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Inflation after Planck

Randomness during Inflation

… without the fairy tails. 

… and its relation to conduction in wires. 



Inflation after Planck



The temperature anisotropies (and polarization) of the  
cosmic microwave background measure distortions of space:
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transfer function

primordial perturbations CMB anisotropies

All cosmological observables are (computable) 
remappings of the primordial perturbations.

These metric perturbations are small and can be traced 
back to their cosmic origin in perturbation theory:
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transfer function

= evolution × projection
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Given that we understand the evolution so well, we can 
use the observations to probe the initial conditions.



Given that we understand the evolution so well, we can 
use the observations to probe the initial conditions.

What do we really know?
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Perturbations existed on superhorizon scales at recombination:
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Implies that the perturbations were laid down before the hot big bang.
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2. Perturbations are scale invariant over a large range of scales:



Perturbations are Gaussian (to a good approximation):
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Perturbations are adiabatic (to a good approximation):4.
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From the CMB observations we have learned that the primordial 
perturbations

1.

2.

4.

3.

existed before the big bang,

are nearly scale invariant,

are close to Gaussian,

are adiabatic.

but what created these initial condition?



From the CMB observations we have learned that the primordial 
perturbations

1.

2.

4.

3.

existed before the big bang,

are nearly scale invariant,

are close to Gaussian,

are adiabatic.

What is the physics of inflation?

} � � � Ḣ

H2
� 1

but what created these initial condition?



Randomness during Inflation 



A nearly scale-invariant two-point function describes everything. 

The early universe looks remarkably simple !



Ultraviolet theories seem remarkably complex !

Many ingredients have to be carefully arranged to give rise to inflation.



What if some randomness survives?

Is this consistent with the data?



What if some randomness survives?

How do we make predictions?



stochastic particle creation

What if some randomness survives?

L(�a) = L̄(�a) + �L(�a)
random



How do we compute in such scenarios?

random strengths

random events

�
time

m(�)

Fields may have time-dependent couplings:



current transmission in wires 

I will demonstrate a mathematical equivalence between resistance in 
disordered wires and stochastic particle production in cosmology.

random strengths

random locations

V (x)

x
space

We will take inspiration from an unusual source:



n(T ) � e+µT

Anderson localization = exponential particle creation 

�(L) � eL/�

�(x) � e�x/� �k(�) � e+µk�



n(T ) � e+µT

Anderson localization = exponential particle creation 

�(L) � eL/�

�(x) � e�x/�

Simplicity from Complexity?
In condensed matter, emergent universal behaviour is what allows 
predictive power in spite of the underlying complexity of materials.

�k(�) � e+µk�



From Anderson Localization to 
Stochastic Particle Creation



Current Transmission

d2�

dx2
+ [E � V (x)] � = 0

Conduction in wires is described by the 
time-independent Schrödinger equation:

random strengths

random locations
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random events

Particle Production

d2��k

d�2
+
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�
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Particle production is describes by the 
time-dependent Klein-Gordon equation:

random strengths

�
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�m2(�)

non-adiabatic events



From Wires to Cosmology
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Anderson Localization

x

� = k�x

transmitted

reflected

|�(L)� = · · · Mj+1Mj · · · |�(0)�

phases are important!

Mj+1Mj transfer matrix

incoming



Anderson Localization

x

� = k�x

phases are important!

�(x) � e�x/�

phase-averaged



�
time

Stochastic Particle Production

�m2(�)

��k(�) � e+µk�

We expect exponential particle production 
to be the analog of Anderson localization.



m2(�)

Stochastic Particle Production
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Indeed, this is what we find in simulations:
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Stochastic Particle Production

The evolution is stochastic:

probability 
distribution
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1

µk

�

��
P (n; �) = (1 + 2n)

�P

�n� �� �
drift

+ n(1 + n)
�2P

�n2
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di�usion

mean particle production rate
(computable from the microscopic 
properties of the scattering events)

(analog: mean free path)

Brownian Motion

Amin and DB

The probability distribution satisfies a Fokker-Planck equation:

At late times, the solution approaches a log-normal distribution.



Moments of the Distribution

Var(n)

�n�2
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The most probable value of the number density is

�ln n� = µk�

nt � exp(�ln n�) = eµk�



Numerical Test

� �� ��� ��� ��� ��� ���
�

��

���

���

���

50 100 150 200 250 3000

The statistics of the produced particles and their 
evolution is predicted by the Fokker-Planck equation:
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Multi-Field Generalization



Current conduction occurs in multiple channels.
Real wires are not one-dimensional.

The dynamics of the early universe may involve multiple fields:
�
1 �2

� + P(k, �)�� + F(k, �)
�

� �� �
� U(k, �)

· ��k = 0



2Nf � 2Nf

Multi-field particle production can also be formulated as a scattering 
problem:

M1 M2 MNs

|��(Ns)� |��(0)�



2Nf � 2Nf

Multi-field particle production can also be formulated as a scattering 
problem:

M1 M2 MNs

|��(Ns)� |��(0)�

product of 
random matrices

The state after many scatterings is

|��(Ns)� = M |��(0)� where M � MNs · · · M2M1

The total number of particles is

n = Tr(n) =
Nf�

a=1

na where n � MM† .

particles in each “channel”



Fokker-Planck Equation
Dorokhov, Mello, Pereura, and Kumar

The joint probability for the number densities satisfies the following 
Fokker-Planck equation:
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As before, we use this to predict the statistics of the particle production.

We find ln(nt) � 2Nf

Nf + 1
Ns where n =

Nf�

a=1

na .



Results
Analytics and numerics agree remarkably well: ln(nt) � 2Nf

Nf + 1
Ns



Simplicity/Universality

Nc

� µk

Nf

: mean free path

: number of channels

: mean particle production rate

: number of fields

universality: regimes exist where the 
dependence on parameters vanishes. 



M =
Ns�

j=1

Mj

Universality from Random Matrix Theory

We can exploit two large N’s: 

• large number of fields: 
Nf

• large number of scatterings: 
Ns

RMT 

predicts: • eigenvalue spectrum of • non-random limit of Mj

P (µk) n � e�kNs



e±�a

e±�aNs

Universality from Random Matrix Theory

We can exploit two large N’s: 

• large number of fields: 
Nf

• large number of scatterings: 
Ns

RMT 

predicts: • eigenvalue spectrum of • non-random limit of 

, the random eigenvalues of tend For Ns � � 2Nf

 to the non-random values , with independent of .

For finite Ns , the ’s have small Gaussian fluctuations around their
asymptotic limit .

Ns

Lyapunov exponent

Oseledec

M =
Ns�

j=1

MjMj

�a

�aNs

�a

MM† � n



Outlook
Emergent Simplicity from Complexity?



We have seen hints of universality emerging in the evolution 

of the particle number density:

nk � eµk�

microscopic details have collapsed 
into the Lyapunov exponent

Statistics are characterized by andµk Nf .

µk



reheating

inflation

background dynamics

particle production
�n�k1

n�k2
. . .�

curvature fluctuations
���k1

��k2
. . .�

It remains to be seen how this is reflected in cosmological 
observables:

�a



(n)R �
� t

dt� G�n�
ret (t, t�) �(t�)

Application: Inflation
Nacir, Porto, Senatore, and Zaldarriaga

source

stochastic noise linear response

The produced particles can backreact on the evolution of curvature 
perturbations during inflation:

�
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* Outside the horizon: n � �2

(n)S � �n��=0



Application: Reheating

Kofman, Linde, Starobinsky

Model-insensitive description of a 
complicated reheating process.

�a



Open Questions

• Do universal conductance fluctuations have a counterpart in inflation?

• Does the large variance of the produced particles leave an imprint?
Green

• How natural is scale-invariance?

•  How do our results compare to explicit examples?
discussions with Bachlechner, Dias, Frazer, Marsh and McAllister.



Thank you for you attention.


