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Group field theories

' : G⇥d ! CQuantum field theories over group manifold  G (or corresponding Lie algebra)

relevant classical phase space for “GFT quanta”: (T ⇤G)⇥d ' (g⇥G)⇥d

can reduce to subspaces in specific models depending on conditions on the field
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Fock vacuum: “no-space” (“emptiest”) state   | 0 >

single field “quantum”: spin network vertex or tetrahedron
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generic quantum state: arbitrary collection of spin network vertices (including glued ones) or 
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generic quantum state: arbitrary collection of spin network vertices (including glued ones) or 
tetrahedra (including glued ones)

Fock vacuum: “no-space” (“emptiest”) state   | 0 >

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]

j1

j2 j3

j4

j5

j6
j7

j8

j9

j10

j11

j12
j13

j14

j15

j16

j17

j18

j19

j20

j21

j22

j23

Kristina Giesel Dynamics of LQG

single field “quantum”: spin network vertex or tetrahedron

(“building block of space”)

g

g

g

g

1

2

3

4

g

g

g

g

1

2

3

4

'(g1, g2, g3, g4)$ '(B1, B2, B3, B4)! C

Group field theories



Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)
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simplest example (case d=4): simplicial setting
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Figure 1: GFT propagator and vertex

2.2 Non-commutative Fourier transform and bivector formulation

The simplicial geometry encoded in the model (5) is best understood in a dual formulation,
coined ‘metric representation’ in [21], obtained by a group Fourier transform of the field. The
relevant Fourier transform here is the obvious extension of the non-commutative SO(3) Fourier
transform [33, 34, 35] to the group [SO(3)⇤ SO(3)]4:

⇤⇤(x1, · · · x4) :=
⇥

[dgi]4 ⇤(g1, · · · g4) eiTrx1g1 · · · eiTrx4g4 (7)

The variables xi belong to the Lie algebra so(4) = su(2) ⌅ su(2). The kernel of the Fourier
transform is a product of ‘plane waves’ Eg(x) = eiTrxg, where the trace Tr is defined in terms of
the usual trace of 2⇤ 2 matrices1 as Trxg=

�
± ⇥g±tr[x±g±] with ⇥g±=sign(trg±). Thus Eg(x)

is itself a product of two SO(3) plane waves eg±(x±) :=ei�g±trx±g± . The plane waves satisfy the
properties: ⇥

d6x Eg(x) = �(g), Eg-1(x) = Eg(�x) (8)

1Let ⇧j be i times the Pauli matrices, then tr⇧i⇧j =��ij . Given and SU(2) element u=e�nj⇥j parametrized by
the angle ⇤ ⇤ [0, ⌅] and the unit R3-vector ⌦n and a=aj⇧j in the algebra su(2), we thus have tr[au]=� sin ⇤⌦n · ⌦a.
Also ⇥u :=sign(tru)=sign(cos ⇤).
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simplest example (case d=4): simplicial setting
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Feynman perturbative expansion around trivial vacuum

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =


= stranded diagrams dual to cellular complexes of arbitrary topology 


(simplicial case: simplicial complexes obtained by gluing d-simplices in arbitrary ways)
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2-complex J bordered by the graphs of γ and γ′ respectively, a collection of spins {jf} associated
with faces f ∈ J and a collection of intertwiners {ιe} associated to edges e ∈ J . Both spins and
intertwiners of exterior faces and edges match the boundary values defined by the spin networks s
and s′ respectively. Spin foams F : s → s′ and F ′ : s′ → s′′ can be composed into FF ′ : s → s′′

by gluing together the two corresponding 2-complexes at s′. A spin foam model is an assignment
of amplitudes A[F ] which is consistent with this composition rule in the sense that

A[FF ′] = A[F ]A[F ′]. (74)

Transition amplitudes between spin network states are defined by

⟨s, s′⟩phys =
∑

F :s→s′

A[F ], (75)

where the notation anticipates the interpretation of such amplitudes as defining the physical scalar
product. The domain of the previous sum is left unspecified at this stage. We shall discuss this
question further in Section V. This last equation is the spin foam counterpart of equation (73).
This definition remains formal until we specify what the set of allowed spin foams in the sum are
and define the corresponding amplitudes.
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Figure 5: A typical path in a path integral version of loop quantum gravity is given by a series of
transitions through different spin-network states representing a state of 3-geometries. Nodes and
links in the spin network evolve into 1-dimensional edges and faces. New links are created and
spins are reassigned at vertexes (emphasized on the right). The ‘topological’ structure is provided
by the underlying 2-complex while the geometric degrees of freedom are encoded in the labeling of
its elements with irreducible representations and intertwiners.

The background-independent character of spin foams is manifest. The 2-complex can be
thought of as representing ‘space-time’ while the boundary graphs as representing ‘space’. They do
not carry any geometrical information in contrast with the standard concept of a lattice. Geometry
is encoded in the spin labelings which represent the degrees of freedom of the gravitational field.

In standard quantum mechanics the path integral is used to compute the matrix elements of the
evolution operator U(t). It provides in this way the solution for dynamics since for any kinemat-
ical state Ψ the state U(t)Ψ is a solution to Schrödinger’s equation. Analogously, in a generally
covariant theory the path integral provides a device for constructing solutions to the quantum
constraints. Transition amplitudes represent the matrix elements of the so-called generalized ‘pro-
jection’ operator P (i.e., ⟨s, s′⟩phys = ⟨sP, s′⟩ recall the general discussion of Sections 2.2) such
that PΨ is a physical state for any kinematical state Ψ. As in the case of the vector constraint
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GFT as 2nd quantisation of LQG

spin networks as many-body systems and 2nd quantisation —-> GFT Fock space
(= space of “disconnected spin network vertices”)

the GFT proposal: Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

DO, ’13 ; Kittel, DO, Tomlin, to appear

see talk by N. Bodendorfer
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L2(G⇥d): F(Hv) =
L1

V=0 sym
n⇣

H(1)
v ⌦H(2)

v ⌦ · · ·⌦H(V )
v

⌘o

, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h

'̂(~g) , '̂†(~g0)
i

= IG(~g,~g0)
⇥

'̂(~g) , '̂(~g0)
⇤

=
h

'̂†(~g) , '̂†(~g0)
i

= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0
i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L

Ji2N/2 Inv
�

HJ1 ⌦ ...⌦HJ4
�

, where each HJi is the Hilbert space of an
irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�

'̂, '̂†�.
Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:

O
 =(�,J

(ab)
(ij) ,◆i)

('̂†) =

0

@

Y

(i)

Z

[dgia]

1

A 
(�,J

(ab)
(ij) ,◆i)

(giag
�1
jb )

Y

i

'̂†(gia), (4)
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gravity atom’ corresponding to a Hilbert space Hv = L2
�

G⇥d/G
�

. An orthonormal basis  ~�(~g) in
each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):

~� =
⇣

~J, ~m, I
⌘

!  ~�(~g) = h~g|~�i =
"

d
Y

a=1

DJa
mana

(ga)

#

CJ1...Jd,I
n1..nd

. (6)

The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =
L1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators

'̂(g1, .., gd) ⌘ '̂(~g) =
X

~�

'̂~�  ~�(~g) '̂†(g1, .., gd) ⌘ '̂†(~g) =
X

~�

'̂†
~�  

⇤
~�(~g) ,

satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�0

1, ..., ~�
0
n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:
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Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero

H� ⇢ HV

4

where  
(�,J

(ab)
(ij) ,◆i)

(Gab
ij ) identifies a spin network functional labelled by a closed graph � with rep-

resentations J (ab)
(ij) associated to the di↵erent edges linking two vertices i and j, and intertwiners ◆i

associated to its vertices; gia (resp. gjb) (with a, b = 1, ..., d) are group elements being the argu-
ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L2
⇣

GE/GV , dµ =
QE

e=1 dµ
Haar
e

⌘

(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µHaar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1
[�H�

⇡ . Of course, the
two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L2
⇣

(G⇥d/G)⇥V , dµ =
QV

v=1

Qd
i=1 dµ

v
Haar,i

⌘

, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as

 �(G
ab
ij ) =

Y

[(ia),(jb)]

Z

G
d↵ab

ij �V (. . . , gia ↵
ab
ij , . . . , gjb↵

ab
ij , . . .) =  �(gia(gjb)

�1) , (5)

with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum

� �

(= space of “disconnected spin network vertices”)

the GFT proposal: Z =
Z
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L2(G⇥d): F(Hv) =
L1

V=0 sym
n⇣

H(1)
v ⌦H(2)

v ⌦ · · ·⌦H(V )
v

⌘o

, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h

'̂(~g) , '̂†(~g0)
i

= IG(~g,~g0)
⇥

'̂(~g) , '̂(~g0)
⇤

=
h

'̂†(~g) , '̂†(~g0)
i

= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0
i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L

Ji2N/2 Inv
�

HJ1 ⌦ ...⌦HJ4
�

, where each HJi is the Hilbert space of an
irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�

'̂, '̂†�.
Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:

O
 =(�,J

(ab)
(ij) ,◆i)

('̂†) =

0

@

Y

(i)

Z

[dgia]

1

A 
(�,J

(ab)
(ij) ,◆i)

(giag
�1
jb )

Y

i

'̂†(gia), (4)
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Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.
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, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =
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HJ1 ⌦ ...⌦HJ4
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, where each HJi is the Hilbert space of an
irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
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'̂, '̂†�.
Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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gravity atom’ corresponding to a Hilbert space Hv = L2
�

G⇥d/G
�

. An orthonormal basis  ~�(~g) in
each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):

~� =
⇣

~J, ~m, I
⌘

!  ~�(~g) = h~g|~�i =
"

d
Y

a=1

DJa
mana

(ga)

#

CJ1...Jd,I
n1..nd

. (6)

The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =
L1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators

'̂(g1, .., gd) ⌘ '̂(~g) =
X

~�

'̂~�  ~�(~g) '̂†(g1, .., gd) ⌘ '̂†(~g) =
X

~�

'̂†
~�  

⇤
~�(~g) ,

satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�0

1, ..., ~�
0
n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:
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Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero

H� ⇢ HV
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where  
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(Gab
ij ) identifies a spin network functional labelled by a closed graph � with rep-

resentations J (ab)
(ij) associated to the di↵erent edges linking two vertices i and j, and intertwiners ◆i

associated to its vertices; gia (resp. gjb) (with a, b = 1, ..., d) are group elements being the argu-
ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L2
⇣

GE/GV , dµ =
QE

e=1 dµ
Haar
e

⌘

(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µHaar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1
[�H�

⇡ . Of course, the
two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L2
⇣

(G⇥d/G)⇥V , dµ =
QV

v=1

Qd
i=1 dµ

v
Haar,i

⌘

, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as

 �(G
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with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L2(G⇥d): F(Hv) =
L1

V=0 sym
n⇣

H(1)
v ⌦H(2)

v ⌦ · · ·⌦H(V )
v

⌘o

, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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0
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�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L

Ji2N/2 Inv
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HJ1 ⌦ ...⌦HJ4
�

, where each HJi is the Hilbert space of an
irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�

'̂, '̂†�.
Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L2(G⇥d): F(Hv) =
L1

V=0 sym
n⇣

H(1)
v ⌦H(2)

v ⌦ · · ·⌦H(V )
v

⌘o

, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
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combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
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gravity atom’ corresponding to a Hilbert space Hv = L2
�

G⇥d/G
�

. An orthonormal basis  ~�(~g) in
each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):

~� =
⇣

~J, ~m, I
⌘

!  ~�(~g) = h~g|~�i =
"

d
Y

a=1

DJa
mana

(ga)

#

CJ1...Jd,I
n1..nd

. (6)

The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =
L1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators

'̂(g1, .., gd) ⌘ '̂(~g) =
X

~�

'̂~�  ~�(~g) '̂†(g1, .., gd) ⌘ '̂†(~g) =
X

~�

'̂†
~�  

⇤
~�(~g) ,

satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�0

1, ..., ~�
0
n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:

\On,m ! h~�1, ...., ~�m|\On,m|~�0
1, ..., ~�

0
ni = On,m
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1, ..., ~�

0
n

�

!

! \On,m

⇣

'̂, '̂†
⌘

=

Z

[d~gi][d~g
0
j ] b'

†(~g1)..b'†(~gm)On,m
�

~g1, ..,~gm,~g01, ..,~g
0
n

�

b'(~g01)..b'(~g
0
n) .

Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero

H� ⇢ HV

4

where  
(�,J

(ab)
(ij) ,◆i)

(Gab
ij ) identifies a spin network functional labelled by a closed graph � with rep-

resentations J (ab)
(ij) associated to the di↵erent edges linking two vertices i and j, and intertwiners ◆i

associated to its vertices; gia (resp. gjb) (with a, b = 1, ..., d) are group elements being the argu-
ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L2
⇣

GE/GV , dµ =
QE

e=1 dµ
Haar
e

⌘

(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µHaar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1
[�H�

⇡ . Of course, the
two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L2
⇣

(G⇥d/G)⇥V , dµ =
QV

v=1

Qd
i=1 dµ

v
Haar,i

⌘

, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as

 �(G
ab
ij ) =

Y

[(ia),(jb)]

Z

G
d↵ab

ij �V (. . . , gia ↵
ab
ij , . . . , gjb↵

ab
ij , . . .) =  �(gia(gjb)

�1) , (5)

with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum

� �

• same type of functions + same scalar product for 
given graph

• states for different graphs (same vertices) overlap

(= space of “disconnected spin network vertices”)

the GFT proposal: Z =
Z
D'D' ei S�(',') =

X
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DO, ’13 ; Kittel, DO, Tomlin, to appear

see talk by N. Bodendorfer



GFT as 2nd quantisation of LQG

spin networks as many-body systems and 2nd quantisation —-> GFT Fock space
1

g
1
3

g1

1

g
1

2

g
4

2

g
4

3

g
4
1

4

2g
3

g3

3 g
3

1

3

g
2

2

g3

2

g
2

1

2

G12

1

2

3

4

G23G34

G14

G13

G24

3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L2(G⇥d): F(Hv) =
L1

V=0 sym
n⇣

H(1)
v ⌦H(2)

v ⌦ · · ·⌦H(V )
v

⌘o

, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h

'̂(~g) , '̂†(~g0)
i

= IG(~g,~g0)
⇥

'̂(~g) , '̂(~g0)
⇤

=
h

'̂†(~g) , '̂†(~g0)
i

= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0
i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L

Ji2N/2 Inv
�

HJ1 ⌦ ...⌦HJ4
�

, where each HJi is the Hilbert space of an
irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�

'̂, '̂†�.
Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L2(G⇥d): F(Hv) =
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, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =
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HJ1 ⌦ ...⌦HJ4
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, where each HJi is the Hilbert space of an
irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
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'̂, '̂†�.
Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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gravity atom’ corresponding to a Hilbert space Hv = L2
�

G⇥d/G
�

. An orthonormal basis  ~�(~g) in
each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):
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The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =
L1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators
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satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�0

1, ..., ~�
0
n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:
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Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero
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associated to its vertices; gia (resp. gjb) (with a, b = 1, ..., d) are group elements being the argu-
ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L2
⇣

GE/GV , dµ =
QE

e=1 dµ
Haar
e

⌘

(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µHaar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1
[�H�

⇡ . Of course, the
two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L2
⇣

(G⇥d/G)⇥V , dµ =
QV

v=1

Qd
i=1 dµ

v
Haar,i

⌘

, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as

 �(G
ab
ij ) =

Y

[(ia),(jb)]

Z

G
d↵ab

ij �V (. . . , gia ↵
ab
ij , . . . , gjb↵

ab
ij , . . .) =  �(gia(gjb)

�1) , (5)

with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum

� �

• same type of functions + same scalar product for 
given graph

• states for different graphs (same vertices) overlap
• no continuum embedding 

(= space of “disconnected spin network vertices”)

the GFT proposal: Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L2(G⇥d): F(Hv) =
L1

V=0 sym
n⇣

H(1)
v ⌦H(2)

v ⌦ · · ·⌦H(V )
v

⌘o

, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h

'̂(~g) , '̂†(~g0)
i

= IG(~g,~g0)
⇥

'̂(~g) , '̂(~g0)
⇤

=
h

'̂†(~g) , '̂†(~g0)
i

= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0
i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L

Ji2N/2 Inv
�

HJ1 ⌦ ...⌦HJ4
�

, where each HJi is the Hilbert space of an
irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�

'̂, '̂†�.
Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:

O
 =(�,J

(ab)
(ij) ,◆i)

('̂†) =

0

@

Y

(i)

Z

[dgia]

1

A 
(�,J

(ab)
(ij) ,◆i)

(giag
�1
jb )

Y

i

'̂†(gia), (4)
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to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:

O
 =(�,J

(ab)
(ij) ,◆i)

('̂†) =

0

@

Y

(i)

Z

[dgia]

1

A 
(�,J

(ab)
(ij) ,◆i)

(giag
�1
jb )

Y

i

'̂†(gia), (4)

5

gravity atom’ corresponding to a Hilbert space Hv = L2
�

G⇥d/G
�

. An orthonormal basis  ~�(~g) in
each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):

~� =
⇣

~J, ~m, I
⌘

!  ~�(~g) = h~g|~�i =
"

d
Y

a=1

DJa
mana

(ga)

#

CJ1...Jd,I
n1..nd

. (6)

The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =
L1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators

'̂(g1, .., gd) ⌘ '̂(~g) =
X

~�

'̂~�  ~�(~g) '̂†(g1, .., gd) ⌘ '̂†(~g) =
X

~�

'̂†
~�  

⇤
~�(~g) ,

satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�0

1, ..., ~�
0
n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:

\On,m ! h~�1, ...., ~�m|\On,m|~�0
1, ..., ~�

0
ni = On,m

�

~�1, ..., ~�m, ~�0
1, ..., ~�

0
n

�

!

! \On,m

⇣

'̂, '̂†
⌘

=

Z

[d~gi][d~g
0
j ] b'

†(~g1)..b'†(~gm)On,m
�

~g1, ..,~gm,~g01, ..,~g
0
n

�

b'(~g01)..b'(~g
0
n) .

Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero

H� ⇢ HV

4

where  
(�,J

(ab)
(ij) ,◆i)

(Gab
ij ) identifies a spin network functional labelled by a closed graph � with rep-

resentations J (ab)
(ij) associated to the di↵erent edges linking two vertices i and j, and intertwiners ◆i

associated to its vertices; gia (resp. gjb) (with a, b = 1, ..., d) are group elements being the argu-
ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L2
⇣

GE/GV , dµ =
QE

e=1 dµ
Haar
e

⌘

(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µHaar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1
[�H�

⇡ . Of course, the
two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L2
⇣

(G⇥d/G)⇥V , dµ =
QV

v=1

Qd
i=1 dµ

v
Haar,i

⌘

, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as

 �(G
ab
ij ) =

Y

[(ia),(jb)]

Z

G
d↵ab

ij �V (. . . , gia ↵
ab
ij , . . . , gjb↵

ab
ij , . . .) =  �(gia(gjb)

�1) , (5)

with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum

� �

• same type of functions + same scalar product for 
given graph

• states for different graphs (same vertices) overlap
• no continuum embedding 
• no cylindrical equivalence

(= space of “disconnected spin network vertices”)
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L2(G⇥d): F(Hv) =
L1

V=0 sym
n⇣

H(1)
v ⌦H(2)

v ⌦ · · ·⌦H(V )
v

⌘o

, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h

'̂(~g) , '̂†(~g0)
i

= IG(~g,~g0)
⇥

'̂(~g) , '̂(~g0)
⇤

=
h

'̂†(~g) , '̂†(~g0)
i

= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0
i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L

Ji2N/2 Inv
�

HJ1 ⌦ ...⌦HJ4
�

, where each HJi is the Hilbert space of an
irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�

'̂, '̂†�.
Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
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Quantum observables - Kinematical observables are functionals of the field operators O
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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gravity atom’ corresponding to a Hilbert space Hv = L2
�

G⇥d/G
�

. An orthonormal basis  ~�(~g) in
each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):
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The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =
L1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators

'̂(g1, .., gd) ⌘ '̂(~g) =
X
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'̂†
~�  

⇤
~�(~g) ,

satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�0

1, ..., ~�
0
n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:
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Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero

H� ⇢ HV
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where  
(�,J

(ab)
(ij) ,◆i)

(Gab
ij ) identifies a spin network functional labelled by a closed graph � with rep-

resentations J (ab)
(ij) associated to the di↵erent edges linking two vertices i and j, and intertwiners ◆i

associated to its vertices; gia (resp. gjb) (with a, b = 1, ..., d) are group elements being the argu-
ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L2
⇣

GE/GV , dµ =
QE

e=1 dµ
Haar
e

⌘

(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µHaar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1
[�H�

⇡ . Of course, the
two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L2
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(G⇥d/G)⇥V , dµ =
QV

v=1

Qd
i=1 dµ

v
Haar,i

⌘

, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as

 �(G
ab
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ij �V (. . . , gia ↵
ab
ij , . . . , gjb↵

ab
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with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum

� �

• same type of functions + same scalar product for 
given graph

• states for different graphs (same vertices) overlap
• no continuum embedding 
• no cylindrical equivalence

need to accept technical differences 
and change in perspective 
——> fundamental discreteness 
(not “quantising continuum fields”, not canonical GR) 

(= space of “disconnected spin network vertices”)
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L2(G⇥d): F(Hv) =
L1

V=0 sym
n⇣

H(1)
v ⌦H(2)

v ⌦ · · ·⌦H(V )
v

⌘o

, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h

'̂(~g) , '̂†(~g0)
i

= IG(~g,~g0)
⇥

'̂(~g) , '̂(~g0)
⇤

=
h

'̂†(~g) , '̂†(~g0)
i

= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0
i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L

Ji2N/2 Inv
�

HJ1 ⌦ ...⌦HJ4
�

, where each HJi is the Hilbert space of an
irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�

'̂, '̂†�.
Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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gravity atom’ corresponding to a Hilbert space Hv = L2
�

G⇥d/G
�

. An orthonormal basis  ~�(~g) in
each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):
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The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =
L1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators
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satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�0

1, ..., ~�
0
n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:
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Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero
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creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .
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total number), with a graph-based scalar product defined the Haar measure on each link µHaar
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The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2
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⇡ . Of course, the
two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an
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latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
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with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum

� �

• same type of functions + same scalar product for 
given graph

• states for different graphs (same vertices) overlap
• no continuum embedding 
• no cylindrical equivalence

need to accept technical differences 
and change in perspective 
——> fundamental discreteness 
(not “quantising continuum fields”, not canonical GR) 

(= space of “disconnected spin network vertices”)

the GFT proposal: Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

DO, ’13 ; Kittel, DO, Tomlin, to appear

for any canonical observable (incl. Hamiltonian constraint) -> GFT observable in 2nd quantisation

see talk by N. Bodendorfer
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Z(�) ⌘ A�

Z(�) $

8
><

>:

Af (J)

Ae(J, I)

Av(J, I)

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.

(
K(J, I) ⇠ K(g)

V(J, I) ⇠ V(g)
$ S(', '̄)



GFTs, loop quantum gravity, spin foam models

appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes 
into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G

example: d=3 '` : SO(3)3/SO(3) ! R

GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

(COLORED) GFT FOR 3D EUCLIDEAN GRAVITY

Boulatov, hep-th/9202074 (Gurau, arXiv:0907.2582 [hep-th])

4 fields ϕℓ for ℓ = 1, .., 4 function on SO(3)⊗3, subject to gauge invariance:

∀h ∈ SO(3), ϕℓ(hg1, hg2, hg3) = ϕℓ(g1, g2, g3)

action S[ϕℓ] = Skin[ϕℓ] + Sint[ϕℓ]:

Skin[ϕℓ] =

Z
[dgi]

3

4X

ℓ=1

ϕℓ(g1, g2, g3)ϕℓ(g1, g2.g3),

Sint[ϕℓ] = λ

Z
[dgi]

6 ϕ1(g1, g2, g3)ϕ2(g3, g4, g5)ϕ3(g5, g2, g6)ϕ4(g6, g4, g1)

+λ

Z
[dgi]

6 ϕ4(g1, g4, g6)ϕ3(g6, g2, g5)ϕ2(g5, g4, g3)ϕ1(g3, g2, g1)

spin network representation obtained by Peter-Weyl expansion

ϕℓ(g1, g2, g3) =
X

C
j1,j2,j3
m1,m2,m3φ

j1,j2,j3
ℓ,n1,n2,n3

D
j1
m1n1

(g1)D
j2
m2n2

(g2)D
j3
m3n3

(g3)

field↔ spin network vertex

16 / 41

+     simplicial interaction

with only delta functions 

valid for GFT definition of BF theory in any dimension
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GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

SECOND ROOT: LOOP QUANTUM GRAVITY

Whence the GFT idea (from LQG perspective)?

want quantum theory of dynamics of (very) many d.o.f.⇒ natural QFT framework

quantum of space: graph vertex↔ elementary cell
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quantum field theory for vertices/cells⇒ GFT ϕ(g1, g2, g3) ↔ ϕ(x1, x2, x3)

where to look for quantum dynamics of spacetime (e.g. LQG)?

microscopic dynamics can be quite different from continuum classical dynamics

dynamics of single interaction process/history of fundamental excitations→
GFT Feynman amplitudes

(any spin foam model (given complex) is a GFT Feynman amplitude)

full (discrete) quantum dynamics→ GFT n-point functions and associated eqns

(Ward ids, SD eqns)

full continuum quantum dynamics→ same eqns but in continuum limit: critical

points, effective actions, etc

12 / 41

classical triangle in R3

3 edge vectors that close x1, x2, x3 2 R3
s.t.

X

i

xi = 0

part of classical phase space Phase space for triangle in discrete 3d gravity[T ⇤SU(2)]⇥3

su(2) ' R3



GFTs, loop quantum gravity, spin foam models

appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes 
into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G

example: d=3 '` : SO(3)3/SO(3) ! R

GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

(COLORED) GFT FOR 3D EUCLIDEAN GRAVITY

Boulatov, hep-th/9202074 (Gurau, arXiv:0907.2582 [hep-th])

4 fields ϕℓ for ℓ = 1, .., 4 function on SO(3)⊗3, subject to gauge invariance:

∀h ∈ SO(3), ϕℓ(hg1, hg2, hg3) = ϕℓ(g1, g2, g3)

action S[ϕℓ] = Skin[ϕℓ] + Sint[ϕℓ]:

Skin[ϕℓ] =

Z
[dgi]

3

4X

ℓ=1

ϕℓ(g1, g2, g3)ϕℓ(g1, g2.g3),

Sint[ϕℓ] = λ

Z
[dgi]

6 ϕ1(g1, g2, g3)ϕ2(g3, g4, g5)ϕ3(g5, g2, g6)ϕ4(g6, g4, g1)

+λ

Z
[dgi]

6 ϕ4(g1, g4, g6)ϕ3(g6, g2, g5)ϕ2(g5, g4, g3)ϕ1(g3, g2, g1)

spin network representation obtained by Peter-Weyl expansion

ϕℓ(g1, g2, g3) =
X

C
j1,j2,j3
m1,m2,m3φ

j1,j2,j3
ℓ,n1,n2,n3

D
j1
m1n1

(g1)D
j2
m2n2

(g2)D
j3
m3n3

(g3)

field↔ spin network vertex

16 / 41

+     simplicial interaction

with only delta functions 

can be computed in different (equivalent) representations (group, spin, Lie algebra)

valid for GFT definition of BF theory in any dimension



GFTs, loop quantum gravity, spin foam models

appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes 
into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G

GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

(COLORED) GFT FOR 3D EUCLIDEAN GRAVITY

Boulatov, hep-th/9202074 (Gurau, arXiv:0907.2582 [hep-th])

4 fields ϕℓ for ℓ = 1, .., 4 function on SO(3)⊗3, subject to gauge invariance:

∀h ∈ SO(3), ϕℓ(hg1, hg2, hg3) = ϕℓ(g1, g2, g3)

action S[ϕℓ] = Skin[ϕℓ] + Sint[ϕℓ]:

Skin[ϕℓ] =

Z
[dgi]

3

4X

ℓ=1

ϕℓ(g1, g2, g3)ϕℓ(g1, g2.g3),

Sint[ϕℓ] = λ

Z
[dgi]

6 ϕ1(g1, g2, g3)ϕ2(g3, g4, g5)ϕ3(g5, g2, g6)ϕ4(g6, g4, g1)

+λ

Z
[dgi]

6 ϕ4(g1, g4, g6)ϕ3(g6, g2, g5)ϕ2(g5, g4, g3)ϕ1(g3, g2, g1)

spin network representation obtained by Peter-Weyl expansion

ϕℓ(g1, g2, g3) =
X

C
j1,j2,j3
m1,m2,m3φ

j1,j2,j3
ℓ,n1,n2,n3

D
j1
m1n1

(g1)D
j2
m2n2

(g2)D
j3
m3n3

(g3)

field↔ spin network vertex

16 / 41

example: d=3 '` : SO(3)3/SO(3) ! R

GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

(COLORED) GFT FOR 3D EUCLIDEAN GRAVITY

Boulatov, hep-th/9202074 (Gurau, arXiv:0907.2582 [hep-th])

4 fields ϕℓ for ℓ = 1, .., 4 function on SO(3)⊗3, subject to gauge invariance:

∀h ∈ SO(3), ϕℓ(hg1, hg2, hg3) = ϕℓ(g1, g2, g3)

action S[ϕℓ] = Skin[ϕℓ] + Sint[ϕℓ]:

Skin[ϕℓ] =

Z
[dgi]

3

4X

ℓ=1

ϕℓ(g1, g2, g3)ϕℓ(g1, g2.g3),

Sint[ϕℓ] = λ

Z
[dgi]

6 ϕ1(g1, g2, g3)ϕ2(g3, g4, g5)ϕ3(g5, g2, g6)ϕ4(g6, g4, g1)

+λ

Z
[dgi]

6 ϕ4(g1, g4, g6)ϕ3(g6, g2, g5)ϕ2(g5, g4, g3)ϕ1(g3, g2, g1)

spin network representation obtained by Peter-Weyl expansion

ϕℓ(g1, g2, g3) =
X

C
j1,j2,j3
m1,m2,m3φ

j1,j2,j3
ℓ,n1,n2,n3

D
j1
m1n1

(g1)D
j2
m2n2

(g2)D
j3
m3n3

(g3)

field↔ spin network vertex

16 / 41

+     simplicial interaction

with only delta functions 

can be computed in different (equivalent) representations (group, spin, Lie algebra)

valid for GFT definition of BF theory in any dimension



GFTs, loop quantum gravity, spin foam models

appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes 
into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G

example: d=3 '` : SO(3)3/SO(3) ! R

GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

(COLORED) GFT FOR 3D EUCLIDEAN GRAVITY

Boulatov, hep-th/9202074 (Gurau, arXiv:0907.2582 [hep-th])

4 fields ϕℓ for ℓ = 1, .., 4 function on SO(3)⊗3, subject to gauge invariance:

∀h ∈ SO(3), ϕℓ(hg1, hg2, hg3) = ϕℓ(g1, g2, g3)

action S[ϕℓ] = Skin[ϕℓ] + Sint[ϕℓ]:

Skin[ϕℓ] =

Z
[dgi]

3

4X

ℓ=1

ϕℓ(g1, g2, g3)ϕℓ(g1, g2.g3),

Sint[ϕℓ] = λ

Z
[dgi]

6 ϕ1(g1, g2, g3)ϕ2(g3, g4, g5)ϕ3(g5, g2, g6)ϕ4(g6, g4, g1)

+λ

Z
[dgi]

6 ϕ4(g1, g4, g6)ϕ3(g6, g2, g5)ϕ2(g5, g4, g3)ϕ1(g3, g2, g1)

spin network representation obtained by Peter-Weyl expansion

ϕℓ(g1, g2, g3) =
X

C
j1,j2,j3
m1,m2,m3φ

j1,j2,j3
ℓ,n1,n2,n3

D
j1
m1n1

(g1)D
j2
m2n2

(g2)D
j3
m3n3

(g3)

field↔ spin network vertex

16 / 41

+     simplicial interaction

with only delta functions 

can be computed in different (equivalent) representations (group, spin, Lie algebra)

valid for GFT definition of BF theory in any dimension



GFTs, loop quantum gravity, spin foam models

appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes 
into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G

xe

h

h

h

h

h

h1

2

3

4

5

6
f

e

GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

SECOND ROOT: LOOP QUANTUM GRAVITY

Whence the GFT idea (from LQG perspective)?

want quantum theory of dynamics of (very) many d.o.f.⇒ natural QFT framework

quantum of space: graph vertex↔ elementary cell

1

2

3

4

g

g g

g

g

g
1

1

1

1

2

2

2

2

3

3

1
2

quantum field theory for vertices/cells⇒ GFT ϕ(g1, g2, g3) ↔ ϕ(x1, x2, x3)

where to look for quantum dynamics of spacetime (e.g. LQG)?

microscopic dynamics can be quite different from continuum classical dynamics

dynamics of single interaction process/history of fundamental excitations→
GFT Feynman amplitudes

(any spin foam model (given complex) is a GFT Feynman amplitude)

full (discrete) quantum dynamics→ GFT n-point functions and associated eqns

(Ward ids, SD eqns)

full continuum quantum dynamics→ same eqns but in continuum limit: critical

points, effective actions, etc

12 / 41

GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

COLORED GFT FOR 3D EUCLIDEAN GRAVITY

Feynman diagrams Γ are dual to 3d simplicial complexes
amplitudes AΓ written in group, representation or algebra variables

AΓ =

Z Y

l

dhl
Y

f

δ (Hf (hl)) =

Z Y

l

dhl
Y

f

δ

„−→Y
l∈∂f

hl

«
=

=
X

{je}

Y

e

dje

Y

τ

ȷ
jτ1 jτ2 jτ3
jτ4 jτ5 jτ6

ff
=

Z Y

l

[dhl]
Y

e

[d3xe] e
i

P

e Tr xeHe

last line is discretized path integral for 3d gravity S(e, ω) =
R
Tr(e ∧ F(ω))

exact duality: simplicial gravity path integral↔ spin foam model (see talk by Raasakka)
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(Barbieri, Baez, Barrett, Crane, Reisenberger, Perez, De Pietri, Engle, Pereira, Freidel, Krasnov, Rovelli, Livine, Speziale, Baratin, DO, ......)

concrete, well-defined GFT (spin foam) model(s) for 4d QG dynamics - nice discrete geometry, lots of results ….. 

decompose GFT field in SU(2) data + 
geometricity conditions

GFT dynamics to LQG quantum states

simplicity constraints = 

= specific relation between SL(2,C) data and SU(2) data
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Quantum 4d simplicial geometry (riemannian)

classical tetrahedron in 4d: 

unique intrinsic geometry (up to rotations)

b b

b
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phase space before constraints:
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open issues in LQG and spin foam models have precise GFT counterpart
                                                                                  QFT formalism provides powerful tools to tackle them

Perez, ‘07

• how to constrain quantisation and construction ambiguities?

(in many ways, background independent counterpart of issue of renormalizability in perturbative QG)

• GFT perturbative renormalization 
—-> renormalizability of GFT for given spin foam amplitudes 

• GFT symmetries (at both classical and quantum level) 
—-> in particular, those with geometric interpretation (e.g. diffeomorphisms)

Ben Geloun, ’11; Girelli, Livine, ’11; Baratin, Girelli, Oriti, ‘11

Kegeles, DO, ‘15

• Non-perturbative GFT renormalization and phase diagram
• Extraction of effective continuum dynamics in different phases

controlling quantum dynamics of more and more interacting degrees of freedom 
(large superpositions of large graphs) - inequivalent phases of LQG with different physics? 

• how to define and  control the continuum limit of the quantum LQG/SF dynamics?

Ashtekar, Lewandowski, ’94; Koslowski, ’07; DO, ’07; Koslowski, Sahlmann, ’10, 
Dittrich, Geiller, ’14; Gielen, DO, Sindoni, ’13; DO, Tomlin, to appear

(as in condensed matter systems….)



Part II: 

The problem of continuum in QG  
and GFT renormalisation 
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from classical approximation

N-direction 
(collective behaviour of many interacting degrees of freedom): 

continuum approximation

h-direction: classical approximation

“well-understood” in spin foam models
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Renormalization Group is crucial tool (mathematical, conceptual, physical)

renormalization is not about “curing or hiding divergences”, but
taking into account the physics of more and more d.o.f.s 

• in specific GFT case: 
• fundamental formulation of QG  = QFT, defined perturbatively around “no-space” (degenerate) vacuum 

• need to prove consistency of the theory: perturbative GFT renormalizability

• need to understand effective dynamics at different “GFT scales”: 
RG flow of effective actions & phase structure & phase transitions

•  for our QG models (LQG/spin foams), do not expect to have a unique continuum limit   

collective behaviour of (interacting) fundamental d.o.f.s should lead to different macroscopic phases, 
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GFT renormalisation - general scheme

general strategy: 
treat GFTs as ordinary QFTs defined on Lie group manifold 
use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration
subtleties of quantum gravity context at the level of interpretation

scales:   
  defined by propagator: spectrum of Laplacian = indexed by group representations or Lie algebra elements

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.

• need to have control over “theory space” (e.g. via symmetries)

• main difficulty (at perturbative level):
controlling the combinatorics of GFT Feynman diagrams to control the structure of divergences 
(more involved when gauge invariance is present)

most results for “Tensorial” GFTs

see lectures by V. Rivasseau
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A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Locality as tensor invariance

Assume S is a tensor invariant, because:
combinatorial control over topologies
analytical tool: 1/N expansion
universal properties

More precisely, assume S to be a finite sum of connected tensor
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�
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edge of color ⌅ � convolution of ⌅-th indices of �
and �.

�
[dgi ]
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Gaussian measure

We would like to have a TGFT with:

a built-in notion of scale ⇥ a non-trivial propagator spectrum;
a notion of discrete connection at the level of the amplitudes.

Particular realization that we consider:

Dynamics encoded in a non-trivial propagator: (justified by studies of
radiative corrections [Ben Geloun, Bonzom ’11] and analogies with AFT
[Rivasseau]) �
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d⇤

⇥=1

�⇥

⇥�1

Boulatov-like restriction of d.o.f:

⌅h ⇤ G , ⇤(hg1, . . . , hgd) = ⇤(g1, . . . gd) .

Implemented by a group averaging.

This defines our measure dµC :
⇧

dµC (⇤,⇤)⇤(g⇥)⇤(g
⇥
⇥) = C(g⇥; g

⇥
⇥) =

⇧ +⇤

0

d� e��m2
⇧

dh
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⇥=1

K�(g⇥hg
⇥�1
⇥ ) ,

where K� is the heat kernel on G at time �.
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“coloring” allows control over 
topology of Feynman diagrams
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require generalization of notions of “connectedness”, “contraction of high subgraphs”, “locality”, Wick ordering, 
…. 


taking into account internal structure of Feynman graphs, full combinatorics of dual cellular complex, results from 
crystallization theory (dipole moves)

“coloring” allows control over 
topology of Feynman diagrams

see lectures by V. Rivasseau



GFT perturbative renormalization

• systematic renormalisation group analysis of tensorial GFT models:
requires subtle analysis of combinatorics of diagrams (dual to cellular complexes)
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many results:    perturbative renormalizability and renormalisation group flow

S. Carrozza, DO, V. Rivasseau, ‘12

• proof of asymptotic freedom for abelian TGFT models without  gauge invariance
J. Ben Geloun, D. Ousmane-Samary, ’11; J. Ben Geloun, ‘12

• study of asymptotic freedom/safety for non-abelian TGFT models with  gauge invariance
S. Carrozza, ‘14

• first renormalizable non-abelian TGFT model in 3d with gauge invariance (3d BF + laplacian)

• first renormalizable TGFT model on homogeneous space (SU(2)/U(1))^d 

S. Carrozza, DO, V. Rivasseau, ‘13

J. Ben Geloun, V. Rivasseau, ’11; J. Ben Geloun, D. Ousmane-Samary, ‘11

• several renormalizable abelian TGFT models (different groups and dimension, with/without gauge invariance)

V. Lahoche, DO, ‘15
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A�the issue:

controlling quantum dynamics of more and more (up to infinity) interacting degrees of freedom 

~ evaluating GFT path integral (in some non-perturbative approximation = full spin foam sum) 

one recent direction - Functional RG approach ala Wetterich-Morris:
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~ definition of full GFT path integral 
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7

transform. The renormalisation group approach to quantum field theory rests on the equation governing the flow
of e↵ective actions at di↵erent scales, that is corresponding to a truncated partition function in which only modes
between the UV cut-o↵ and a certain IR cut-o↵ are considered, as the IR cut-o↵ is gradually removed. The critical
behaviour of the system as the IR cut-o↵ is removed will give indications about the phase diagram. In the same way,
the possibility of complete removal of the UV cut-o↵, signifying that the quantum field theory is UV complete and
thus well-defined, will be indicated by the presence of UV fixed points of the RG flow equation. The first step in
obtaining the (functional) renormalisation group flow equation is thus to introduce a IR cut-o↵. An IR cut-o↵, which
in our case will be parametrized by a pure number N , is implemented by adding to the action a term of the form

�SN [�] =
1

2
Tr(� ·RN · �) = 1

2

X

P,˜P

�P RN (P; P̃)�
˜P . (6)

In particular, we take

RN (P; P̃) = N�pi,p0
i
R
⇣

1

d

d
X

i=1

|pi|/N
⌘

, (7)

and impose on the profile function R(z) the following conditions: positivity R(z) � 0 (otherwise (6) could emphasize
rather than suppress modes), monotonicity d

dzR(z)  0 (high modes should not be suppressed more than low modes),
and lastly R(0) > 0 and limz!+1 R(z) = 0 to exclude a constant (eventually zero) R(z). The last condition, together
with the factor N multiplying the profile function in (7), ensures that for N ! 0 the cuto↵ is removed. In the presence
of a UV cuto↵ M one usually adds also the condition that limN!M RN = 1, implying that in the limit that IR and
UV cuto↵s coincide no integration survives in the partition function.

Then, inserting the regulator �SN in (3), we get a new regularized partition function of the form

ZN [J ] = eWN [J] =

Z

M
d� e�S[�]��SN [�]+Tr2(J·�) . (8)

The e↵ective average action is defined as

�N ['] = sup
J

⇣

Tr
2

(J · ')�WN (J)
⌘

��SN ['] . (9)

Introducing the standard logarithmic scale t = lnN , so that @t = N@N , deriving (8) with respect to t and using (9)
one arrives at

@t�N ['] =
1

2
Tr(@tRN · [�(2)

N +RN ]�1) (10)

which is the Wetterich equation for an arbitrary rank-d tensor model. Tr is a “super”-trace summing over all

momentum indices, �(2)

N = �(2)�N/(�'P�'˜P) is the second derivative in the fields of the e↵ective action. Note that

the convolution between @tRN and the inverse of �(2)

N +RN is performed in block tensor indices and it is matrix-like.

The trace fully written reads
P

P;P0 @tRN (P,P0) · [�(2)

N +RN ]�1(P,P0).

An important feature of (10) is the presence of @tRN inside the super-trace. Requiring that R(z) and d
dzR(z) go to

zero fast enough for z ! +1 thus guarantees the UV finiteness of the super-trace, and as a consequence we can forget
about the UV cuto↵ M . Of course whenever we wish to talk in a meaningful way about the partition function we
need to reintroduce the UV cuto↵, but as already mentioned, the FRG perspective is to take (10) as the fundamental
equation replacing the path integral formulation. Therefore, the standard approach is to try to study (10) without
any additional UV cuto↵.

However, as for any di↵erential equation, we need initial conditions to construct a solution,

�N=M ['] = S['] , (11)

and these play essentially the role of UV scale and bare action. The problem of constructing and solving the full
continuum path integral thus translates into the problem of pushing the initial condition to M ! 1, which usually
requires the existence of a UV fixed point for the RG flow equation.
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requires the existence of a UV fixed point for the RG flow equation.

more or less standard set-up
main difficulty: combinatorial structure of interactions

see talk by J. Ben Geloun



Non-perturbative GFT renormalization

Note:
get non-autonomous system of beta functions in compact case (extra scale = size of group)
non-compact case via thermodynamic limit
results in agreement with “large-N” approx of compact case

Main results:

• Polchinski formulation based on SD equations
• general set-up for Wetterich formulation based on effective action
• RG flow and phase diagram established for:

• TGFT on compact U(1)^3 with 4th order interactions
• TGFT on non-compact R^3 with 4th order interactions
• TGFT on compact U(1)^6 with 4th order interactions and gauge invariance
• TGFT on non-compact R^d with 4th order interaction and gauge invariance

Benedetti, Ben Geloun, DO, ’14

Krajewski, Toriumi, ‘14

Benedetti, Ben Geloun, DO, ‘14

Ben Geloun, Martini, DO, ‘15

Ben Geloun, Martini, DO, to appear

Benedetti, Lahoche, ‘15

Phase diagrams qualitatively very similar (universal features?)

see talk by J. Ben Geloun



Non-perturbative GFT renormalization

Example of phase diagram:

U(1)^3 model in large-N approximation

see talk by J. Ben Geloun



Non-perturbative GFT renormalization

Example of phase diagram:
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(�4) is represented by a 3-colored
bubble graph as given in Figure XXX. However, as shown in (
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Note that implicitly we could introduce a second redundant ⇥ function

RN({pi}; {p0i}) = �pi,p0i
ZN

⇣

N � 1

3

3

X

i=1

pi

⌘

⇥(N � 1

3

3

X

i=1

pi)⇥(N � 1

3

3

X

i=1

p0i) . (18)

simply because ⇥2(n) = ⇥(n), for n 2 N. Such a notation will be also useful in the
following.

4.2 First anzatz
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FIG. 4. The flow diagram at small N . The blue dot is the GFP, while the red one is the NGFP at {m̄⇤, �̄⇤}. Ordinary
trajectories are in blue, while the eigen-perturbations for the GFP are in green and those for the NGFP are in brown. Arrows
point towards the UV, i.e. growing N .

However, we should stress that such NGFPs were obtained from di↵erent rescaling of �, and going back to the
original coupling via (38), we notice that for N ! 0 the NGFP (41) corresponds to �⇤ = 0, while the one in (28) was
at �⇤ 6= 0.

This observation could also explain the integer critical exponents. Even though m̄N and �̄N have a nontrivial fixed
point, the scaling (24) and (38) implies that at such fixed point the renormalised mass and the renormalised coupling
(i.e. their value in the limit N ! 0) are zero. Once again, modulo an exchange in the scaling dimensions of mass
and coupling, the same conclusion can be reached for the standard Wilson-Fisher fixed point in three dimensions.
However, in such a case we can easily study higher-order truncations, and find that also the coupling g

6

of the �6

interaction reaches a fixed point, and being g
6

dimensionless in d = 3, it remains finite also as we remove the IR
cuto↵. That the Wilson-Fisher fixed point theory is truly an interacting one, can also be inferred more reliably from
the local potential approximation or the next orders in the derivative expansion [38]. In the Tensorial GFT case, on
the other hand, we are not able to do a full local potential approximation, but from our truncation we can easily
guess that the IR scaling dimension for the coupling of a general interaction is (B.8) with ↵ = 0, and hence all such
couplings would flow to zero at an IR fixed point. The non-trivial fixed point is really a trivial one in disguise. We
also notice that such scaling dimensions for the couplings are the one we would get for standard couplings in zero
dimensions, where we expect no phase transition and no non-trivial fixed point.

Figure 4 might seem to contradict such expectation at first, but in fact a similar flow diagram is found by analytically
continuing the usual beta equations to d = 0 (which in fact have the same structure as (39)-(40)). The explanation of
the apparent paradox is again found by remembering that in the broken phase we should better use a more appropriate
truncation, such as V (�) = �(�2 � �2

0

)2. Then one finds that in zero dimensions the non-trivial fixed point is IR
attractive for both � and �2

0

, and it lies at �2

0

< 0, meaning that actually there is always symmetry restoration in
the deep IR. Although we cannot at the moment repeat this analysis from scratch in the Tensorial GFT case, the
similarity of the equations in the symmetric case, together with the scaling argument, give us confidence that the
same is true here.

The fact that the zero modes surviving in the deep IR lead to an e↵ective zero-dimensional theory is very reminiscent
of what observed in [57] for scalar field theory on a spherical background. Just like in that case, also in our case we
can trace back the origin of such phenomenon to the compactness of the background space, which in [57] was Sd,
while here is (S1)d ' T d.

All in all, for a quantum field theory on a compact space we would not expect a phase transition, on general grounds,
and our results seem to confirm this in the Tensorial GFT case as well, and the apparent NGFP is most likely an

one Gaussian UV FPs, one non-Gaussian IR fixed point of Wilson-Fischer type 

one symmetric phase
one broken or condensate phase - order parameter is expectation value of field operator

U(1)^3 model in large-N approximation

see talk by J. Ben Geloun



Part III: 

Emergent cosmology  
from GFT condensation 



The “geometrogenesis” hypothesis
in canonical LQG context:    


T. Koslowski, 0709.3465 [gr-qc] 
in covariant SF/GFT context:


DO, 0710.3276 [gr-qc]
also in tensor models

V. Rivasseau, ‘13
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(...., Hu ’95,...., Konopka-Markopoulou-Smolin, ’06, DO ’07, ’11, ’13)
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• cosmological evolution as relaxation towards (exact) condensate (homogeneous) state?

(...., Hu ’95,...., Konopka-Markopoulou-Smolin, ’06, DO ’07, ’11, ’13)
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in covariant SF/GFT context:
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also in tensor models
V. Rivasseau, ‘13

in this perspective, what is the role of (quantum) cosmology?



geometrogenesis



Two points of view on quantum gravity and 
quantum spacetime 

two views: 

1. quantum gravity = quantum theory of gravitational field ~ quantum General Relativity

2. quantum gravity = microscopic theory of pre-geometric quantum degrees of freedom 
(“quantum (field) theory of atoms of space”)

gravitational field result of collective dynamics 
spacetime and geometry are emergent entities

in case 2. 

(quantum) cosmological degrees of freedom governed by statistical distribution
not quantum theory of homogeneous geometries (quantum cosmology)

cosmological dynamics is the hydrodynamic approximation of full quantum gravity
(most macroscopic, coarse grained, global description of the microscopic pre-geometric system)



Quantum cosmology or cosmological hydrodynamics?
….. option 2 suggests a picture in which a “quantum cosmology wavefunction” describes a homogeneous patch/

region of space, with many such regions to be patched together to form an arbitrary spatial configuration

advantages:
perspective and tools from condensed matter theory

“easier”, at least conceptually: inhomogeneities are 
always present, no real truncation of dofs

expect full dynamics for “cosmological wave-function” to be non-linear - no superposition, no Hilbert space

if probability interpretation (on minisuperspace), only in statistical sense

multi-patch cosmology more naturally understood as coarse grained “hydrodynamic description”

candidate single-patch dynamics: (quantum) Friedmann-like eqn

cosmology as hydrodynamics

Bojowald, ‘14
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Cosmology as hydrodynamics of (quantum) spacetime
re-thinking the “Cosmological Principle”: “every point is equivalent to any other” ~ homogeneity of space 

really means: a certain approximation is assumed valid:

universe is in state where inhomogeneities can be neglected, in relation to dynamics of homogeneous modes

~ universe is in state where effects on largest wavelengths of shorter wavelengths is negligible

~ can neglect wavelengths (much) shorter than scale factor 

very similar in spirit to hydrodynamic approximation:

dynamics of microscopic degrees of freedom can be neglected + effects of small wavelengths can be neglected

implies:
 

degrees of freedom of local region can describe whole of system (in a coarse grained, statistical sense)

i.e. whole universe (dynamics) well-approximated by local patch (dynamics)
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e.g. N particles in R

from knowledge of microstate, get reduced 1-particle density by coarse graining:

such that:

density (probability measure) 
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which particle is chosen is irrelevant because of permutation symmetry
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Cosmology as hydrodynamics of (quantum) spacetime
recall: standard hydrodynamics from classical many-particle system

e.g. N particles in R

averaging over regions: 
- large compared to inter-particle distances
- small compared to wavelengths of interest

- a “point” in the fluid corresponds to a region containing a large 
number of microscopic constituents

- valid at long wavelengths (not sensitive to small-scale dynamics) 

from knowledge of microstate, get reduced 1-particle density by coarse graining:

such that:

density (probability measure) 
in phase space⇢(x, p) =

Z
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cosmology is (non-linear) dynamics for such density and for geometric (global) observables computed from it

end result of (any) proper construction:

basic variable is “single-patch density” with arguments the geometric data of minisuperspace 

analogue of 1-particle reduced density (treating each point as a “constituent of the spacetime fluid”):
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From Quantum Gravity to Cosmological hydrodynamics

very difficult in general 
see comparatively simpler problem of coarse graining classical GR

see also analogous problem in condensed matter theory

key strategy:

coarse graining of kinematical QG configurations

coarse graining of QG (quantum) dynamics

one special case:

quantum condensates (BEC)

effective hydrodynamics directly read out of microscopic quantum dynamics (in simplest approximation)
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.

PACS numbers: 98.80.Qc, 04.60.Pp, 03.75.Nt

One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0
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press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌥

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ⌦ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0�, (7)

where |0� is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su⇥-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):e3
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
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those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌥

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ⌦ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0�, (7)

where |0� is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su⇥-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):e3
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• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�
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• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)
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⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =
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where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(
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I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i
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By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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More concretely, the field ⇤̂ can be expanded in bosonic
annihilation operators: ⇤̂(gI) =

⇧
� ⇤�(gI) â� ; using the

basic operators â†� , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0�. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
⇥I

�
⌥

⇥I

eA ⌦ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(5)

so that ⇤ is really a field on four copies of S3 � SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

⇤(g1, g2, g3, g4) = ⇤(g1h, g2h, g3h, g4h) ⌥h ⇧ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ⇤̃(BI) =
⇤̃(BI)⌥�(

⇧
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0� (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
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More concretely, the field ⇤̂ can be expanded in bosonic
annihilation operators: ⇤̂(gI) =

⇧
� ⇤�(gI) â� ; using the

basic operators â†� , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0�. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
⇥I

�
⌥

⇥I

eA ⌦ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(5)

so that ⇤ is really a field on four copies of S3 � SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

⇤(g1, g2, g3, g4) = ⇤(g1h, g2h, g3h, g4h) ⌥h ⇧ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ⇤̃(BI) =
⇤̃(BI)⌥�(
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I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0� (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
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mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
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(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =
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d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌥

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ⌦ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0�, (7)

where |0� is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su⇥-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):e3

e1

e2

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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• classical criterion for homogeneity (for GFT data):

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•    from B’s of each GFT quantum, 
construct:

2

More concretely, the field ⇤̂ can be expanded in bosonic
annihilation operators: ⇤̂(gI) =

⇧
� ⇤�(gI) â� ; using the

basic operators â†� , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0�. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
⇥I

�
⌥

⇥I

eA ⌦ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(5)

so that ⇤ is really a field on four copies of S3 � SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

⇤(g1, g2, g3, g4) = ⇤(g1h, g2h, g3h, g4h) ⌥h ⇧ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ⇤̃(BI) =
⇤̃(BI)⌥�(

⇧
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0� (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the

2

More concretely, the field ⇤̂ can be expanded in bosonic
annihilation operators: ⇤̂(gI) =

⇧
� ⇤�(gI) â� ; using the

basic operators â†� , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0�. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
⇥I

�
⌥

⇥I

eA ⌦ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(5)

so that ⇤ is really a field on four copies of S3 � SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

⇤(g1, g2, g3, g4) = ⇤(g1h, g2h, g3h, g4h) ⌥h ⇧ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ⇤̃(BI) =
⇤̃(BI)⌥�(

⇧
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0� (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the

interpretation: spatial metric coefficients (and conjugate variables) “sampled” at N points

BI(m) $ gij(xm) $ ai(xm) gI(m) $ Kij(xm) $ pai(xm)
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•     lift homogeneity criterion to quantum level (and include conjugate information):

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state
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•    in GFT: such states can be expressed in 2nd quantized language and 

one can consider superpositions of states of arbitrary N

•    sending N to infinity means improving arbitrarily the accuracy of the sampling

quantum GFT condensates are continuum homogeneous (quantum) spaces

similar constructions in LQG (Alesci, Cianfrani) and LQC (Bojowald, Wilson-Ewing, .....)
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(homogeneous continuum quantum space)

single-particle condensate

(Gross-Pitaevskii approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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a simple choice of quantum GFT condensate 

(homogeneous continuum quantum space)

single-particle condensate

(Gross-Pitaevskii approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

•  simplest
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Quantum GFT condensates
a simple choice of quantum GFT condensate 

(homogeneous continuum quantum space)

single-particle condensate

(Gross-Pitaevskii approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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Quantum GFT condensates
a simple choice of quantum GFT condensate 

(homogeneous continuum quantum space)

single-particle condensate

(Gross-Pitaevskii approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
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I)⇧̂(g
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�V̂5

�⇧̂(gI)
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Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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•  simplest
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• data for homogeneous anisotropic geometries  


•   truly non-perturbative  quantum states (infinite QG dofs, superposition of graphs)

• support perturbations at any sampling scale N

• 2nd quantized coherent states


• can be studied using BEC techniques 

⇥̂(gI)|�� = �(gI) |��

� (D) D ' {geometries of tetrahedron} '
' {continuum spatial geometries at a point} '
' minisuperspace of homogeneous geometries



Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)
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Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
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Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
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I)⇧̂(g
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�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)
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Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function”


QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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⇥
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
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�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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d4g⇥ K̂(gI , g
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⇥
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�V5
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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⇥
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⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)
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Thursday, March 7, 2013

S. Gielen, DO, L. Sindoni, 

PRL, arXiv:1303.3576 [gr-qc]; 

JHEP, arXiv:1311.1238 [gr-qc]

superposition of infinitely 
many SN dofs

no perturbative (spin foam) expansion -
 infinite superposition of SF amplitudes

applied to (coherent) GFT condensate state, 
gives equation for “wave function”: 

Z
[dg0i] K̃(gi, g

0
i)�(g0i) + �

�Ṽ
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Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function”


QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅
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⇥
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= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg

⇥⇥
I
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
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⇥
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�⇧̂(gI)
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Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g
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leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5
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Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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•  simplest
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S. Gielen, DO, L. Sindoni, 

PRL, arXiv:1303.3576 [gr-qc]; 

JHEP, arXiv:1311.1238 [gr-qc]

in some simple models and with various simplifying assumptions, effective dynamics take form of 
(modified) Friedman equation (also with scalar field); 

work recently extended to fundamental GFT/spin foam models (DO, L. Sindoni, E. Wilson-Ewing, to appear)

superposition of infinitely 
many SN dofs

no perturbative (spin foam) expansion -
 infinite superposition of SF amplitudes

applied to (coherent) GFT condensate state, 
gives equation for “wave function”: 

Z
[dg0i] K̃(gi, g

0
i)�(g0i) + �

�Ṽ
�'(gi)

|'⌘� = 0

from truncation of SD equations for GFT model

basically (up to some approximations), the “classical GFT eqns” 
similar equations to M. Bojowald et al., arXiv:1210.8138 [gr-qc] 

http://arxiv.org/abs/arXiv:1303.3576
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it rests on:


• continuum homogeneous quantum space ~ GFT condensate

• good encoding of discrete geometry in GFT states

• 2nd quantized GFT formalism

non-linear quantum cosmology-like equations emerging as hydrodynamics for GFT condensate

derivation of cosmology from fundamental QG formalism!

GFT condensates are interesting candidates for physical, geometric vacua of QG theory

Effective cosmological dynamics from GFT

Cosmology as Quantum Gravity (condensate) hydrodynamics!

exact form of equations depends on specific model considered

now: derive effective cosmological dynamics from most promising GFT (spin foam) models

D. Oriti, L. Sindoni, E. Wilson-Ewing, to appear

non-linear quantum cosmology is QG analogue of Gross-Pitaevskii hydrodynamics for BECs
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