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Establish if in the noncommutative geometry approach to the
Standard Model (vSM) the fundamental fermions can be regarded
as 'quantum’ Dirac spinors of the internal space.

@ Introduction

@ Formulate the concept of quantum spin space and of Dirac
spinors in terms of Morita equivalence involving the underlying
algebra A and certain quantum analogue of Clifford bundle
algebra

© See what happens in vSM.

Proviso: quantum = noncommutative (NC)
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Intro

Framework: NC or spectral geometry a la Connes et. al.

The arena of ¥SM [Connes, Chammseddine,...] is
ordinary (spin) manifold x a finite quantum space,

described by the algebra C*°(M) ® Ap, where

|Ap = CoHa® My(C).]

The matter fields are
Dirac spinors T'(S) ® Hp,

where Hp = C% (its basis labels the fundamental fermions).

The gauge fields are encoded by the usual Dirac operator ) on M
plus certain Hermitian matrix D operating on Hp.
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This “almost commutative” geometry is mathematically a product
of two spectral triples (S.T.):
The first one is the canonical S.T. on M

(C=(M),L*(%), ), (1)

a prototype of commutative S.T. Under some assumptions one can
reconstruct the data M, g, > & ID.
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This “almost commutative” geometry is mathematically a product
of two spectral triples (S.T.):
The first one is the canonical S.T. on M

(C=(M),L*(%), ), (1)

a prototype of commutative S.T. Under some assumptions one can
reconstruct the data M, g, > & ID.
The scond one is finite-dimensional "internal” S.T. (A, H, D).

Does it also correspond to a (noncommutative) spin manifold 7
Are the elements of H “spinors” in some sense ?
In particular "Dirac spinors” ?

Answer: "Yes', if two extra fields are added (& a different grading).
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Other modifications

In fact to get the correct experimental value of the Higgs mass,
various modifications of the CC model have been proposed:

- enlarge H thus introducing new fermions [Ste09]

- turn one of the elements in D into a field by hand [CC12] rather
than getting it as a fluctuation of the metric;

- relax the 1st order condition [CCvS13] & allow new terms in D;
- enlarge A [DLM13] and use the twisted spectral triple [DM13]
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In fact to get the correct experimental value of the Higgs mass,
various modifications of the CC model have been proposed:

- enlarge H thus introducing new fermions [Ste09]

- turn one of the elements in D into a field by hand [CC12] rather
than getting it as a fluctuation of the metric;

- relax the 1st order condition [CCvS13] & allow new terms in D;
- enlarge A [DLM13] and use the twisted spectral triple [DM13]

Actually, much before ¥YSM a GUT was proposed, with the group
Spin(10) and fundamental fermions in representation 16.

NCG gives a possibility to employ also quantum groups [BDDD13],
and actually just algebras instead of groups.
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Dirac spinors: classical

An oriented Riemannian manifold M is spin€ iff ...
« SO(n) frame bundle lifts to Spin.(n)
« wo(M) is a Zo-reduction of a class in H?(M,7Z)

. ’there is a Morita equivalence C¢(M)—C(M) bimodule X
(Ce(M) = A(M) @ C with Clifford product).
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« SO(n) frame bundle lifts to Spin.(n)

« wo(M) is a Zo-reduction of a class in H?(M,7Z)

. ’there is a Morita equivalence C¢(M)—C(M) bimodule X ‘
(Ce(M) = A(M) @ C with Clifford product).

Automatically ¥ = I'(S), where S is the complex vector bundle of
Dirac spinors on M in conventional diff. geom., on which C'(M)
acts by pointwise multiplication, C¢(M) by Clifford multiplication -,
and one constructs canonical Ip.  Now, for f € C>®(M),

i, fl=df
and such operators generate C/(M).

If dimM is even the S.T. (1) is Ze-graded; 3 a grading v € C4(M).

There is an algebraic characterization for spin manifolds as well:
a spin® manifold is spin iff 3 a real structure (charge conjugation).
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Another class of N.C. S.T.
Def

A finite-dimensional spectral triple (A, H, D) consists of:

- (real or complex) x subalgebra A of matrices acting on

- fin. dim. Hilbert space H, and

- Hermitian matrix D on H.

(A, H, D) is even if H is Zo-graded, A is even and D is odd;
we denote by ~y the grading operator.

(A, H, D) is real if 3 an antilinear isometry J on H, s.t.

J? =¢€idy , JD =¢DJ Jy = €'~vJ
for some ¢€,€', €’ € {+1}, plus the Oth order condition:
[a,JbJ7 =0 Va,be A,
and the 1st order condition:

[D,a],JbJ =0 Va,bc A (2)
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Dirac spinors: quantum

Quite as in [Lord,Rennie,Varilly12]:

We call Clifford algebra the complex x-algebra C{(A) generated by
A, [D,A] and by ~y (if any).
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Dirac spinors: quantum

Quite as in [Lord,Rennie,Varilly12]:

We call Clifford algebra the complex x-algebra C{(A) generated by
A, [D,A] and by ~y (if any).

Now, can’t have a C¢(A)-A bimodule (for noncommutative A),
but the Oth and 1st order = H is a C{(A)-A° bimodule, where

(A0 = 747]

Def (FD'A, LD)

A real spectral triple (A, H, D, J) is spin (and H are quantum
Dirac spinors) if H is a Morita equivalence C{(A)-A° bimodule
(i.e. CL(A) & A° are maximal one w.r.t. the other).

Examples:

- Classical case

-H=A, J(a)=a"and D =0.

\What ahant the internal ST AF OSSN ? 8/21



We identify (for any of 3 generations)
HF = (C32 ~ M8><4(C)
with basis labelled by particles and antiparticles arranged as

- 1 2 37
VR URp UR Up

en dy & d

v =

| UR

(1,2,3=colors).
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A general linear operators on Hp is a finite sum L =Y. a; ® b;,
with a; € Mg(C) acting on the left and b; € My(C) on the right.

In particular Ap = C® H @ M3(C) > (A, q,m) is represented by

O OO

10/21



Jr & A

The real conjugation Jr is the operator

o[-F

o |1a 04
a—[04 04](8)

3
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Jr & A

The real conjugation Jr is the operator

o[-F

o |1a 04
a—[04 O4]®

3

Note that if A C Endc(Hp) is a real x-subalgebra, its complex
linear span A has the same commutant in End¢(Hp).

The map a + a° = JpaJp (here a = (a*)!) gives two
isomorphisms Ap — A% and (Ar)c — (A%)c.
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Al

Lemma (By direct computation)

The commutant of Ap in Mg(C) is the algebra Cr with elements

q11 q12

Bl

g21 q22

where o, 3,6 € C, q¢ = (g;5) € Mz(C).
The commutant of Ap in Endc(H) is

A/F =Cr® M4((C) 2 M4((C)@3 S5, Mg((C), of dim¢ = 112.

51
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Ao/

The map z — JpZJF is an isomorphism between A’ and (A%.)".
From this,

Lemma

The commutant (A$.)" of A%, has elements

b b
a®611+[ C]@@z—i—[ d}®(633+644) (6)

with a € Mg(C), b,c,d € M4(C).
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Ao/

The map z — JpZJF is an isomorphism between A’ and (A%.)".
From this,

Lemma

The commutant (A$.)" of A%, has elements

b b
a®611+[ C]®622+[ d}®(633+644) (6)

with a € Mg(C), b, c,d € My(C).

Al N (A% ~ C®10 g My(C).

It follows that dime (A% + (A%)) =210 (=2-112 — 14).
The (real) subspace of hermitian matrices has dimg = 210.
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Dpr: the 1st order condition

Prop (Krajewski)

Dr € Endc(HFp) satisfies the 1st order condition (2) iff
Dp = Do + D

where Dy € (A%,)" and Dy € A,
Furthermore [Dp, Jp| = 0 iff

D1 = JrpDyJF.

If Dr = D7, we have 112 free real parameters.
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Dpr: reformulation of the 1st order

Cl(AF) and the property spin constrains only Dy, and it is useful
to reformulate the Props above as follows. Let

Dpr = (Tres1 + Tres) e (7)

with Tz € C. Note that Dy € A/F N (A%)/ and JpDr = DrJp.
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Dpr: reformulation of the 1st order

Cl(AF) and the property spin constrains only Dy, and it is useful
to reformulate the Props above as follows. Let

Dpr = (Tres1 + Tres) e (7)

with Tz € C. Note that Dy € A/F N (A%)/ and JpDr = DrJp.

Prop
Most general D = Dy satisfying the 1st order condition is
Dp = Dy+ D1+ Dg (8)

where Dy = D € (A%.)" and D1 = Dy € A% have null coefficeint
of e15 ® e11 and es1 ® eq11, and D1 = JpDoJg if Dp and Jp
commute.
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Consider now a grading operator v anticommuting with Jp,
which means KO-dimension 6 (or every except 0 and 4 if
Jp ~» Jpyr, D ~ Dp7yr, and/or forgetting vyr).
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Grading

Consider now a grading operator v anticommuting with Jp,
which means KO-dimension 6 (or every except 0 and 4 if
Jp ~» Jpyr, D ~ Dp7yr, and/or forgetting vyr).

Lemma

Any yr-odd Dirac operator satisfying the 1st order condition can
be written in the form

Dr = Dy+ D1+ eDpg
as in (8), with both Dy and Dy yp-odd operators and e =0 or 1
depending on the parity of Dg.
If moreover yr either commutes or anticommutes with Jg, then

Dy = JpDyJp.

v

Some natural choices of v, and the corresponding form of odd Dy
(Dy is spurious) are:
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The standard grading

vF = +1on pr, pr, and —1on pr, pr

(KO-dim =6).
Any yp-odd Dy has the form:

®®®

® ® ® % * *

*

® ® &
® ® @

®e1+

®(1—e11),
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A non-standard grading

Let
Yr =7r(L — B). (10)

(opposite parity of chiral leptons w.r.t. quarks, still KO-dim =6).
Any vj-odd Dj, has the form:

*
* %

* ® *

. T o | @t * * | Deii
® ® ® *
® ® ® *
® ® @ *

where % can differ for ®ess and @(es3 + €44).
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Special case:

(Modified) Chamseddine-Connes's D,

® e+

where T's, Q) € C,

1L
®6117

and A € R (term mixing leptons and quarks).
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Special case:

(Modified) Chamseddine-Connes's D,

& e11+

1L
®6117

where T's, Q2 € C, and A € R (term mixing leptons and quarks).

The Chamseddine-Connes is a further special case with Q = A =0

(which is odd w.r.t. the both gradings vr and ~}).
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The spin property

By straightforward (though meticulous and tedious) considerations:

Prop

A spectral triple with vp-odd operator D is not spin.
For a ~j,-odd Modified Chamseddine-Connes’s operator D', with
all coefficients different from zero, if at least one of

1. T, £=LT,, 9. T.#LTy,

holds, then:
i) the odd spectral triple (Ap, Hp, D, Jr) is not spin;
ii) the even spectral triple (Ap, Hp, D', Vi, JF) is spin;
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Conclusions

i) the spectral triple with D of Connes-Chamseddine (A = 0 or
Q=0), is not spin.

ii) our D% is a minimal modifiation of Connes-Chamseddine Dp,
for which the even spectral triple is spin.
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Conclusions
Corollary

i) the spectral triple with D of Connes-Chamseddine (A =0 or
Q=0), is not spin.

ii) our D% is a minimal modifiation of Connes-Chamseddine Dp,
for which the even spectral triple is spin.

V.
Final remarks

i) v does not belong to the algebra generated by Ap and

[D, Ar], so the modified even spectral triple is not orientable.
Thus it is pin rather than spin, and the elements of H are
"quantum Dirac pinors”.

ii) It is irreducible in the sense that {0} and H are the only
subspaces stable under A, DY, J and ~/.

iit) So far Math. Phys. implications, e.g. "small”Q, A;
lepto-quark interactions (cf. [PSS97]);
how the Higgs mass is modified ...: under scrutiny.
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