The Standard Model in Noncommutative Geometry: fermions as internal Dirac spinors

> Ludwik Dąbrowski SISSA, Trieste (I)

(based on JNCG in print with F. D'Andrea)

Corfu, 22 September 2015

Goal

Establish if in the noncommutative geometry approach to the Standard Model (ν SM) the fundamental fermions can be regarded as 'quantum' Dirac spinors of the internal space.

Goal

Establish if in the noncommutative geometry approach to the Standard Model (ν SM) the fundamental fermions can be regarded as 'quantum' Dirac spinors of the internal space.

Plan

Introduction

- Pormulate the concept of quantum spin space and of Dirac spinors in terms of Morita equivalence involving the underlying algebra A and certain quantum analogue of Clifford bundle algebra
- **3** See what happens in ν SM.

Goal

Establish if in the noncommutative geometry approach to the Standard Model (ν SM) the fundamental fermions can be regarded as 'quantum' Dirac spinors of the internal space.

Plan

Introduction

- Pormulate the concept of quantum spin space and of Dirac spinors in terms of Morita equivalence involving the underlying algebra A and certain quantum analogue of Clifford bundle algebra
- **3** See what happens in ν SM.

<u>Proviso:</u> quantum = noncommutative (NC)

Framework: NC or *spectral* geometry à la Connes et. al.

Framework: NC or *spectral* geometry à la Connes et. al. The arena of ν SM [Connes, Chammseddine,...] is

ordinary (spin) manifold \times a finite quantum space,

described by the algebra $C^\infty(M)\otimes A_F$, where

 $A_F = \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C}).$

Framework: NC or *spectral* geometry à la Connes et. al. The arena of ν SM [Connes, Chammseddine,...] is

ordinary (spin) manifold \times a finite quantum space,

described by the algebra $C^\infty(M)\otimes A_F$, where

$$A_F = \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C}).$$

The matter fields are

Dirac spinors $\Gamma(S) \otimes H_F$,

where $H_F = \mathbb{C}^{96}$ (its basis labels the fundamental fermions).

Framework: NC or *spectral* geometry à la Connes et. al. The arena of ν SM [Connes, Chammseddine,...] is

ordinary (spin) manifold \times a finite quantum space,

described by the algebra $C^\infty(M)\otimes A_F$, where

$$A_F = \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C}).$$

The matter fields are

Dirac spinors $\Gamma(S) \otimes H_F$,

where $H_F = \mathbb{C}^{96}$ (its basis labels the fundamental fermions). The gauge fields are encoded by the usual Dirac operator $\not D$ on M plus certain Hermitian matrix D operating on H_F .

This "almost commutative" geometry is mathematically a product of two *spectral triples* (S.T.): The first one is the *canonical* S.T. on M

$$(C^{\infty}(M), L^2(\Sigma), \not\!\!D),$$
 (1)

a prototype of commutative S.T. Under some assumptions one can reconstruct the data $M, g, \Sigma \& D$.

This "almost commutative" geometry is mathematically a product of two *spectral triples* (S.T.): The first one is the *canonical* S.T. on M

$$(C^{\infty}(M), L^2(\Sigma), \not\!\!D),$$
 (1)

a prototype of commutative S.T. Under some assumptions one can reconstruct the data $M, g, \Sigma \& D$.

The scond one is finite-dimensional "internal" S.T. (A, H, D).

This "almost commutative" geometry is mathematically a product of two *spectral triples* (S.T.): The first one is the *canonical* S.T. on M

$$(C^{\infty}(M), L^2(\Sigma), \mathcal{D}),$$
 (1)

a prototype of commutative S.T. Under some assumptions one can reconstruct the data $M, g, \Sigma \& D$.

The scond one is finite-dimensional "internal" S.T. (A, H, D).

Does it also correspond to a (noncommutative) spin manifold ? Are the elements of H "spinors" in some sense ? In particular "Dirac spinors" ?

This "almost commutative" geometry is mathematically a product of two *spectral triples* (S.T.): The first one is the *canonical* S.T. on M

$$(C^{\infty}(M), L^2(\Sigma), \not D),$$
 (1)

a prototype of commutative S.T. Under some assumptions one can reconstruct the data $M, g, \Sigma \& D$.

The scond one is finite-dimensional "internal" S.T. (A, H, D).

Does it also correspond to a (noncommutative) spin manifold ? Are the elements of H "spinors" in some sense ? In particular "Dirac spinors" ?

Answer: 'Yes', if two extra fields are added (& a different grading).

Other modifications

In fact to get the correct experimental value of the Higgs mass, various modifications of the CC model have been proposed:

- enlarge H thus introducing new fermions [Ste09]
- turn one of the elements in D into a field by hand [CC12] rather than getting it as a fluctuation of the metric;
- relax the 1st order condition [CCvS13] & allow new terms in D;
- enlarge $A \ \mbox{[DLM13]}$ and use the twisted spectral triple $\mbox{[DM13]}$

Other modifications

In fact to get the correct experimental value of the Higgs mass, various modifications of the CC model have been proposed:

- enlarge H thus introducing new fermions [Ste09]
- turn one of the elements in D into a field by hand [CC12] rather than getting it as a fluctuation of the metric;
- relax the 1st order condition [CCvS13] & allow new terms in D;
- enlarge $A \ \mbox{[DLM13]}$ and use the twisted spectral triple [DM13]

Actually, much before $\nu {\rm SM}$ a GUT was proposed, with the group Spin(10) and fundamental fermions in representation $\underline{16}.$

Other modifications

In fact to get the correct experimental value of the Higgs mass, various modifications of the CC model have been proposed:

- enlarge H thus introducing new fermions [Ste09]
- turn one of the elements in D into a field by hand [CC12] rather than getting it as a fluctuation of the metric;
- relax the 1st order condition [CCvS13] & allow new terms in D;
- enlarge $A \ \mbox{[DLM13]}$ and use the $\mbox{twisted}$ spectral triple $\mbox{[DM13]}$

Actually, much before ν SM a GUT was proposed, with the group Spin(10) and fundamental fermions in representation <u>16</u>.

NCG gives a possibility to employ also quantum groups [BDDD13], and actually just algebras instead of groups.

Dirac spinors: classical

An oriented Riemannian manifold M is ${\rm spin}^c$ iff \ldots

- SO(n) frame bundle lifts to $Spin_c(n)$
- $w_2(M)$ is a $\mathbb{Z}_2\text{-reduction}$ of a class in $H^2(M,\mathbb{Z})$
- there is a Morita equivalence $\mathcal{C}\ell(M) C(M)$ bimodule Σ

 $(\overline{\mathcal{C}\ell}(M) = \Lambda(M) \otimes \mathbb{C}$ with Clifford product).

Dirac spinors: classical

An oriented Riemannian manifold M is ${\rm spin}^c$ iff \ldots

- SO(n) frame bundle lifts to $Spin_c(n)$
- $w_2(M)$ is a \mathbb{Z}_2 -reduction of a class in $H^2(M,\mathbb{Z})$
- there is a Morita equivalence $\mathcal{C}\ell(M) C(M)$ bimodule Σ

 $(\overline{\mathcal{C}\ell}(M) = \Lambda(M) \otimes \mathbb{C} \text{ with Clifford product}).$

Automatically $\Sigma = \Gamma(S)$, where S is the complex vector bundle of Dirac spinors on M in conventional diff. geom., on which C(M) acts by pointwise multiplication, $\mathcal{C}\ell(M)$ by Clifford multiplication \cdot , and one constructs canonical \mathcal{D} . Now, for $f \in C^{\infty}(M)$,

$$i[D\!\!\!/,f] = \mathrm{d}f \cdot$$

and such operators generate $\mathcal{C}\ell(M)$. If dimM is even the S.T. (1) is \mathbb{Z}_2 -graded; \exists a grading $\gamma \in \mathcal{C}\ell(M)$.

Dirac spinors: classical

An oriented Riemannian manifold M is ${\rm spin}^c$ iff \ldots

- SO(n) frame bundle lifts to $Spin_c(n)$
- $w_2(M)$ is a $\mathbb{Z}_2\text{-reduction}$ of a class in $H^2(M,\mathbb{Z})$
- there is a Morita equivalence $\mathcal{C}\ell(M) C(M)$ bimodule Σ

 $(\overline{\mathcal{C}\ell}(M) = \Lambda(M) \otimes \mathbb{C} \text{ with Clifford product}).$

Automatically $\Sigma = \Gamma(S)$, where S is the complex vector bundle of Dirac spinors on M in conventional diff. geom., on which C(M) acts by pointwise multiplication, $\mathcal{C}\ell(M)$ by Clifford multiplication \cdot , and one constructs canonical \mathcal{D} . Now, for $f \in C^{\infty}(M)$,

$$i[D\!\!\!/,f] = \mathrm{d}f \cdot$$

and such operators generate $\mathcal{C}\ell(M)$.

If dimM is even the S.T. (1) is \mathbb{Z}_2 -graded; \exists a grading $\gamma \in \mathcal{C}\ell(M)$. There is an algebraic characterization for spin manifolds as well: a spin^c manifold is spin iff \exists a real structure (charge conjugation).

Another class of N.C. S.T.

Def

A <u>finite-dimensional</u> spectral triple (A, H, D) consists of:

- (real or complex) * subalgebra A of matrices acting on
- fin. dim. Hilbert space H, and

- Hermitian matrix D on H.

(A, H, D) is even if H is \mathbb{Z}_2 -graded, A is even and D is odd; we denote by γ the grading operator.

(A, H, D) is real if \exists an antilinear isometry J on H, s.t.

$$J^2 = \epsilon \operatorname{id}_H , \qquad JD = \epsilon' DJ , \qquad J\gamma = \epsilon'' \gamma J$$

for some $\epsilon, \epsilon', \epsilon'' \in \{\pm 1\}$, plus the 0th order condition:

$$[a, JbJ^{-1}] = 0 \qquad \forall \ a, b \in A,$$

and the 1st order condition:

$$[[D, a], JbJ^{-1}] = 0 \qquad \forall a, b \in A.$$
(2)

Quite as in [Lord,Rennie,Varilly12]:

Def

We call Clifford algebra the complex *-algebra $\mathcal{C}\ell(A)$ generated by A, [D, A] and by γ (if any).

Quite as in [Lord,Rennie,Varilly12]:

Def

We call Clifford algebra the complex *-algebra $\mathcal{C}\ell(A)$ generated by A, [D, A] and by γ (if any).

Now, can't have a $\mathcal{C}\ell(A)$ -A bimodule (for noncommutative A), but the 0th and 1st order $\Rightarrow H$ is a $\mathcal{C}\ell(A)$ - A° bimodule, where

$$A^\circ := JAJ$$
.

Quite as in [Lord,Rennie,Varilly12]:

Def

We call Clifford algebra the complex *-algebra $\mathcal{C}\ell(A)$ generated by A, [D, A] and by γ (if any).

Now, can't have a $\mathcal{C}\ell(A)$ -A bimodule (for noncommutative A), but the 0th and 1st order $\Rightarrow H$ is a $\mathcal{C}\ell(A)$ - A° bimodule, where

 $A^\circ := JAJ$.

Def (FD'A, LD)

A real spectral triple (A, H, D, J) is spin (and H are quantum Dirac spinors) if H is a <u>Morita</u> equivalence $\mathcal{C}\ell(A)$ - A° bimodule (i.e. $\mathcal{C}\ell(A)$ & A° are maximal one w.r.t. the other).

Quite as in [Lord,Rennie,Varilly12]:

Def

We call Clifford algebra the complex *-algebra $\mathcal{C}\ell(A)$ generated by A, [D, A] and by γ (if any).

Now, can't have a $\mathcal{C}\ell(A)$ -A bimodule (for noncommutative A), but the 0th and 1st order $\Rightarrow H$ is a $\mathcal{C}\ell(A)$ - A° bimodule, where

 $A^\circ := JAJ$.

Def (FD'A, LD)

A real spectral triple (A, H, D, J) is spin (and H are quantum Dirac spinors) if H is a <u>Morita</u> equivalence $\mathcal{C}\ell(A)$ - A° bimodule (i.e. $\mathcal{C}\ell(A)$ & A° are maximal one w.r.t. the other).

Examples:

- Classical case

-
$$H = A$$
, $J(a) = a^*$ and $D = 0$.

What about the internal S T of ν S M ?

H_F

We identify (for any of 3 generations)

$$H_F = \mathbb{C}^{32} \simeq M_{8 \times 4}(\mathbb{C})$$

with basis labelled by particles and antiparticles arranged as

$$v_{1} = \begin{bmatrix} \nu_{R} & u_{R}^{1} & u_{R}^{2} & u_{R}^{3} \\ e_{R} & d_{R}^{1} & d_{R}^{2} & d_{R}^{3} \\ \nu_{L} & u_{L}^{1} & u_{L}^{2} & u_{L}^{3} \\ e_{L} & d_{L}^{1} & d_{L}^{2} & d_{L}^{3} \\ \bar{\nu}_{R} & \bar{e}_{R} & \bar{\nu}_{L} & \bar{e}_{L} \\ \bar{u}_{R}^{1} & \bar{d}_{R}^{1} & \bar{u}_{L}^{1} & \bar{d}_{L}^{1} \\ \bar{u}_{R}^{2} & \bar{d}_{R}^{2} & \bar{u}_{L}^{2} & \bar{d}_{L}^{2} \\ \bar{u}_{R}^{3} & \bar{d}_{R}^{3} & \bar{u}_{L}^{3} & \bar{d}_{R}^{3} \end{bmatrix}$$

(1,2,3=colors).

A general linear operators on H_F is a finite sum $L = \sum_i a_i \otimes b_i$, with $a_i \in M_8(\mathbb{C})$ acting on the left and $b_i \in M_4(\mathbb{C})$ on the right. In particular $A_F = \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C}) \ni (\lambda, q, m)$ is represented by

 A_F

$J_F \& A_F^\circ$

The real conjugation J_F is the operator

$$J_F \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} v_2^* \\ v_1^* \end{bmatrix} .$$
(4)

 $A_F^\circ = J_F A_F J_F \subset \operatorname{End}_{\mathbb{C}}(H_F)$ consists of elements of the form:

$$a^{\circ} = \begin{bmatrix} 1_4 & 0_4 \\ 0_4 & 0_4 \end{bmatrix} \otimes \begin{bmatrix} \lambda & 0 & 0 & 0 \\ 0 & & \\ 0 & & \\ 0 & & \\ \end{bmatrix} + \begin{bmatrix} 0_4 & 0_4 \\ 0_4 & 1_4 \end{bmatrix} \otimes \begin{bmatrix} \lambda & 0 & 0 & 0 \\ 0 & \overline{\lambda} & 0 & 0 \\ \hline 0 & 0 & \\ 0 & 0 & \\ \end{bmatrix}$$

.

$J_F \& A_F^\circ$

The real conjugation J_F is the operator

$$J_F \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} v_2^* \\ v_1^* \end{bmatrix} .$$
(4)

 $A_F^\circ = J_F A_F J_F \subset \operatorname{End}_{\mathbb{C}}(H_F)$ consists of elements of the form:

$$a^{\circ} = \begin{bmatrix} 1_4 & 0_4 \\ 0_4 & 0_4 \end{bmatrix} \otimes \begin{bmatrix} \lambda & 0 & 0 & 0 \\ 0 & & \\ 0 & & \\ 0 & & \\ \end{bmatrix} + \begin{bmatrix} 0_4 & 0_4 \\ 0_4 & 1_4 \end{bmatrix} \otimes \begin{bmatrix} \lambda & 0 & 0 & 0 \\ 0 & \overline{\lambda} & 0 & 0 \\ \hline 0 & 0 & \\ 0 & 0 & \\ \end{bmatrix}$$

Note that if $A \subset \operatorname{End}_{\mathbb{C}}(H_F)$ is a real *-subalgebra, its complex linear span $A_{\mathbb{C}}$ has the same commutant in $\operatorname{End}_{\mathbb{C}}(H_F)$. The map $a \mapsto a^{\circ} = J_F \bar{a} J_F$ (here $\bar{a} = (a^*)^t$) gives two isomorphisms $A_F \to A_F^{\circ}$ and $(A_F)_{\mathbb{C}} \to (A_F^{\circ})_{\mathbb{C}}$.

Lemma (By direct computation)

The commutant of A_F in $M_8(\mathbb{C})$ is the algebra C_F with elements

 A'_{F}

$(A_F^\circ)'$

The map $x\mapsto J_F\bar{x}J_F$ is an isomorphism between A_F' and $(A_F^\circ)'.$ From this,

Lemma

wi

The commutant $(A_F^{\circ})'$ of A_F° has elements

$$a \otimes e_{11} + \begin{bmatrix} b \\ c \end{bmatrix} \otimes e_{22} + \begin{bmatrix} b \\ d \end{bmatrix} \otimes (e_{33} + e_{44})$$
(6)
th $a \in M_8(\mathbb{C}), b, c, d \in M_4(\mathbb{C}).$

$(A_F^\circ)'$

The map $x \mapsto J_F \bar{x} J_F$ is an isomorphism between A'_F and $(A^\circ_F)'$. From this,

Lemma

The commutant $(A_F^{\circ})'$ of A_F° has elements

$$a \otimes e_{11} + \begin{bmatrix} b \\ c \end{bmatrix} \otimes e_{22} + \begin{bmatrix} b \\ d \end{bmatrix} \otimes (e_{33} + e_{44})$$
 (6)

with $a \in M_8(\mathbb{C})$, $b, c, d \in M_4(\mathbb{C})$.

Lemma

 $A'_F \cap (A_F^{\circ})' \simeq \mathbb{C}^{\oplus 10} \oplus M_2(\mathbb{C}).$

It follows that $\dim_{\mathbb{C}}(A'_F + (A^{\circ}_F)') = 210$ (= $2 \cdot 112 - 14$). The (real) subspace of hermitian matrices has $\dim_{\mathbb{R}} = 210$.

D_F : the 1st order condition

Prop (Krajewski)

 $D_F \in \operatorname{End}_{\mathbb{C}}(H_F)$ satisfies the 1st order condition (2) iff

$$D_F = D_0 + D_1$$

where
$$D_0 \in (A_F^\circ)'$$
 and $D_1 \in A'_F$.
Furthermore $[D_F, J_F] = 0$ iff

$$D_1 = J_F D_0 J_F.$$

If $D_F = D_F^*$, we have 112 free real parameters.

D_F : reformulation of the 1st order

 $\mathcal{C}\ell(A_F)$ and the property *spin* constrains only D_0 , and it is useful to reformulate the Props above as follows. Let

$$D_R = (\Upsilon_R e_{51} + \bar{\Upsilon}_R e_{15}) \otimes e_{11} , \qquad (7)$$

with $\Upsilon_R \in \mathbb{C}$. Note that $D_R \in A'_F \cap (A^{\circ}_F)'$ and $J_F D_R = D_R J_F$.

D_F : reformulation of the 1st order

 $\mathcal{C}\ell(A_F)$ and the property *spin* constrains only D_0 , and it is useful to reformulate the Props above as follows. Let

$$D_R = (\Upsilon_R e_{51} + \bar{\Upsilon}_R e_{15}) \otimes e_{11} , \qquad (7)$$

with $\Upsilon_R \in \mathbb{C}$. Note that $D_R \in A'_F \cap (A^{\circ}_F)'$ and $J_F D_R = D_R J_F$.

Prop

Most general $D_F = D_F^*$ satisfying the 1st order condition is

$$D_F = D_0 + D_1 + D_R (8)$$

where $D_0 = D_0^* \in (A_F^\circ)'$ and $D_1 = D_1^* \in A'_F$ have null coefficient of $e_{15} \otimes e_{11}$ and $e_{51} \otimes e_{11}$, and $D_1 = J_F D_0 J_F$ if D_F and J_F commute.

Grading

Consider now a grading operator γ_F anticommuting with J_F , which means KO-dimension 6 (or every except 0 and 4 if $J_F \rightsquigarrow J_F \gamma_F$, $D_F \rightsquigarrow D_F \gamma_F$, and/or forgetting γ_F).

Grading

Consider now a grading operator γ_F anticommuting with J_F , which means KO-dimension 6 (or every except 0 and 4 if $J_F \rightsquigarrow J_F \gamma_F$, $D_F \rightsquigarrow D_F \gamma_F$, and/or forgetting γ_F).

Lemma

Any γ_F -odd Dirac operator satisfying the 1st order condition can be written in the form

$$D_F = D_0 + D_1 + \epsilon D_R$$

as in (8), with both D_0 and $D_1 \gamma_F$ -odd operators and $\epsilon = 0$ or 1 depending on the parity of D_R .

If moreover γ_F either commutes or anticommutes with J_F , then

$$D_1 = J_F D_0 J_F.$$

Some natural choices of γ_F , and the corresponding form of odd D_0 (D_1 is spurious) are:

The standard grading

$$\gamma_F = +1 \text{ on } p_R, \ \bar{p}_L, \text{ and } -1 \text{ on } p_L, \ \bar{p}_R \tag{9}$$

(KO-dim =6). Any γ_F -odd D_0 has the form:

A non-standard grading

Let

$$\gamma'_F = \gamma_F (L - B). \tag{10}$$

(opposite parity of chiral leptons w.r.t. quarks, still KO-dim =6). Any γ'_F -odd D'_0 has the form:

where \bigstar can differ for $\otimes e_{22}$ and $\otimes (e_{33} + e_{44})$.

Special case:

(Modified) Chamseddine-Connes's D'_0

where Υ 's, $\Omega \in \mathbb{C}$, and $\Delta \in \mathbb{R}$ (term mixing leptons and quarks).

Special case:

(Modified) Chamseddine-Connes's D'_0

where Υ 's, $\Omega\in\mathbb{C},$ and $\Delta\in\mathbb{R}$ (term mixing leptons and quarks).

The Chamseddine-Connes is a further special case with $\Omega = \Delta = 0$ (which is odd w.r.t. the both gradings γ_F and γ'_F).

The spin property

By straightforward (though meticulous and tedious) considerations:

Prop

A spectral triple with γ_F -odd operator D_F <u>is not</u> spin. For a γ'_F -odd Modified Chamseddine-Connes's operator D'_F with all coefficients different from zero, if at least one of

1.
$$\Upsilon_{\nu} \neq \pm \Upsilon_{u}$$
, 2. $\Upsilon_{e} \neq \pm \Upsilon_{d}$,

holds, then:

- i) the odd spectral triple (A_F, H_F, D'_F, J_F) is not spin;
- ii) the even spectral triple $(A_F, H_F, D'_F, \gamma'_F, J_F)$ is spin;

Conclusions

Corollary

- i) the spectral triple with D_F of Connes-Chamseddine ($\Delta = 0$ or $\Omega = 0$), is not spin.
- ii) our D'_F is a minimal modifiation of Connes-Chamseddine D_F , for which the even spectral triple is spin.

Conclusions

Corollary

- i) the spectral triple with D_F of Connes-Chamseddine ($\Delta = 0$ or $\Omega = 0$), is not spin.
- ii) our D'_F is a minimal modifiation of Connes-Chamseddine D_F , for which the even spectral triple is spin.

Final remarks

- i) γ'_F does not belong to the algebra generated by A_F and $[D, A_F]$, so the modified even spectral triple is not orientable. Thus it is pin rather than spin, and the elements of H are "quantum Dirac pinors".
- ii) It is irreducible in the sense that $\{0\}$ and H are the only subspaces stable under A, D'_F , J and γ'_F .
- So far Math. Phys. implications, e.g. "small" Ω, Δ; lepto-quark interactions (cf. [PSS97]); how the Higgs mass is modified ...: under scrutiny.