T + T )−3/2eK̂/2W 〉

m3/2 is the gravitino mass since Λ = 0.
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Supersymmetry breaking

Supergravity scalar potentials again
For allN , the typical supergravity potential is the sum of three terms:

V = Vm + Vg + V0

Vm ≥ 0: generated when matter fermions are present.
Exists forN = 1, 2 (chiral and hyper multiplets).

δψ = Aε+ . . . −→ Vm ∼ +|A|2

Vg ≥ 0: generated when gauginos are present.
Exists for allN = 1, . . . , 8.

δλ = Bε+ . . . −→ Vg ∼ +|B|2

V0 ≤ 0: generated by the gravitinos (helicities ±2,±1/2):
Exists for allN = 1, . . . , 8.

δψµ = Cγµε+ . . . −→ V0 ∼ −|C|2

Some or all supersymmetries break if Vm and/or Vg are positive on the
vacuum.
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Supersymmetry breaking

Supergravity scalar potentials again

The gauge potential Vg plays a fundamental role in the vacuum structure
ofN -extended supergravities.

Produced by gauging a symmetry of the theory: abelian (for instance,
R–symmetry inN = 1) or non-abelian. Compact or non-compact.

Flat directions in the potential, with no-scale behaviour and Minkowski
space, algebraically characterized: a condition on the gauged algebra.

(. . . ): number of abelian, ungauged, gauge fields in the supermultiplet:

SUSY Supergravity |Hel.|≤ 1 |Hel.|≤ 1/2
N = 1 2B + 2F (0) X (n) X
N = 2 4B + 4F (1) X (n) X D = 6
N = 3 8B + 8F (3) X (n) -
N = 4 16B + 16F (6) X (n) - D = 10
N = 5 32B + 32F (10) - -
N = 6 64B + 64F (15) - -
N = 8 128B + 128F (28) - - D = 11
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Supersymmetry breaking

Some dates and names, ∼ 40 years ago

Field theories with linear supersymmetry, 1974 (Wess and Zumino).

Soon found to have softer divergences than ordinary gauge theories
(logarithmic renormalization only) and powerful all-order
non-renormalization theorems (Iliopoulos, Zumino, Wess, Ferrara).

Superspace techniques (Salam, Strathdee; Wess, Zumino, Ferrara).

Spontaneous supersymmetry breaking (Fayet, Iliopoulos, 1974;
O’Raifeartaigh, 1975).

Currents and supercurrents, approaches to gravity coupling (Ferrara,
Zumino, 1974).

Supergravity was created in 1976 (Ferrara, Freedman and Van
Nieuwenhuizen; Deser and Zumino).

Matter and gauge couplings to N = 1 supergravity, 1982, Cremmer,
Ferrara, Girardello, Van Proeyen

(also Arnowitt, Chamseddine, Nath; Bagger, Witten)
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Supersymmetry breaking

Dilaton supergravity, no-scale models
For a single chiral superfield S and a constant superpotential W ,

V =
1

κ4
eK
[
K−1

SS
KSKS − 3

]
WW

is identically zero if

K = −3 ln(S + S) ∀W

but the auxiliary field fS and the gravitino mass are

fS = W (S + S)−1/2 6= 0 m3/2 = W (S + S)−3/2

Hence, W induces supersymmetry breaking in Minkowski space, to obtain:

Broken supersymmetry in Minkowski space with a free scale 〈S + S〉

The prototype of no-scale models:

Tree-level susy breaking scale arbitrary, radiative corrections may define it
with some logarithmic factor and then with an induced scale hierarchy.

(Cremmer, Ferrara, Kounnas, Nanopoulos, 1983)
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Supersymmetry breaking

Dilaton supergravity, no-scale models

Consider now a string compactification:

In general, it produces a real dilaton scalar and an antisymmetric tensor Bµν
with gauge invariance δBµν = ∂µΛν − ∂νΛµ in the universal gravitation
sector (in type II, in NS–NS sector).

The antisymmetric tensor is equivalent to a real scalar with shift symmetry:

∂[µBνρ] ↔ ∂µ Im s C ↔ Re s

and there should be a description in terms of a chiral multiplet S, with however
an auxiliary field fS which could be a source of supersymmetry breaking.

The relation is a Legendre transformation between supermultiplets.

The behaviour of the dilaton scalar in the effective supergravity Lagrangian is
important: its value is the string coupling. Does it stabilize, does it slide to
zero (run away), are further moduli fields needed ?
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Supersymmetry breaking

Dilaton supergravity, no-scale models

Within supergravity, two descriptions and a duality generated by a Legendre
transformation:

Description with Bµν : (The superpotential is constant)

L = −
3

2

[
S0S0H(X)

]
D

+
[
S3

0 W
]
F

X =
L

S0S0

Description with chiral multiplet S:

L̃ = −
3

2

[
S0S0e

− 1
3K(S+S)/3

]
D

+
[
S3

0W
]
F

Legendre transformation: e−
1
3K(S+S) = H(X)−X(S + S)

Dilaton supergravities:

Heterotic: H ∼ X−1/2 K = −ln(S + S)

Type II: H ∼ X4 K = −4 ln(S + S)
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Supersymmetry breaking

Dilaton supergravity, no-scale models

The Legendre transformation implies:

fS = −CHCCz0f0

and fS is not an independent auxiliary field. Generalization to many
fields:
The auxiliary field fS of a chiral multiplet dual to a linear superfield with
an antisymmetric rensor is a linear combination of other auxiliary fields.

fS ∼
∂

∂zi
HCf i

The dilaton is not stabilized. More fields and interactions required.

The single field no-scale model with K = −3 ln(S + S) does not
describe a Bµν + dilaton sector.

Hence, low-energy scenarios in which supersymmetry breaking is
induced by the dilaton superfield S only are forbidden by supergravity
arguments.
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Supersymmetry breaking

Gauged supergravities

All ungauged supergravities have been constructed long ago. They
depend on the abelian field strengths Fµν only and have then (in four
dimensions) electric-magnetic duality.

A symmetry of an ungauged theory can be gauged using the abelian
gauge fields of the theory. One selects an algebra and associates a
(electric or magnetic) gauge field AMµ of the theory with each generator

[TA, TB] = fAB
C XM = ΘM

ATA ΘM
A: embedding tensor

The consistency conditions for the procedure have been established for a
generic field theory in a fundamental paper by de Wit, Samtleben and
Trigiante (hep-th/0507289).

Large classes of gauged supergravities have been constructed, large
classes are missing.

Particularly interesting for 16 (N = 4) and 32 (N = 8) supercharges
related to superstrings and M theories.
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Supersymmetry breaking

An example, maximal supergravity with SO(8)

Can be obtained by S7 sphere compactification of 11-dimensional
supergravity. (de Wit, Nicolai)

N = 8 supergravity has 28 abelian gauge fields F Iµν and then 28 duals
F̃ Iµν = 1

2
εµνρσF

Iρσ and 70 scalars..

Obvious gauging: the 28 gauge fields in the adjoint of SO(8): electric
gauging.

Is the gauging unique ?

Starting point:
The electric-magnetic duality group is Sp(56,R) (Gaillard, Zumino).

The 70 scalar fields are in E7,7/SU(8) with E7,7 ⊂ Sp(56,R).

Fermions reduce the symmetry to SU(8)

Gauge group SO(8) ⊂ SU(8), 28 = 28.
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Supersymmetry breaking

An example, maximal supergravity with SO(8)

Group theory:
First embedding chain, relevant to gauge fields:

Sp(56,R) ⊃ SU(28)× U(1) ⊃ SU(8)× U(1)

56 = 281 + 28−1 = 281 + 28−1

1596 = 7830 + 10 + 4062 + 406−2

= 630 + 10 + 7200 + 3362 + 336−2 + 702 + 70−2

Second embedding chain, relevant to scalar fields:

Sp(56,R) ⊃ E7,7 ⊃ SU(8)

56 = 56 = 28 + 28

1596 = 133 + . . . = 63 + 70 + . . .

E7,7 is not unique in Sp(56,R): for a given SU(8), the 70 component is
complex with a U(1) charge: a phase choice to adapt the E7,7 of the scalars

inside the electric-magnetic duality group.
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Supersymmetry breaking

An example, maximal supergravity with SO(8)

Leads to a one-parameter family of SO(8),N = 8 gauged supergravity.
(Dall’Agata, Inverso, Trigiante; Borghese, Guarino, Roest )

Invisible at the SO(8) level: there is only oneN = 8, SO(8) theory, a
different definition of electric/magnetic.

But visible when a second parameter is introduced in the embedding
tensor, reducing the gauged algebra.

A very simple (but surprising) example of the gauging procedure in extended
supergravities, with the largest compact gauging SO(8).
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