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- GFT, LQG and spin foam models

« GFT models of 4d quantum gravity: main ingredients
« The problem of the continuum and GFT renormalization
 nature of the problem and role of renormalisation
- perturbative GFT renormalization
- non-perturbative GFT renormalization: recent results
- Effective cosmological dynamics from GFTs
 general perspective: universe as a condensate, cosmology as QG hydrodynamics
- GFT condensates as homogeneous geometries

- effective cosmological dynamics from GFT condensates
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Group field theories

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ...... )

Quantum field theories over group manifold G (or corresponding Lie algebra) © : GX d  C

QFT of spacetime, not defined on spacetime

relevant classical phase space for “GFT quanta”: (T* G) xd ~ (g X G) xd
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d is dimension of “spacetime-to-be”
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can be defined for any (Lie) group and dimension d, any signature, .....

very general framework; interest rests on specific models/use
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in pairing of field arguments

simplest example (case d=4): simplicial setting

combinatorics of field arguments in interaction: gluing of 5 tetrahedra across common
triangles, to form 4-simplex (“building block of spacetime”)
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the GFT proposal: zZ = /DSOD¢ et AP = Z sym (D) Ar

spin networks as many-body systems and 2nd quantisation —-> GFT Fock space DO, "13; Kittel, DO, Tomlin, to appear

1
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- same type of functions + same scalar product for
given graph

and change in perspective
9 Persp h - states for different graphs (same vertices) overlap
— —> fundamental discreteness

need to accept technical differences

* no continuum embedding

(not “quantising continuum fields”, not canonical GR) - no cylindrical equivalence

for any canonical observable (incl. Hamiltonian constraint) -> GFT observable in 2nd quantisation
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guantum spin network history = spin foam (complex with algebraic data)

basic element of SF model: quantum amplitude for spin foam complex

{T'} zmy = > J[Ar0) HA (J, 1) HA (J, 1)

{JrAI}5,5" 57 f

complete (formal) definition of SF model:

gquantum amplitudes for all spin foam complexes + organization principle
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GFTs, loop guantum gravity, spin foam models
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into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G
example: d=3 ©p 50(3)3/50(3) R +  simplicial interaction
Vh € SO(3), wo(hgi, hgr, hgs) = (g1, 82,83) with only delta functions

valid for GFT definition of BF theory in any dimension
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4 3 A
classical triangle in R

3 2 :
3 edge vectors that close  X1,292,T3 € R S.t. Xr; = 0
? v,

unique intrinsic geometry (up to rotations)

N
—

. X3
part of classical phase space [T* SU (2)] Phase space for triangle in discrete 3d gravity

su(2) ~ R?

90(817827 g3) — SO(Xl,X2,X3)
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appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes
into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G
example: d=3 Dy SO(S)S/SO(S) — R +  simplicial interaction
Vh € SO(3), wo(hgi, hgr, hgs) = (g1, 82,83) with only delta functions
valid for GFT definition of BF theory in any dimension

can be computed in different (equivalent) representations (group, spin, Lie algebra)
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| T 34 gravity/BF theory
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/ discrete 1st order path integral for 3d gravity/BF theory
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GFT models of 4d gravity:

based on classical (Plebanski) formulation of GR as BF theory + (simplicity) constraints

start from GFT formulation of 4d BF theory
+ impose simplicity constraints (geometricity of simplicial structures)
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GFT models of 4d gravity:

based on classical (Plebanski) formulation of GR as BF theory + (simplicity) constraints

start from GFT formulation of 4d BF theory
+ impose simplicity constraints (geometricity of simplicial structures)

(Barbieri, Baez, Barrett, Crane, Reisenberger, Perez, De Pietri, Engle, Pereira, Freidel, Krasnov, Rovelli, Livine, Speziale, Baratin, DO, ...... )

inspired by Plebanski-Holst gravity: Sp;., = & Jaq [B A F(w) + % *BANFw) + ¢BAB

Becso(3,1)  ounkrn = OKL|IJ]

concrete, well-defined GFT (spin foam) model(s) for 4d QG dynamics - nice discrete geometry, lots of results .....

decompose GFT field in SU(2) data +

e : geometricity conditions
simplicity constraints = ¢

= specific relation between SL(2,C) data and SU(2) data
GFT dynamics to LQG quantum states



Quantum 4d simplicial geometry (riemannian)

classical tetrahedron in 4d:
\ unique intrinsic geometry (up to rotations) b
/ 2
<4

EB{J e R ~s0(4), N'eRY) Ny (xB/’)=0 ) B/7 =0 lb3

phase space before constraints:

[T*Spin(4)]* ~ [T*SU(2) x T*SU(2)]**
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how GFT help tackling open issues in LQG

open issues in LQG and spin foam models have precise GFT counterpart
QFT formalism provides powerful tools to tackle them

* how to constrain quantisation and construction ambiguities?

(in many ways, background independent counterpart of issue of renormalizability in perturbative QG) Pperez, ‘07

« GFT perturbative renormalization

—-> renormalizability of GFT for given spin foam amplitudes

. GFT symmetries (at both classical and quantum |eve|) Ben Geloun, '11; Girelli, Livine, '11; Baratin, Girelli, Oriti, ‘11

—-> in particular, those with geometric interpretation (e.g. diffeomorphisms) Kegeles, DO, 15

- how to define and control the continuum limit of the quantum LQG/SF dynamics?

controlling quantum dynamics of more and more interacting degrees of freedom

(large superpositions of large graphs) - inequivalent phases of LQG with different physics?

Ashtekar, Lewandowski, '94; Koslowski, '07; DO, '07; Koslowski, Sahlmann, ’10,
Dittrich, Geiller, '14; Gielen, DO, Sindoni, ’13; DO, Tomlin, to appear

* Non-perturbative GFT renormalization and phase diagram
- Extraction of effective continuum dynamics in different phases (as in condensed matter systems....)
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The problem of continuum in QG
and GFT renormalisation
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new (non-geometric, non-spatio-temporal) physical degrees of freedom (“building blocks”) for space-time

\ new direction to explore: number of fundamental degrees of freedom

(quantum) continuum, geometric space-time should be recovered in the regime of large number N of
non-spatio-temporal d.o.f.s

continuum approximation very different (conceptually, technically) few QG d.o.f.s

from classical approximation (e.g. Sim;'e LQG spinnets) ®

full Quantum Gravity

N-direction
(collective behaviour of many interacting degrees of freedom):
continuum approximation

h-direction: classical approximation

N
@ ®

“well-understood” in Spin foam models few QG d.o.f.s in classical approx. General Relativity
(e.g. discrete/lattice gravity) (continuum spacetime)
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Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool (mathematical, conceptual, physical)

renormalization is not about “curing or hiding divergences”, but
taking into account the physics of more and more d.o.f.s

for our QG models (LQG/spin foams), do not expect to have a unique continuum limit

collective behaviour of (interacting) fundamental d.o.f.s should lead to different macroscopic phases,
separated by phase transitions

for a non-spatio-temporal QG system (e.g. LQG in GFT formulation),
which of the macroscopic phases is described by a smooth geometry with matter fields?

in specific GFT case:

- fundamental formulation of QG = QFT, defined perturbatively around “no-space” (degenerate) vacuum

need to prove consistency of the theory: perturbative GFT renormalizability

need to understand effective dynamics at different “GFT scales”:
RG flow of effective actions & phase structure & phase transitions



GFT renormalisation - general scheme

see lectures by V. Rivasseau

. _ \Vr
Z — | DODG et ore:?)
/ ©DP e ;sym(r) Ar
S(0.9) = 5 [ ldglp@@Kle)e(a) + 7 [lgiade(gn)mpl@ioVgiagin) + e

general strategy:

treat GFTs as ordinary QFTs defined on Lie group manifold

use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration
subtleties of quantum gravity context at the level of interpretation

scales:
defined by propagator: spectrum of Laplacian = indexed by group representations or Lie algebra elements

* need to have control over “theory space” (e.g. via symmetries)

- main difficulty (at perturbative level):
controlling the combinatorics of GFT Feynman diagrams to control the structure of divergences
(more involved when gauge invariance is present)

most results for “Tensorial” GFTs
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Tensorial GFTs (key insights from tensor models)

see lectures by V. Rivasseau

locality principle and soft breaking of locality:

tracial locality - tensor invariant interactions — —
g S(e,8) = > _ tols(0,7)

<
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“coloring” allows control over
topology of Feynman diagrams

require generalization of notions of “connectedness”, “contraction of high subgraphs”, “locality”, Wick ordering,

taking into account internal structure of Feynman graphs, full combinatorics of dual cellular complex, results from
crystallization theory (dipole moves)
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- systematic renormalisation group analysis of tensorial GFT models:
requires subtle analysis of combinatorics of diagrams (dual to cellular complexes)

many results: perturbative renormalizability and renormalisation group flow

J. Ben Geloun, D. Ousmane-Samary, V. Rivasseau, S. Carrozza, DO, E. Livine, F. Vignes-Tourneret, A. Tanasa, M. Raasakka, V. Lahoche, .....

- several renormalizable abelian TGFT models (different groups and dimension, with/without gauge invariance)

J. Ben Geloun, V. Rivasseau, ’11; J. Ben Geloun, D. Ousmane-Samary, ‘11 S. Carrozza, DO, V. Rivasseau, ‘12

first renormalizable non-abelian TGFT model in 3d with gauge invariance (3d BF + laplacian)
S. Carrozza, DO, V. Rivasseau, ‘13

. first renormalizable TGFT model on homogeneous space (SU(2)/U(1))Ad V- Lahoche, DO, 15

proof of asymptotic freedom for abelian TGFT models without gauge invariance

J. Ben Geloun, D. Ousmane-Samary, '11; J. Ben Geloun, ‘12

study of asymptotic freedom/safety for non-abelian TGFT models with gauge invariance
S. Carrozza, ‘14
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Non-perturbative GFT renormalisation (continuum [imit)

see talk by J. Ben Geloun
ANT

the issue: Z = /99077@ et PP — Ar
EF: sym(I’)

( controlling quantum dynamics of more and more (up to infinity) interacting degrees of freedom)

~ evaluating GFT path integral (in some non-perturbative approximation = full spin foam sum)

one recent direction - Functional RG approach ala Wetterich-Morris:

IR fixed point of RG flow of GFT model Zy[J] ="V = / dg e~ S1Pl=ASN [P+ Tr2(]-¢)

IR cutoff N —-> 0 M
(small J, assuming large-J integrated out) T — (Tr To0) — Wl ) _AS
~ definition of full GFT path integral N[SO] Jp 2( gp) N( ) N [SO]
~ full continuum limit (all dofs of spin foam model) 1 (2) .
atFN[gp] p— §Tr((")tRN . [FN + RN] )

more or less standard set-up
main difficulty: combinatorial structure of interactions



Non-perturbative GFT renormalization

see talk by J. Ben Geloun

Main results:

 Polchinski formulation based on SD equations  Krajewski, Toriumi, ‘14

- general set-up for Wetterich formulation based on effective action Benedetti, Ben Geloun, DO, 14
- RG flow and phase diagram established for:

TGFT on compact U(1)A3 with 4th order interactions Benedetti, Ben Geloun, DO, "14

TGFT on non-compact RA3 with 4th order interactions Ben Geloun, Martini, DO, 15

TGFT on compact U(1)"6 with 4th order interactions and gauge invariance  Benedetti, Lahoche, ‘15

TGFT on non-compact RAd with 4th order interaction and gauge invariance  Ben Geloun, Martini, DO, to appear

Note:

get non-autonomous system of beta functions in compact case (extra scale = size of group)
non-compact case via thermodynamic limit

results in agreement with “large-N” approx of compact case

Phase diagrams qualitatively very similar (universal features?)
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Example of phase diagram:

U(1)A3 model in large-N approximation



Non-perturbative GFT renormalization

see talk by J. Ben Geloun

0.2 - K S | - = N
Example of phase diagram:
0.07
U(1)A3 model in large-N approximation o~
_o2l /,/'
A m .
Cnlp) = S Toalp-K-¢)+ 5 Tl + 8
|§ -04 - =
: A\ :
g = 2N (Tr4;1(g04) +Sym(1 — 2 - 3))
—0.6 - .
Tro(p-K-¢) = Z 80123(% sz')90123 7
piEN v I
Tra(9®) = Y ©ly L *
pi €N I >
Tr4;1(904) — Z P123 P1/23 P28 L1238 _1'06.00 D
pi,p;EN T
N

one Gaussian UV FPs, one non-Gaussian IR fixed point of Wilson-Fischer type

one symmetric phase

one broken or condensate phase - order parameter is expectation value of field operator
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The "geometrogenesis™ hypothesis

in canonical LQG context: in covariant SF/GFT context: also in tensor models
T. Koslowski, 0709.3465 [gr-qc] DO, 0710.3276 [gr-qc] V. Rivasseau, ‘13
. “geometrogenesis” = QG condensation = emergence of space-time from non-spatiotemporal

description of QG system

it identifies one phase of QG system, physically realised; simply the “correct” regime of QG theory?

are other QG phases also physically realised? is the geometric phase transition a physical process?

hyp: geometrogenesis (e.g. LQG/GFT condensation) as cosmological physical process

hyp: phase transition leading to spacetime and geometry (e.g. LQG/GFT condensation) is what
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T. Koslowski, 0709.3465 [gr-qc] DO, 0710.3276 [gr-qc] V. Rivasseau, ‘13
. “geometrogenesis” = QG condensation = emergence of space-time from non-spatiotemporal

description of QG system

it identifies one phase of QG system, physically realised; simply the “correct” regime of QG theory?

are other QG phases also physically realised? is the geometric phase transition a physical process?

hyp: geometrogenesis (e.g. LQG/GFT condensation) as cosmological physical process

hyp: phase transition leading to spacetime and geometry (e.g. LQG/GFT condensation) is what
replaces Big Bang singularity

cosmological evolution as relaxation towards (exact) condensate (homogeneous) state?

(... HU’95,...., Konopka-Markopoulou-Smolin, ’06, DO ’07, ’11, ’13)

in this perspective, what is the role of (Qquantum) cosmology?
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Two points of view on quantum gravity and
guantum spacetime

two views:
1. quantum gravity = quantum theory of gravitational field ~ quantum General Relativity

2. quantum gravity = microscopic theory of pre-geometric quantum degrees of freedom
(“quantum (field) theory of atoms of space”)

e B gravitational field result of collective dynamics
spacetime and geometry are emergent entities

in case 2.

(quantum) cosmological degrees of freedom governed by statistical distribution
not quantum theory of homogeneous geometries (Qquantum cosmology)

cosmological dynamics is the hydrodynamic approximation of full guantum gravity
(most macroscopic, coarse grained, global description of the microscopic pre-geometric system)



Quantum cosmology or cosmological hydrodynamics?

..... option 2 suggests a picture in which a “quantum cosmology wavefunction” describes a homogeneous patch/
region of space, with many such regions to be patched together to form an arbitrary spatial configuration

Bojowald, ‘14 candidate single-patch dynamics: (quantum) Friedmann-like egn

expect full dynamics for “cosmological wave-function” to be non-linear - no superposition, no Hilbert space
if probability interpretation (on minisuperspace), only in statistical sense

multi-patch cosmology more naturally understood as coarse grained “hydrodynamic description”

cosmology as hydrodynamics

advantages:
perspective and tools from condensed matter theory

“easier”, at least conceptually: inhomogeneities are
always present, no real truncation of dofs
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Cosmology as hydrodynamics of (quantum) spacetime

re-thinking the “Cosmological Principle”.  “every point is equivalent to any other” ~ homogeneity of space

really means: a certain approximation is assumed valid:
universe is in state where inhomogeneities can be neglected, in relation to dynamics of homogeneous modes
~ universe is in state where effects on largest wavelengths of shorter wavelengths is negligible

~ can neglect wavelengths (much) shorter than scale factor

very similar in spirit to hydrodynamic approximation:
dynamics of microscopic degrees of freedom can be neglected + effects of small wavelengths can be neglected
implies:

4 R
degrees of freedom of local region can describe whole of system (in a coarse grained, statistical sense)

l.e. whole universe (dynamics) well-approximated by local patch (dynamics)
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recall: standard hydrodynamics from classical many-particle system
e.g. N particles in R

from knowledge of microstate, get reduced 1-particle density by coarse graining:

_ density (probability measure)
In phase space
which particle is chosen is irrelevant because of permutation symmetry

o, p) = / dil[dpi] Dy (5, ps . P oo s P e

such that: /dwdp p(z,p) =1
_ . . o e probability to find a particle in
p(x,p)dudp = [/[d%”dpz] (Z 0(z — ;) o(p pz))] drdp the phase space region dxdp
p(x) = /dp p(x,p) more apt for QM systems

averaging over regions:
- large compared to inter-particle distances

- small compared to wavelengths of interest \
a “point” in the fluid corresponds to a region containing a large

\ number of microscopic constituents

valid at long wavelengths (not sensitive to small-scale dynamics)
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Cosmology as hydrodynamics of (quantum) spacetime

what would a “coarse graining of geometric dof of Universe” be?

Il heuristi 1"
how to define the basic cosmological hydrodynamic variable? il heuristically and very formally !

phase space of GR: > classical probability density in phase space:

analogue of 1-particle reduced density (treating each point as a “constituent of the spacetime fluid”):

p(hij, KY) = p(hij(zo, K (x0) = ) Dh;j(y)DK" (y) Dy (hij(y), K (y))

which point is chosen is irrelevant because of diffeomorphism symmetry

too formal, and, really, a point should correspond to a coarse graining region

less formal:
- use lattice to replace smooth manifold: points replaced by fundamental lattice cells

end result of (any) proper construction:

(basic variable is “single-patch density” with arguments the geometric data of minisuperspace)

(cosmology IS (non-linear) dynamics for such density and for geometric (global) observables computed from it)
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From Quantum Gravity to Cosmological hydrodynamics

key strategy:

coarse graining of kinematical QG configurations

\

coarse graining of QG (quantum) dynamics

very difficult in general
see comparatively simpler problem of coarse graining classical GR
see also analogous problem in condensed matter theory

one special case:
guantum condensates (BEC)

effective hydrodynamics directly read out of microscopic quantum dynamics (in simplest approximation)
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described by single collective wave function
(depending on homogeneous anisotropic geometric data)

similar constructions in LQG (Alesci, Cianfrani) and LQC (Bojowald, Wilson-Ewing, .....)

problem 2:
extract from fundamental theory an effective macroscopic dynamics for such states

following procedures of standard BEC

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs
IS
non-linear and non-local extension of quantum cosmology equation for collective wave function

S. Gielen, ’14; G. Calcagni, '14; L. Sindoni, ’14; S. Gielen, DO, ’14; S. Gielen, ’14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, to appear
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GFT states and approximate continuum geometries

. work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)
90(917 g2, 9s, 94) N 90(31, Bs, Bs, B4) — C describes geometric tetrahedron
e BAP = ¢ JkeAeE (closure + simplicity constraints)
& e generic N-particle GFT state (N geometric tetrahedra):
many results in LQG, |Bf(m) H 95 Bl(m)a sy B4(m))‘0>

simplicial geometry _

 from B’s of each GFT quantum, 1
construct: gij = 8tr(BlBgB3)

kl _— mn N ~

interpretation: spatial metric coefficients (and conjugate variables) “sampled” at N points

BI(m) 7 Gij (Tm) <> ai(Tm) gr(m) <7 Kj (Tm) <> Pa, (Tm)

° classical criterion for homogeneity (for GFT data): Gij(m) = 9ij(k)y VEk,m=1,..., N

i.e. all GFT quanta are labelled by the same (gauge invariant) data
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. lift homogeneity criterion to quantum level (and include conjugate information):

[ all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state j

N
1
U (Bji(1), - Bivy) = N H ®(B;(m))
m=1
. in GFT: such states can be expressed in 2nd quantized language and

one can consider superpositions of states of arbitrary N

. sending N to infinity means improving arbitrarily the accuracy of the sampling

q [ quantum GFT condensates are continuum homogeneous (quantum) spaces j

similar constructions in LQG (Alesci, Cianfrani) and LQC (Bojowald, Wilson-Ewing, .....)
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(homogeneous continuum quantum space)

(Gross-Pitaevskii approximation)
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. . [\
single-particle condensate ﬁ \ Ve “
)\
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Quantum GFT condensates

a simple choice of quantum GFT condensate
(homogeneous continuum quantum space)

single-particle condensate “‘“
(Gross-Pitaevskii approximation)
Q( A\

g\
7) = exp () [0) X %é/g/
o = /d49 o9 (91)  a(grk) = o(gr) S ‘44

o (D) D ~ {geometries of tetrahedron} ~
~ {continuum spatial geometries at a point} ~
~ minisuperspace of homogeneous geometries
. data for homogeneous anisotropic geometries
. truly non-perturbative quantum states (infinite QG dofs, superposition of graphs)
. support perturbations at any sampling scale N
. 2nd quantized coherent states ¢(g;)|o) = o(g;) |o)

. can be studied using BEC techniques



—ffective cosmological dynamics from GFT

S. Gielen, DO, L. Sindoni,

PRL, arXiv:1303.3576 [gr-qc];

follow closely procedure used in real BECs

‘O-> .= eXp (5’) ‘O> 0 1= /d4g O-(gf)@T (gf) U(Q[k) — U(g[) superposition of infinitely

many SN dofs
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—ffective cosmological dynamics from GFT

S. Gielen, DO, L. Sindoni,

PRL, arXiv:1303.3576 [gr-qc];

follow closely procedure used in real BECs

‘O-> .= eXp (6-) ‘O> 0 1= /d4g J(gI)SET (gf) O'(g[k> — O'(g[> superposition of infinitely

many SN dofs

from truncation of SD equations for GFT model
applied to (coherent) GFT condensate state, 59

gives equation for “wave function”: /[dg;] lﬁ(gz’, gql;)a(gg) | )\590(9') ’@EU =0
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many SN dofs

from truncation of SD equations for GFT model
applied to (coherent) GFT condensate state, 59
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similar equations to M. Bojowald et al., arXiv:1210.8138 [gr-qc]

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function”

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

in some simple models and with various simplifying assumptions, effective dynamics take form of
(modified) Friedman equation (also with scalar field);
work recently extended to fundamental GFT/spin foam models (DO, L. Sindoni, E. Wilson-Ewing, to appear)
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GFT condensates are interesting candidates for physical, geometric vacua of QG theory

derivation of (quantum) cosmological equations from GFT quantum dynamics very general

it rests on:
. continuum homogeneous quantum space ~ GFT condensate
. good encoding of discrete geometry in GFT states
. 2nd quantized GFT formalism

non-linear quantum cosmology-like equations emerging as hydrodynamics for GFT condensate

( derivation of cosmology from fundamental QG formalism! )

exact form of equations depends on specific model considered
now: derive effective cosmological dynamics from most promising GFT (spin foam) models

D. Oriti, L. Sindoni, E. Wilson-Ewing, to appear

non-linear quantum cosmology is QG analogue of Gross-Pitaevskii hydrodynamics for BECs

similar equations to M. Bojowald et al., arXiv:1210.8138 [gr-qc]

q Cosmology as Quantum Gravity (condensate) hydrodynamics!



Thank you for your attention!



