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Two documents

@ On supergravity theories after ~ 40 years

Proc. of DISCRETE 2014, London, December 2014
J. Phys. Conf. Ser. 631 (2015) 1, 012009.

arXiv:1509.01195 [hep-th]
DOI: 10.1088/1742-6596/631/1/012009
@ Lecture notes on globally supersymmetric theories in four-dimensions
and two-dimensions
Preprint ETH-TH/90-21, July 1990.

Proceedings of the 3rd Hellenic School on Elementary Particle
Physics, Corfu, September 1989, World Scientific Singapore, 1990
pages 111-243.

On the page “Document, publications, lecture notes" of my web site:
http://www.derendinger.itp.unibe.ch/
Documents,_publications,_lecture_notes_files/SUSY_nd.pdf
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Space-time algebras
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Space-time algebras

Space-time algebras: Poincaré

Relativistic quantum field theory has global Poincaré symmetry:
Lorentz and translations

e On coordinates:

xH — ' = A*, ¥ + at Nuw AYp A o = Npo
Variation: AFy, = 68 4 nHPw,, Wpy = —Wyp
ot =w x, + a* = %w“"’Mp(7 +ia"P,| "
Poincaré generators on coordinates: linear differential operators
M, = i(x,8, — 2,8,.) P, = —id,

Poincaré Lie algebra
[MHY, MP?] = —i (q*P MV® + n¥ MHP — nto MVP — VP MH7)
[P, M*P] = i (n4 P? — n# P”) [P, PY] =0
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Space-time algebras

Space-time algebras: Poincaré

e On fields:

®(x): a set of fields
Translations:

®'(x 4+ a) = P(x)

®' (x4 a) = ®'(z) + a*0,P(x)
0P(x) = ®'(x) — ®(x) = —ia" P, P(x)

Lorentz:

P, = —id,

' (A", z¥) = S(A)B(x) S(A) =T1— gwwzw

68 (z) = ——w 27D (x) — 62+ 9, P(x)
5“r [z

@ The Casimir operator P*P, = —9*0,, = —

[ gives the field masses?

@ The matrix representation X,,,, contains the spins (for P? > 0) and/or
helicities (P2 = 0) of the fields.
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Space-time algebras

Space-time algebras: Poincaré

There are ten conserved currents:

Translations: Tuv 1, =0
Lorentz: Juwp = —Ju.pv Mjupp =0
The energy-momentum tensor 7,,,, can be improved: (Belinfante)
@ Use the six Lorentz symmetries to obtain a new symmetric
energy-momentum tensor T =T,
@ The corresponding Lorentz currents are Juwp = TpTpw — x,Typ

Summary: for fields ® (x) the information of Poincaré symmetry is:
e in the eigenvalues of P? (masses?, Klein-Gordon equation),
e in Lorentz representation 3,,,, (spins/helicities) and

e in the symmetric energy-momentum tensor 7},,,.
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Space-time algebras

Space-time algebras

e Poincaré algebra: a contraction of either de Sitter (dS) or Anti de Sitter
(AdS) algebras.

[MM, MPT] = —i(nHPMY® 4 p»° MHP — nho MVP — n¥P NH)
[M#Y, PPl = —inHPPY 4 in*PPH
= —iv
[PH, P¥] i v2A MHY

v is an energy-scale, an inverse radius
A = 1: Anti-de Sitter algebra, SO(2, 3)
A = —1: de Sitter algebra, SO(1,4)

The infinite radius limit v = 0 for both A is Poincaré algebra, as Minkowski
space-time is the infinite radius limit of dS or AdS space-time.

Background geometry has cosmological constant A = —3Av?
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Space-time algebras

Space-time algebras

e Quantum field theory admits (in principle) the extension of Poincaré
algebra to the conformal algebra SO(2,4) ~ SU (2, 2)

[MIJ'V’ MPC’] = —1 (rr]IJ'PMl’C' _|_ zr'VO'MIJ'P — rr,IJ'C’MVP — zr’VPMMU') s
(MK, PP] = —i(ntPPY — n“PPH), [PH, P¥] = o,
[MH# D] = o, [D, P*] = iPH,
[MHEY, KP] = —i(n"PK” —n"PK!), [K*,K"] = 0,
[PH,K¥] = —2i(n* D+ MH), [D, K+ = —iKW.

D: generator of scale transformations (dilatation generator)
K,,: generator of conformal boosts (or conformal transformations)

Either explicitly broken (Higgs mass for instance), or spontaneously (scalar
expectation values) or generically by quantum effects (scale dependence of
interactions, renormalisation-group effects, scale anomalies .. .)
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Space-time superalgebras, supersymmetry

Space-time superalgebras are extensions of the space-time algebras with a
fermionic sector. Schematically:

i: [B,B]C B ii: [B,F]|CF iii: {F,F}C B |

i: Bisasubalgebra DO a space-time algebra
it : Fis a representation of B, the fermionic sector: F' are Lorentz spinors
411 : Fermionic operators: anticommutators

Two cases:

@ Poincaré or Anti-de Sitter supersymmetry: superalgebra OSp(N/, 4).
B = Sp(4,R) x SO(N) or its infinite radius (super-Poincaré)
contraction. Anti-de Sitter since Sp(4,R) ~ SO(2, 3).

@ Superconformal algebra: superalgebra SU (2, 2|N).
B =SU(2,2) x SUWN) x U(1) and SU(2,2) ~ SO(2,4).
NoU(1)if N =4
De Sitter supersymmetry ?
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Supersymmetry

Supersymmetry algebra

Construction:

e Start with Lorentz algebra
[M‘“’, Mpa] = —i (n“pM"" + 0¥ MHP — nho MVP — ,,’VpM;w)

e Add supercharges Q¢ (i=1,...,N), Lorentz spinors:

M, QL] = — - (10#,5¥1@)a

e Obtain [P, Q? ] from Jacobi identities.
e Find the most general {Q?,, ’é} which solves all Jacobi identities.
For the OSp(4, N') superalgebra, assume that the spinor charges Q?, are

Majorana
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Supersymmetry

Supersymmetry algebra: [P, Q"]
e Jacobi identity
0 = [M*",[P?, QL] + [P, [Q}, M*]] + [Q,, [M*”, P*]]
is solved by [P, QL] = [(a + ibys)7*]ap Q)
for arbitrary real (Majorana condition) numbers a and b
e Using then [PH, PY] = —iviA MM
Jacobi identity
0 = [P*,[P", QL] + [P, Q) P*]] + [Ql,, [P*, PV]]
implies a? 4+ b? = JvA

Minkowski supersymmetry: v = 0
Anti-de Sitter supersymmetry: v2 >0 A =1
De Sitter supersymmetry, v >0 A = —1 is not allowed

= With parity [P*, Q%] = 3 v (v*Q%)a J
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Supersymmetry

Supersymmetry algebra

From here on: Minkowski-space supersymmetry only

N —extended supersymmetry algebra (with central charges)

[MHP, MPT] = —i(nHP MY + g% MHP — nho M[VP — P NHO)
[M#, PP] = —i(qtPPY — P Pk) [P#,PY] = o0,
M, QL = —2([v*7"1Q%)a [P*,Q%] = 0
{Q5,Q3} = —2(1#C)apPud® +iCopV¥ + (v5C)apZ¥

P,: dimension (mass)* Q¢ : (mass)'/2.
Vi = —Vitand Z¥ = — Z7%: central charges, commute with all operators.
Exist only for N/ > 2 Dimension (mass)*

Central charges introduce mass parameters in massive representations of the
supersymmetry algebra.
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Supersymmetry

Representations of the supersymmetry algebra
Two general properties:
@ All states have same mass, since [P2, Q] = 0

@ In each representation, same number of bosons and fermions, ng = ng

[P, P,] = 0: consider eigenstates of P,, with momentum p,,, p? = M?

@ Massless supermultiplets: M = 0 p* = (E,0,0, FE)
N fermionic creation—annihilation pairs, SU (N') invariance:

(QF, Q'Y = aEs {QL, Q' ={Q", Q" =0

2V states with helicites A, A —1/2, A —1,..., A — N /2

@ Massive representations: M # 0 p* = (M,0,0,0)
2N fermionic creation—annihilation pairs, Sp(2A/) invariance,
A multiple of 22V states in representation

+ Doubling of the representation usually required by CPT: P N/2 — p
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Supersymmetry
Massless supermultiplets
Helicity states of supersymmetric gauge theory multiplets (2N 1 states)

States of given helicity X are labelled by their SU (N') representation.

N=1|[N=1|N=2 [N=2[|N=3|N=4

Al A=1/2| A=1 |A=1/2| A=1 | A=1| A=1
1 1 1 1 1
1/2 1 1 1+ (1) 2 3+1 4
0| 141 24+(2) | 1+1 | 3+3 6
-1/2 1 1 14 (1) 2 1+3 4
-1 1 1 1 1
i ii iii iv v Vi

i, iz Matter multiplets with maximal helicity 1/2 (chiral and hyper multiplets)
ii, iv, vi:  Vector or gauge multiplets (maximal helicity 1) of N =1, 2,4

v: Same as vi, a lagrangian with A/ = 3 has actually N = 4

The chiral multiplet i only admits chiral representations (R # R), as in SM
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Supersymmetry

Supergravity supermultiplets

All massless multiplets with one state at maximal helicity 2.
States are labelled by SU (N) representations (antisymmetric tensors).

A|IN=1 N=2 N=3 N=4 N=5 N=6 N=8
2 1 1 1 1 1 1 1
3 1 2 3 4 5 6 8
1 1 3 6 10 15+ 1 28
1/2 1 4 10+1 2046 56
0 1+1 5+5 154+15 70
-1/2 1 4 1+10 6420 56
-1 1 3 6 10 1+15 28
-3/2 1 2 3 4 5 6 8
-2 1 1 1 1 1 1 1
4 8 16 32 64 128 256

e N = T7leads to the same multiplet and theory as N/ = 8.
e In contrast to gauge theories, N' = 3 and N/ = 4 are different theories.
e Multiplets have 2V 5 + 2N states. But for A” = 8: 275 + 27 .
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Supersymmetry

Some massive supermultiplets

Massive multiplets with maximal spin 2 for N' = 1, 2, 4 theories

Zero central charges.

States are labelled by Sp(2/N) representations (antisymmetric traceless tensors).

Spin N=1 N =2 N =4
2 1 1 1
3/2 1 2 1 4 8
1 1 1 1 4 541 27
12 | 1 2 1 4 541 4 48
0|2 1 5 4 1 42
total= | 4 8 12 16 | 16 32 48 256

These are “long multiplets”. Massive multiplets with central charges have less
states (“short multiplets”) in general.
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Supersymmetric field theories

N = 1 supersymmetric field theories

A supersymmetric N* = 1 field theory describes:

@ Vector multiplets (gauge fields A7, + gauginos A?) in the adjoint
representation of a gauge group G

@ Chiral multiplets (Weyl fermions 1); + complex scalars z;) in
representation r of the gauge group.

Condition: = should be free of chiral anomalies.

Supersymmetry relates the interactions (and the masses) of superpartners in
the lagrangian.

Exists in two forms:

@ Renormalizable: defined by G, » and a gauge-invariant cubic polynomial
(the superpotential) [ MSSM, NMSSM, ...]

@ SUSY sigma-model: defined by G, r and three gauge-invariant functions
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Supersymmetric field theories

The simplest, chiral supermultiplet

Describes 25 + 2 on-shell states, helicities 0,0, +1/2

Off-shell fields z P f
M = 0, helicity: | 0,0 | +£1/2 | 0,0 f is auxiliary, see later
M #0,spin: |0,0| 1/2 | 0,0
1st step: Free, massless lagrangian

Lo = (8,%)(8"z) + %waﬂaﬂ — %a”wl@

Invariant, up to a derivative, under [e: susy parameter, Majorana spinor]
0z =V2e dtho = —V/24 8,z(0"€)q, J
Susy algebra: [01,02]2 = —2i(e20"€L — €10M€2)0,2
Result is a translation 6z = i A* P,z P, = —id,
A* = 2(eq0t€; — €10M€3) J
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Supersymmetric field theories

The simplest, chiral supermultiplet

For the spinor, algebra holds on-shell only: Dirac: 9,yo* =0
[01,02]Ya = —2i(e20"€; — €101€2)0u2Pa

+2i(8“¢0'“€2)61a —_ 2’1:(au'l,b0'”€1)62a

2ndstep:  Modify with the auxiliary field f:

0z =V2e Vo = —V2feq — V2i8,2(0"€)q
O0f = —/2i9,(pore) <« aderivative

and then:
[51, 62],2 = —iA“B“z [51752]¢a = —z'A“{:),ﬂpa [(51, (52]f = —'LA“BMf

as expected: a linear, off-shell representation of susy
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Supersymmetric field theories

The simplest, chiral supermultiplet

3rd step: The modified § f imposes to modify the lagrangian:

£ = (8,2)(0"2) + %08, % — 0o F + Tf

— L invariant (up to a derivative), f auxiliary with field equation f = 0

4th step: Introduce masses:

1 1
—m[fz + 51/)1/’] - m[fz+ 51/11/1]

is invariant (up to a derivative) under the same susy variations

Eliminate the auxiliary f with field equation f = mz leads to the free
lagrangian of z and 1 with mass m.
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Supersymmetric field theories

The simplest, chiral supermultiplet

5th step: Introduce interactions:  Superpotential W (z) = ™22 4 223,
- 2 3
de 1 d2W¢¢ th
=jf——== o
dz 2 dz?

is invariant (up to a derivative) under the same susy variations
Eliminating f with field equation f = mz + Az2 (nonlinear now) leads to
Ly = (0u,2)(0%2) —V(z,%)
+39ot8u — 30,90 Y — TP + PP] — A2y — XZYY

Scalar potential:

d 2
V(z,2) = |f|? = |mz + \22%|? = ’dW(z)
z
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Supersymmetric field theories

The gauge, vector supermultiplet

Describes 2p + 2 on-shell states, helicities +1, +1/2

Ay A D A: gaugino spinor
M = 0, helicity: | £1,0 | £1/2 | 0 D‘_gauxs?"ar P
M #0,spin: | 0,0 | 1/2 | 0,0 : y

Under supersymmetry variations

§A, =ieo X —iXo€ A =iDe+ 1 F,, oo

0D = 9, (eo* X + Ao+e) <« a derivative again

the super-Yang-Mills lagrangian
1 i — 1 — 1
‘CSYM =Tr —*FMUF‘“I + *)\O'Haﬂ)\ — *81_,)\0“)\ + —DD
4 2 2 2
is invariant up to a derivative.
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Superspace, superfields

N = 1 superspace, superfields

At this point:

@ The component with highest mass dimension in an off-shell
supermultiplet is an auxiliary scalar which transforms with a derivative

@ Precisely what is needed for a supersymmetric lagrangian

@ Wanted: a systematic method to combine supermultiplets into
supermultiplets.
Then, auxiliary fields provide contributions to lagrangian field theories
@ Two options:
e Tensor calculus

@ Superspace and superfield techniques
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Superspace, superfields
N = 1 superspace, superfields
e Space-time translations:  ¢(x) — ¢(z+a) 0p(x) = ia* P, (x)
Generators are derivatives P, = —i9,, [ P,: energy, a,:energy—']

e [eibniz rule: Combine fields into fields:

dF dF
0p(@) =adup = SF(9(2) = 06 = a¥  0u¢ = a"O.F
e Supersymmetry ~ “square root of translation":
{QasQs} = —2i (6")0a Oy 3P = (ieQ + Q) ®

®: a linear (off-shell) representation (supermultiplet)
e Superspace: extend formally space-time to superspace with coordinates
( xt, 0o, Ed ) {gaaeﬁ} = {Eaaag} = {aaagg} =0 J

0. (04) left-handed (right-handed) Wey! spinor:
Grassmann (anticommuting) coordinates.
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Superspace, superfields

N = 1 superspace, superfields

Lorentz algebra, SO(1,3) ~ SI(2,C): 0a: (2,1) 0s: (1,2)

0003 = —050a = 2€apf0:  [(2,1) X (2,1)]a — (1,1), 60 = eﬁaeaeﬂj

0405 = —0305 = 3€0500: [(1,2) X (1,2)]a = (1,1), 66 = 6‘5‘B§a§3J

0o X 05 (2,1) x (1,2) = (2,2),avector: 0040 0,4 J

0,030, =0 §d§-§ﬁ =0 J

@ A superfield is a function in superspace, with coordinates (z, 6, 8) (or
with any other set of coordinates): ®(x,0,0)

@ It has a polynomial expansion in 8, 8 which stops at 66686.
@ The expansion includes 16 fields (functions of x)
@ 8 fields are bosons, 8 fields are fermions
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Superspace, superfields
N = 1 superspace, superfields
An example: the real, or vector (since it includes a vector field) superfield:

V(z,0,0) = C(z)+ i0x(z) —i0x(z) + 0o v, (x)
+%00[M(w) 4+ iN(x)] — %@[M(sc) — iN(x)]
+i000[\(z) + %’G‘Lx(w)a"] — i000[\(x) — %a“a@(x)]
) 1
+§0000[D(w) —5 OC(x)]
@ V(x,0,0) is Lorentz invariant (scalar, zero spin)

(by assumption, it could be spinor, vector, .. .)

@ Since V is scalar, bosons are red, fermions are green:
C, M, N, D: four real scalars (4), v,: vector field (4p),
X, A: two Weyl spinors (8 ).
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Superspace, superfields

N = 1 superspace, superfields

On superfields, supersymmetry variations are represented by derivatives in

superspace:
o (7] . [7y2} ey 0 > 122
iQq = e + i(0"0)a0, 1Qs = _ﬁ —i(00")a 0,
P, = —1i0, {Qa: Qs} = —2i (0") 0Oy

58 (x,0,0) = i[a" P, + > Qo +€5Q"] ®

A supersymmetry variation induces a translation is superspace:

xH — z* + a* — i00H€ + ieoH0
eoz — ea + €a
[ — 04 +eq

And a function of superfields is a superfield.
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Superspace, superfields

N = 1 superspace, superfields

Chiral superfields describe chiral supermultiplets (helicities +£1/2, 0, 0)
Susy covariant derivatives

o — o
D, = —— —i(c"6),0, Dy = —5 —i(005")a0,
86 59°

Since {Dq, Qs} = {Da, Qs} = {Da,Qp} = {Da,Qz3} = 0, constraints

Ds® = 0 (chiral superfield) D,® = 0 (antichiral superfield) J

are compatible with supersymmetry variations.
Expansion is: [y* = x* — i00+0 |

®(y,0) = z(y)+V26y(y) — 00 f(y)
= z(x) — i00"0 0, z(x) — 20000 Oz (x)
+V20y(x) + %098”1#(33)0'”5 — 60 f(x)
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Supersymmetric gauge theories

Supersymmetric gauge theories

Field content:
e Chiral superfields in representation r of the gauge group (“matter")
» — Lo, DsA =0, A = AT"
e Gauge fields in real superfield A = A*T,?, with gauge transformation
et — e_XeAe_A

The abelian (Maxwell) case: A — A—-A-A
Then:

@ ®eA® is gauge invariant. Its highest component is the gauge-invariant
(renormalizable) kinetic lagrangian of the chiral multiplet:

Liin. = [®e*®lyyes O  Liin. = / d?0d?*0 Be'd

@ The same holds for the real superfield IC(®e, ®).
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Supersymmetric gauge theories

A parenthesis on integrals over 6, 8

@ Under /d4:1c, all derivatives 9,,(. . .) are irrelevant.
@ In alagrangian, a derivative 9,,(. . .) is irrelevant.

@ For a chiral superfield ®:

1 : :
/d4w [®]go = —Z/d“mDD@ = /d4m/d20<1>

@ For a real superfield \A:

1 S _
/d“m (Al poss = 6 /d% DDDD A = /d4ac /d20d20A

These equalities can be used as definitions of the integration over
Grassmann variables 0, 0 (Berezin integral).
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Supersymmetric gauge theories

Supersymmetric gauge theories

Next, we need gauge kinetic terms and the super-Yang-Mills lagrangian

@ Gauge field strengths (or curvatures) Fg, are in the chiral superfields:

1 _ 1 _
W, = —ZDDe_ADaeA W = ZDDeADde_A
With DgWs = DoWga = 0 (and susy Bianchi identity)

@ Then:

1 1 — - — &
‘CSYM:Z/dze T‘I'Wawa+1/d20 T‘I‘WQW ’

Or:

1 , o o
Lsym =Tr [—4FWF“” + %AU“B,M - %8,»\0“)\ + 2DD}
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Supersymmetric gauge theories

Supersymmetric gauge theories

The (almost) most general two-derivative lagrangian with A" = 1
supersymmetry and gauge invariance:

L = / d?0d?0 [K(®et, @) + £*A°] IC: Kahler potential
1
—|—/d20 {W(@) + Zf(<I>) TrWW] W superpotential

e 1
—|—/d20 {W(cb) + Zf(<I>) TrWW] f: gauge kinetic function

Defined in terms of three gauge-invariant functions.
£°: Fayet-lliopoulos terms for abelian gauge fields only.
A moderately interesting generalization is

f(®) TTWW —  f(®,TrWW)
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Supersymmetric gauge theories

Supersymmetric gauge theories

9%KC
e Scalar kinetic terms: K.z(8,%z)0"2) K.z = —
0z0Z
A scalar field theory on a Kéhler manifold.
— 1
e Scalar potential: V(z,2) =K.z ff + 5f(z) D*D* >0

( of course, the value “0“ in the bound is not meaningful )

Auxiliary fields (field equations):

7= (Klzg)_la—w D® = Re f(z)_1 {8’6

oz BzT"z-i_E} J

e If (f) = (D%) = 0: the true ground state, supersymmetric.
@ If no such solution, (f) or (D®) # 0 do not vanish, susy spontaneously

broken
= —V2Ffe+... N =iD%+ ...

and there is a massless Goldstone spinor (the Goldstino)
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Supersymmetric gauge theories

The renormalizable theory

Renormalizability is obtained if K = ®e® and f(®) = 1 (to get canonical
kinetic terms) and with a cubic, gauge-invariant, polynomial for the
superpotential:

. 1 o1 -
W(‘I’z) = a,-<I>’ + Emij@“}g —|— g)\ijk‘I’I‘I’]‘}
Linear terms only exist for gauge-singlet chiral superfields.

This theory has exceptional renormalization properties:

@ Non-renormalization theorems: only wave function renormalization for
gauge and chiral multiplets needed: the parameters of the superpotential
are not renormalized. Holds to all orders of perturbation theory.

@ Soft breaking terms: terms breaking susy which only affect logarithmic
divergences are gaugino masses, scalar masses (zz and u?z2 + h.c.),
analytic trilinear couplings 8z3 + h.c.

@ Generated by susy breaking in supergravity, as required for realistic
models

@ Non-perturbative results, subtleties with massless chiral superfields, . ..
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Supergravity
Supergravity
Local supersymmetry: variation parameter e, local = ex(x)
The space-time translation induced by [d1, 2] is local
AF = 2(ex0t€; — €101€x) = A (x)

Follows from the superalgebra {Qa,Qs} = —2i (0*)aa0u = 2(6*) s Py

local translations or

Logal| SUpeimymnEly <= general coordinate transformations (GCT)

and the gauge theory of supersymmetry is a theory of GRAVITATION.

@ Non-renormalizable ... an effective theory of “something”

@ Natural cut-off scale where gravitation is expected to feel quantum
physics, the Planck scale Mp ~ 10'° GeV

@ The maximal A/ = 8 theory has exceptional finiteness properties, under
difficult investigations (but not the right physics)
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Supergravity

Supergravity

There are independent motivations to consider supergravity theories

@ Bottom-up: It provides a source and suggests structures for the
supersymmetry breaking needed in (realistic) supersymmetric quantum
field theories (like MSSM, NMSSM, ...)

@ Top-down: It can be used as an effective, low-energy (E < Mp)
description of a more fundamental microscopic quantum theory with
gravitation (like superstring theories)

@ Curiosity, model for microscopic gravitation with gauge and matter fields
(scattering amplitudes, ...) ...

A vast and complicated subject.

At first sight, for “realistic models", the existence of fermions in chiral representations
excludes N' > 1.

But, for instance, string models suggest more supersymmetries with quite elaborate
breaking patterns, still under study.
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Supergravity

Preamble: spinors, vierbein
Supersymmetric theories (and Nature) have fermions and spinor fields.

e GCT: space-time with (Riemann) metric g,,..(x) in coordinates x*
and GCT-invariant line element ds? = g,,, dz*dx”.
@ Spinors % live in the (Minkowski) tangent-space at each point x.

@ Tangent-space coord. ¢%(z), line element ds? = nqpd¢®(z)d¢b(z),
ds? has local Lorentz invariance.

@ Vierbein:

guv (x) = nap € () (x)  ef = 8u(% ()
Inverse: ehel =082 ekel =0,
@ Local Lorentz: () = —was(z) 09 (x) o = [y2, 47

Dirac lagrangian: requires the gauge field of local Lorentz: the spin connection

N 1 a a
L =ieyYpy" D,y D,y = 0, + Ew# ab 020 e = detej
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Supergravity
Simple N = 1 supergravity
Simply the sum of the covariantized Einstein and Rarita-Schwinger
lagrangians

@ Symmetries are:

e Local coordinate transformations (GCT) — General relativity
e Local Lorentz  (tangent space)
e Local supersymmetry

@ Fields are the gauge fields of:

e Translations, GCT: the vierbein ey
e Local Lorentz: the spin connection  w2® = —wh®
@ Supersymmetry: the gravitino VYap
[ This is the first-order formalism ]
Explicitly: AP = Al Pl
L=c¢ egeng,ab(w) + e@uv“”pﬁ,,d:p e =detej
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Supergravity
Gravitino, Rarita-Schwinger lagrangian
Pua: gravitino, gauge field of supersymmetry, vector—spinor:

spinor ® vector

(2,18 (1,2)] ® (2,2)

gravitino &) spinor

[(3,2) ®(2,3)] & [(1,2) D (2,1)]

To isolate the spinor, projection condition:

1
(’7awa)a = (7“¢u)a =0 - ¢aa = ’djaa - Z('Ya'yb"/’b)a

This condition follows from the lagrangian (in Minkowski space)

1
Lrs = 22 Yoy Op.  Rarita-Schwinger [k~': mass scale]
K

@ Majorana condition on v, e Gauge invariance 81, = G,

@ Field equation:  ~2*¢gy1p. = 0
@ Propagates two massless states with helicities 3 /2
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Supergravity

Gravitino, Rarita-Schwinger lagrangian

Counting states: starting with 4 X 4 = 16 hermitian fields in 144

Rarita-Schwinger:

Lrs = 5 Pa7** Ot 0tpa = Da Y**Optpe = 0

2K2

@ Use gauge invariance with y*9,\ = —~%1), to impose v*1, = 0
@ Defines A up to a solution of 7“8(13\ =0 (massless Dirac)
@ In gauge v, = 0: field equation  v29p1p® = 2By ®
@ And then multiply by ~, to obtain:
~*p, = 0 (gauge choice) WY® =0 A0y, = 0 (Dirac)
0pg = 3D 7“6a3\ = 0 (residual gauge symmetry)
@ Counting on-shell states: 16r —4r —4p — 45 — 2 = 2F
and these two states have helicities £3/2  (use plane waves to check)
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Supergravity

The spin connection, Einstein-Hilbert lagrangian

Einstein gravitation formulated in terms of the vierbein e}, and the spin
connection w,, .

e Spin connection curvature (Lorentz gauge field)

ab ab ab ac b ac b
R, = 0,w," — 0w, ™ +w, Wy’ — w Wy

e Lagrangian Lgrav. = 3¢ R R=elelR,, "
e The spin connection has an algebraic field equation (does not propagate):
Wped = —%(Bue,,c — Oveyc)el + %(aue,,d — Ovepq)el
—%eﬁeﬁ(ape,,a — 8uepa)ez = wyedle)
e Rewrite then R as a function of the vierbein and its derivative.
and Lg,q.. propagates two states with helicities £2 (graviton)
e If the spin connection appears in other lagrangian terms, its algebraic

field equation leads to contorsion:
w“ab — w“ab(e) + Kluab
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Supergravity

Pure N/ = 1 supergravity, construction

Pure N' = 1 supergravity is very simple:
Einstein-Hilbert + Rarita-Schwinger
1

SERS [EZ> PV, Wy ab] =

e /dDa:e (R+Eu’y“”pl~),ﬂ/;p>

25D

But: local symmetries imply covariant derivatives

Dy, = 9,4, + tw,Poapthy (spin connection)
Wypab = Wyab(e)+ Kuab (contorsion tensor)
D;qu - -ﬁu¢u - D,u,'(/)u - Du"p/_l, +2 Szu'lb)\ (torSion tenSOf)
with gravitino torsion (for a D = 4 Majorana gravitino)
_ 17 A
Si;y - _Z’l)bupy 17[)11
_ 1 - -
Kpab = — 2 W,{Ya"ﬂb - ¢H7b¢a Sl ¢a7ﬂ¢b:|
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Supergravity

Pure N/ = 1 supergravity, construction

Covariantization = four-gravitino interaction, and then:

Four-dimensional pure N = 1 supergravity is not so simple:

1
L = 2—6R (w(e)) + elliu"/’“}pD (w(e)¥p
+32n}; [4@“%%)@"%1#”) — (P rotp) (B v P)
—2( Y bp) (B yPY)

with now D%, = 8,v, + %w,, ab(€)a?®1,, the usual spin connection of
pure gravitation theory.

@ In four space-time dimensions:

o Gravitino: 4 X 4 — 4 = 12 off-shell. 2z with helicities £3/2 on-shell.
e Graviton: 10 — 4 = 6 on-shell. 2 p with helicities £2 on-shell.
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Supergravity
Pure N/ = 1 supergravity, variations, auxiliary fields
More complications: auxiliary fields of N = 1 supergravity

The N = 1 supergravity action is invariant under local susy variations

dej, = —%E’y“q/)u det = %E‘y“@ba
0vY, = Dge 5EM = Dye
With standard covariant derivative Dpe = 8u€ + zwp ap0c

But it is not an off-shell representation of the supersymmetry algebra:
[61, 2] is a diffeomorphism only for fields solving the field equations

Another sign is the number of off-shell field components: 12r # 6.

More (auxiliary) fields needed for a linear off-shell representation, with

auxr __ ,yaur
ny ng'* =6

By field equations, vanish for pure supergravity, but produce interactions when
coupled to matter or gauge multiplets.
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Supergravity

Pure N = 1 supergravity, auxiliary fields

Several choices of auxiliary fields:
@ Minimal schemes with 125 + 12 (nE* =6, ni*® =0)

e Old minimal: A*, not a gauge field (4g), couples to a non-conserved (in
general) current and fo, complex scalar (2g)

o New minimal: A* with gauge symmetry (35), couples to a conserved
current, antisymmetric tensor B,,,, with gauge symmetry (3z).

@ Non minimal schemes have 16 + 16 (somewhat, loosely relevant to
superstring theories), 205 + 20F, ...

@ Each scheme generates a particular class of interactions. For instance:
R-symmetric with new minimal.

@ The most general is the simplest, old minimal (describes all classes).

@ Each scheme can be constructed from superconformal theories with
various compensating fields to gauge-fix dilatation, special conformal and
R symmetries
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Supergravity

Supergravities, summary

Four-dimensional supersymmetry (linear) representations

SUSY Supergravity [Hel.|< 1 | |Hel.|< 1/2 | Chirality

N=1 25 + 27 7 v * 7

N =2 4 + 4p g & v * - D=6
N=3 85 + 8 7 - -

N=4| 16+ 16p * v * - - =10
N=5| 32+32r* - - -

N =6| 64 +64p * - - -

N =8| 1285 + 128 * - - - D =11

@ *: scalar fields in supermultiplet

@ Number of supercharges is 4N

@ 16 supercharges (N = 4): type |, heterotic strings

@ 32 supercharges (N = 8): type IIA, IIB strings, M—“theory"

@ N = 7 does not exist (it is the N = 8 theory)

e N = 0,1 only for realistic models, or nonlinear, (or truncated. . .)
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N = 1 supergravity-matter couplings
N = 1 supergravity and matter couplings

N = 1 supergravity couples to:

all gauge groups (gauge superfield A,,, A, helicities +1, £1/2)

all representations for chiral multiplets (¢ and z, helicities +1/2, 0, 0)

and allows chirality of fermion representations.

The idea is then:

@ Couple the SSM to supergravity, add a “hidden" sector to break
supersymmetry.

@ Generate a susy breaking scale mg,, and scalar vev’s in the hidden
sector ()

@ Decouple gravity: expand, take Mp — oo, keep mg, fixed, ...
@ The result is a global N* = 1 theory with soft breaking terms.

@ However: N = 1 Poincaré only if the cosmological constant at the
breaking point is zero. In general, AdS global N =1...

@ A severe constraint on the hidden sector ...
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N = 1 supergravity-matter couplings

N = 1 supergravity and matter couplings

The complete Lagrangian has been obtained by Cremmer, Ferrara, Girardello

and Van Proeyen (1982). It needs 1.5 pages in Nucl. Phys. B212.

In the superconformal formulation, it is symbolically

L= —g [S(EO e—’c/ﬂD + [sgvv(@) + 3]‘(4)) Trww}F

where Sy is the chiral compensating multiplet of the old minimal formalism.

e Similar to the global superspace Lagrangian

C= /d?gd%;g@““, ?) + /d20 [W(@) + if('I’)TrWW + h.c.

Superconformal and superspace calculus turn these symbolic expressions
into Lagrangians .........

Curiously, most applications use only the scalar potential and few fermion
mass terms.
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N = 1 supergravity-matter couplings

Local versus global, Kahler symmetry
e Gilobal supersymmetry: three independent functions

201270 (B 2 1
£=/d 0d“0 KK(® ,‘I>)+/d 9[W(<I>)+Zf(<I>)TrWW]—}—h.c.

Invariant under Kahler transformations I — K + A(®) + A(®).
e NN = 1 supergravity, in the superconformal formulation:

C= —g [SOEO e—’c/ﬂD + [SgW + if(@) vaw}
Kéhler transformation is a gauge invariance:
K'=K+A®) +A®) So’ = 50er®/3 W' = Wwe 2P
Supergravity depends then on two functions only:
c= —g (5050 e—g/ﬂD +[s5+ iTrWW G=K+In|W?

Also true for global susy in an Anti-de Sitter geometry,
an effect of the large radius limit to Poincaré
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N = 1 supergravity-matter couplings

The N = 1 supergravity scalar potential

1 8 . . _
vV = o [é K5 (Wi + K W) (W9 4 KIW) -3 ° WW]
- KXiw

5 F (@) (T A2) K (14 2))

@ Blue terms are positive or zero: they are generated by chiral (f) or gauge
(D) auxiliary fields. Susy breaks if they are not zero.

@ The red term is negative or zero, it is generated by a supergravity
auxiliary field. Unbroken susy: Anti-de Sitter or Minkowski (W = 0).

@ Supergravity and supersymmetry are actually extensions of Anti-de Sitter
symmetry: S0(2,3) ~ Sp(4,R) — OSp(n|4)
Poincaré is obtained in the large AdS radius limit only.

@ De Sitter ground state: with broken supersymmetry only.
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Supersymmetry breaking

Supersymmetry breaking

In Nature, supersymmetry is at best a broken symmetry . ..

e Global N/ = 1 supersymmetry

Spontaneous susy breaking induced by auxiliary field vev's: (f), (D%)

Scalar potential: V=Fff+1D*D*>0

An algebraic problem: f = %VZV = 0 and D® = 0 should have no solution.

Disastrous mass relations:
<f> = STr Mz =0 (Sr-[‘r M2 = ’I‘rbosons M2 - r-[‘rfermions M2)

(D*): needs Fayet-lliopoulos terms for gauged U (1)
in conflict with data, phenomenology, anomalies, esthetics ...

STr M2 ~ —(D?) Tr T
And anyway a massless Goldstino spinor.

Consider then spontaneous breaking of local susy in supergravity models
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Supersymmetry breaking

Spontaneous breaking of local supersymmetry

e Analogy: U (1) gauge theory with a charged complex ¢(x):

¢(z) = €7@ [v + h()]
v: U(1)-breaking order parameter (gauge-invariant)
gauge symmetry: o= A 0A, = —0,A

(Do) (D*¢) — v?(Au+ 0u0)(A* + 0%0) + ...

The gauge-invariant massive field is A, = A, + 8,0, o is the Goldstone
boson, and the helicity zero component of the spin one A,,

e Super-higgs mechanism: (neither Higgs nor “et al." found this)
Induced by auxiliary field vev’s (%), (D%)

Massless Goldstinowouldbe  ne = (KIF,)1p — £(Re f(2)D*)A
Use local susy parameter e to gauge-away 7¢.

Since d0v, = d,e+ ... mng absorbed in,: a massive spin 3/2 state.
Susy-breaking order parameter. m§/2 = L (IW|2eX)
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Supersymmetry breaking

A “no-scale" example

Two chiral supermultiplets with scalar fields S and 7", and
K=-nln(T +T)+K(S,5S) Kéhler potential,
W = W(S) Superpotential.

Scalar potential (using x = 1 in Einstein frame)

V = (T +T) el [1%;; |Ws + KsW|2 + (n — 3)WW
Positive if n > 3. Choose n = 3 and solve (Ws + IESW) =0
— A stable ground state with (V) = A =0
(Ws + KsW) = 0: fixes (S) (in general), (fs) = 0, leaves (T' + T')
arbitrary, as well as (fr) = (T + T)_l/ze’%/z W)

(W) # 0: susy broken by T" with arbitrary susy-breaking order parameter
may2 = (2W) = (T + T)~3/2e~/2w)
mg /2 is the gravitino mass since A = 0.
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Supersymmetry breaking

Supergravity scalar potentials again
For all A, the typical supergravity potential is the sum of three terms:
V=Vat+tV,+W
@ V,, > 0: generated when matter fermions are present.
Exists for N = 1, 2 (chiral and hyper multiplets).
p=Ae+... — Vi~ +|A>2
@ V, > 0: generated when gauginos are present.
Exists forall ' =1,...,8.
AN=Be+... — V,~+|B?
@ Vp < 0: generated by the gravitinos (helicities 2, +1/2):
Existsforall N = 1,...,8.
0y =Cyue+... — Vo~ —|C|?

@ Some or all supersymmetries break if V,,, and/or V,; are positive on the
vacuum.
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Supersymmetry breaking
Supergravity scalar potentials again
@ The gauge potential V; plays a fundamental role in the vacuum structure

of M -extended supergravities.

@ Produced by gauging a symmetry of the theory: abelian (for instance,
R-symmetry in A/ = 1) or non-abelian. Compact or non-compact.

@ Flat directions in the potential, with no-scale behaviour and Minkowski
space, algebraically characterized: a condition on the gauged algebra.

(...): number of abelian, ungauged, gauge fields in the supermultiplet:

SUSY Supergravity [Hel.|I< 1 | |Hel.|< 1/2

N=1 2 +2r (0) v (n) v

N =2 4 +4r (1) v (n) v =6
N =3 8]3 + 81:' (3) v (TL) -

N=4| 16+ 16r (6) v (n) - =10
N =5| 325+32Fr (10) - -

N =6 | 64 + 64 (15) - -

N =8| 1285 + 128 (28) - - D =11
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Supersymmetry breaking

Some dates and names, ~ 40 years ago

@ Field theories with linear supersymmetry, 1974 (Wess and Zumino).

@ Soon found to have softer divergences than ordinary gauge theories
(logarithmic renormalization only) and powerful all-order
non-renormalization theorems (lliopoulos, Zumino, Wess, Ferrara).

@ Superspace techniques (Salam, Strathdee; Wess, Zumino, Ferrara).

@ Spontaneous supersymmetry breaking (Fayet, lliopoulos, 1974;
O’Raifeartaigh, 1975).

@ Currents and supercurrents, approaches to gravity coupling (Ferrara,
Zumino, 1974).

@ Supergravity was created in 1976 (Ferrara, Freedman and Van
Nieuwenhuizen; Deser and Zumino).

@ Matter and gauge couplings to N = 1 supergravity, 1982, Cremmer,
Ferrara, Girardello, Van Proeyen
(also Arnowitt, Chamseddine, Nath; Bagger, Witten)
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Supersymmetry breaking

Dilaton supergravity, no-scale models

For a single chiral superfield S and a constant superpotential W,

V= %e’c K aKsks — 3| Ww

K

is identically zero if

K=-3In(S+79) v W
but the auxiliary field fs and the gravitino mass are

fs=W(S+8)"*#0 mgy = W (S +5)~%/?
Hence, W induces supersymmetry breaking in Minkowski space, to obtain:
Broken supersymmetry in Minkowski space with a free scale (S + S)

The prototype of no-scale models:

Tree-level susy breaking scale arbitrary, radiative corrections may define it
with some logarithmic factor and then with an induced scale hierarchy.
(Cremmer, Ferrara, Kounnas, Nanopoulos, 1983)
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Supersymmetry breaking

Dilaton supergravity, no-scale models

Consider now a string compactification:

In general, it produces a real dilaton scalar and an antisymmetric tensor B,,,,
with gauge invariance 6 B, = 8,A, — 8, A, in the universal gravitation
sector (in type Il, in NS—NS sector).

The antisymmetric tensor is equivalent to a real scalar with shift symmetry:
OuBupy <+ 0Iulms C <+ Res

and there should be a description in terms of a chiral multiplet .S, with however
an auxiliary field fs which could be a source of supersymmetry breaking.

The relation is a Legendre transformation between supermultiplets.

The behaviour of the dilaton scalar in the effective supergravity Lagrangian is
important: its value is the string coupling. Does it stabilize, does it slide to
zero (run away), are further moduli fields needed ?
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Dilaton supergravity, no-scale models

Within supergravity, two descriptions and a duality generated by a Legendre
transformation:

@ Description with B,,,.: (The superpotential is constant)
3 — L

= —— X 3 X =—

L= [SOSOH( )}D + [SO W}F A

@ Description with chiral multiplet S:

£ =Sl [spw],

@ Legendre transformation: e sK(5+5) = (X)) — X(S + 9)
@ Dilaton supergravities:
Heterotic: H# ~ X~1/2 K = —In(S+5S)
Typell: H ~ X4 K = —4In(S+S)
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Supersymmetry breaking

Dilaton supergravity, no-scale models

@ The Legendre transformation implies:

fs = —CHccZzofo

and fs is not an independent auxiliary field. Generalization to many
fields:
The auxiliary field fs of a chiral multiplet dual to a linear superfield with
an antisymmetric rensor is a linear combination of other auxiliary fields.
17} )
~ 7% K
fs ~ 5 Hcf
@ The dilaton is not stabilized. More fields and interactions required.

@ The single field no-scale model with I = —3 In(S + S) does not
describe a B,,,, + dilaton sector.

@ Hence, low-energy scenarios in which supersymmetry breaking is
induced by the dilaton superfield S only are forbidden by supergravity
arguments.
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Supersymmetry breaking

Gauged supergravities

@ All ungauged supergravities have been constructed long ago. They
depend on the abelian field strengths F},,, only and have then (in four
dimensions) electric-magnetic duality.

@ A symmetry of an ungauged theory can be gauged using the abelian
gauge fields of the theory. One selects an algebra and associates a
(electric or magnetic) gauge field Aﬁ/’ of the theory with each generator

[Ta,Tg] = fa® Xum =0©nu"Ts  Op*: embedding tensor

@ The consistency conditions for the procedure have been established for a
generic field theory in a fundamental paper by de Wit, Samtleben and
Trigiante (hep-th/0507289).

@ Large classes of gauged supergravities have been constructed, large
classes are missing.

@ Particularly interesting for 16 (M = 4) and 32 (M = 8) supercharges
related to superstrings and M theories.
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Supersymmetry breaking

An example, maximal supergravity with SO(8)

@ Can be obtained by Sy sphere compactification of 11-dimensional
supergravity. (de Wit, Nicolai)

@ N = 8 supergravity has 28 abelian gauge fields F!, and then 28 duals
FI, = Yeuwpo FTP7 and 70 scalars..
Obvious gauging: the 28 gauge fields in the adjoint of SO(8): electric
gauging.

@ |s the gauging unique ?

@ Starting point:
@ The electric-magnetic duality group is Sp(56, R) (Gaillard, Zumino).
@ The 70 scalar fields are in E7,7/SU(8) with E7 7 C Sp(56,R).
e Fermions reduce the symmetry to SU(8)

o Gauge group SO(8) C SU(8), 28 = 28.
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Supersymmetry breaking

An example, maximal supergravity with SO(8)

Group theory:
First embedding chain, relevant to gauge fields:

Sp(56,R) D SU(28) x U(1) D SU(8) x U(1)
56 = 28, +28_; = 28; +28_,
1596 = 783g + 1¢ + 406, + 406_,
= 6309+ 1o + 7200 + 3362 + 336_5 + 702 + 70_»
Second embedding chain, relevant to scalar fields:
Sp(56,R) D E7z7r D SU(8)
56 = 56 = 28+ 28
1596 = 133 +...=634+70+4...

E7 7 is not unique in Sp(56, R): for a given SU(8), the 70 component is
complex with a U (1) charge: a phase choice to adapt the E7 7 of the scalars
inside the electric-magnetic duality group.
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Supersymmetry breaking

An example, maximal supergravity with SO(8)

@ Leads to a one-parameter family of SO(8), N/ = 8 gauged supergravity.
(Dall’'Agata, Inverso, Trigiante; Borghese, Guarino, Roest )

@ Invisible at the SO(8) level: there is only one N/ = 8, SO(8) theory, a
different definition of electric/magnetic.

@ But visible when a second parameter is introduced in the embedding
tensor, reducing the gauged algebra.

A very simple (but surprising) example of the gauging procedure in extended
supergravities, with the largest compact gauging SO(8).
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