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Goal

Establish if in the noncommutative geometry approach to the
Standard Model (νSM) the fundamental fermions can be regarded
as ’quantum’ Dirac spinors of the internal space.

Plan

1 Introduction

2 Formulate the concept of quantum spin space and of Dirac
spinors in terms of Morita equivalence involving the underlying
algebra A and certain quantum analogue of Clifford bundle
algebra

3 See what happens in νSM.

Proviso: quantum = noncommutative (NC)
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Intro

Framework: NC or spectral geometry à la Connes et. al.

The arena of νSM [Connes, Chammseddine,...] is

ordinary (spin) manifold × a finite quantum space,

described by the algebra C∞(M)⊗AF , where

AF = C⊕H⊕M3(C).

The matter fields are

Dirac spinors Γ(S) ⊗HF ,

where HF = C96 (its basis labels the fundamental fermions).

The gauge fields are encoded by the usual Dirac operator D/ on M
plus certain Hermitian matrix D operating on HF .
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Intro 2

This “almost commutative” geometry is mathematically a product
of two spectral triples (S.T.):
The first one is the canonical S.T. on M(

C∞(M), L2(Σ), D/
)
, (1)

a prototype of commutative S.T. Under some assumptions one can
reconstruct the data M, g,Σ &D/ .

The scond one is finite-dimensional ”internal” S.T. (A,H,D).

Does it also correspond to a (noncommutative) spin manifold ?
Are the elements of H “spinors” in some sense ?
In particular ”Dirac spinors” ?

Answer: ’Yes’, if two extra fields are added (& a different grading).
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Other modifications

In fact to get the correct experimental value of the Higgs mass,
various modifications of the CC model have been proposed:
- enlarge H thus introducing new fermions [Ste09]
- turn one of the elements in D into a field by hand [CC12] rather
than getting it as a fluctuation of the metric;
- relax the 1st order condition [CCvS13] & allow new terms in D;
- enlarge A [DLM13] and use the twisted spectral triple [DM13]

Actually, much before νSM a GUT was proposed, with the group
Spin(10) and fundamental fermions in representation 16.

NCG gives a possibility to employ also quantum groups [BDDD13],
and actually just algebras instead of groups.
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Dirac spinors: classical

An oriented Riemannian manifold M is spinc iff ...
• SO(n) frame bundle lifts to Spinc(n)
• w2(M) is a Z2-reduction of a class in H2(M,Z)

• there is a Morita equivalence C`(M)−C(M) bimodule Σ

(C`(M) = Λ(M)⊗ C with Clifford product).

Automatically Σ = Γ(S), where S is the complex vector bundle of
Dirac spinors on M in conventional diff. geom., on which C(M)
acts by pointwise multiplication, C`(M) by Clifford multiplication ·,
and one constructs canonical D/ . Now, for f ∈ C∞(M),

i[D/ , f ] = df ·

and such operators generate C`(M).
If dimM is even the S.T. (1) is Z2-graded; ∃ a grading γ ∈ C`(M).

There is an algebraic characterization for spin manifolds as well:
a spinc manifold is spin iff ∃ a real structure (charge conjugation).
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Another class of N.C. S.T.

Def

A finite-dimensional spectral triple (A,H,D) consists of:
- (real or complex) ∗ subalgebra A of matrices acting on
- fin. dim. Hilbert space H, and
- Hermitian matrix D on H.
(A,H,D) is even if H is Z2-graded, A is even and D is odd;
we denote by γ the grading operator.
(A,H,D) is real if ∃ an antilinear isometry J on H, s.t.

J2 = ε idH , JD = ε′DJ , Jγ = ε′′γJ

for some ε, ε′, ε′′ ∈ {±1}, plus the 0th order condition:

[a, JbJ−1] = 0 ∀ a, b ∈ A,

and the 1st order condition:

[[D, a], JbJ−1] = 0 ∀ a, b ∈ A. (2)
7/21



Dirac spinors: quantum

Quite as in [Lord,Rennie,Varilly12]:

Def

We call Clifford algebra the complex ∗-algebra C`(A) generated by
A, [D,A] and by γ (if any).

Now, can’t have a C`(A)-A bimodule (for noncommutative A),
but the 0th and 1st order ⇒ H is a C`(A)-A◦ bimodule, where

A◦ := JAJ .

Def (FD’A, LD)

A real spectral triple (A,H,D, J) is spin (and H are quantum
Dirac spinors) if H is a Morita equivalence C`(A)-A◦ bimodule
(i.e. C`(A) & A◦ are maximal one w.r.t. the other).

Examples:
- Classical case
- H = A, J(a) = a∗ and D = 0.
What about the internal S.T. of νS.M. ?
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HF

We identify (for any of 3 generations)

HF = C32 'M8×4(C)

with basis labelled by particles and antiparticles arranged as

v1 =



νR u1R u2R u3R
eR d1R d2R d3R
νL u1L u2L u3L
eL d1L d2L d3L
ν̄R ēR ν̄L ēL
ū1R d̄ 1

R ū1L d̄ 1
L

ū2R d̄ 2
R ū2L d̄ 2

L

ū3R d̄ 3
R ū3L d̄ 3

L


(1,2,3=colors).
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AF

A general linear operators on HF is a finite sum L =
∑

i ai ⊗ bi,
with ai ∈M8(C) acting on the left and bi ∈M4(C) on the right.

In particular AF = C⊕H⊕M3(C) 3 (λ, q,m) is represented by

a =




λ 0
0 λ̄

0 0
0 0

0 0
0 0

q

 04

04


λ 0 0 0

0
0
0

m




⊗ 14 . (3)
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JF &A◦F

The real conjugation JF is the operator

JF

[
v1
v2

]
=

[
v∗2
v∗1

]
. (4)

A◦F = JFAFJF ⊂ EndC(HF ) consists of elements of the form:

a◦ =

[
14 04
04 04

]
⊗


λ 0 0 0

0
0
0

m

+

[
04 04
04 14

]
⊗


λ 0
0 λ̄

0 0
0 0

0 0
0 0

q

 .

Note that if A ⊂ EndC(HF ) is a real ∗-subalgebra, its complex
linear span AC has the same commutant in EndC(HF ).
The map a 7→ a◦ = JF āJF (here ā = (a∗)t) gives two
isomorphisms AF → A◦F and (AF )C → (A◦F )C.
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A′F

Lemma (By direct computation)

The commutant of AF in M8(C) is the algebra CF with elements

q11 q12

α

β12

q21 q22

δ13


, (5)

where α, β, δ ∈ C, q = (qij) ∈M2(C).
The commutant of AF in EndC(H) is
A′F = CF ⊗M4(C) 'M4(C)⊕3 ⊕M8(C), of dimC = 112.

12/21



(A◦F )
′

The map x 7→ JF x̄JF is an isomorphism between A′F and (A◦F )′.
From this,

Lemma

The commutant (A◦F )′ of A◦F has elements

a⊗ e11 +

[
b

c

]
⊗ e22 +

[
b

d

]
⊗ (e33 + e44) (6)

with a ∈M8(C), b, c, d ∈M4(C).

Lemma

A′F ∩ (A◦F )′ ' C⊕10 ⊕M2(C).

It follows that dimC(A′F + (A◦F )′) = 210 (= 2 · 112− 14).
The (real) subspace of hermitian matrices has dimR = 210.
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DF : the 1st order condition

Prop (Krajewski)

DF ∈ EndC(HF ) satisfies the 1st order condition (2) iff

DF = D0 +D1

where D0 ∈ (A◦F )′ and D1 ∈ A′F .
Furthermore [DF , JF ] = 0 iff

D1 = JFD0JF .

If DF = D∗F , we have 112 free real parameters.

14/21



DF : reformulation of the 1st order

C`(AF ) and the property spin constrains only D0, and it is useful
to reformulate the Props above as follows. Let

DR = (ΥRe51 + ῩRe15)⊗ e11 , (7)

with ΥR ∈ C. Note that DR ∈ A′F ∩ (A◦F )′ and JFDR = DRJF .

Prop

Most general DF = D∗F satisfying the 1st order condition is

DF = D0 +D1 +DR (8)

where D0 = D∗0 ∈ (A◦F )′ and D1 = D∗1 ∈ A′F have null coefficeint
of e15 ⊗ e11 and e51 ⊗ e11, and D1 = JFD0JF if DF and JF
commute.

15/21



DF : reformulation of the 1st order

C`(AF ) and the property spin constrains only D0, and it is useful
to reformulate the Props above as follows. Let
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Grading

Consider now a grading operator γF anticommuting with JF ,
which means KO-dimension 6 (or every except 0 and 4 if
JF  JFγF , DF  DFγF , and/or forgetting γF ).

Lemma

Any γF -odd Dirac operator satisfying the 1st order condition can
be written in the form

DF = D0 +D1 + εDR

as in (8), with both D0 and D1 γF -odd operators and ε = 0 or 1
depending on the parity of DR.
If moreover γF either commutes or anticommutes with JF , then

D1 = JFD0JF .

Some natural choices of γF , and the corresponding form of odd D0

(D1 is spurious) are:
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The standard grading

γF = +1 on pR, p̄L, and − 1 on pL, p̄R (9)

(KO-dim =6).
Any γF -odd D0 has the form:

∗ ∗ ~ ~ ~
∗ ∗ ∗ ~ ~ ~

∗ ∗
∗ ∗

∗
~ ~
~ ~
~ ~


⊗e11+



∗ ∗
∗ ∗

∗ ∗
∗ ∗


⊗(1−e11) ,
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A non-standard grading

Let
γ′F = γF (L−B). (10)

(opposite parity of chiral leptons w.r.t. quarks, still KO-dim =6).
Any γ′F -odd D′0 has the form:

∗ ∗
∗ ∗ ∗

∗ ∗ ~ ~ ~
∗ ∗ ~ ~ ~

∗ ~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~


⊗ e11 +



∗ ∗
∗ ∗

∗ ∗
∗ ∗

F F F
F
F
F


⊗ e⊥11

where F can differ for ⊗e22 and ⊗(e33 + e44).
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Special case:

(Modified) Chamseddine-Connes’s D′0

Ῡν
Ῡe Ω̄

Υν
Υe
Ω ∆

∆


⊗ e11+



Ῡu
Ῡd

Υu
Υd

∆
∆


⊗ e⊥11 ,

where Υ’s, Ω ∈ C, and ∆ ∈ R (term mixing leptons and quarks).

The Chamseddine-Connes is a further special case with Ω = ∆ = 0
(which is odd w.r.t. the both gradings γF and γ′F ).
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Special case:

(Modified) Chamseddine-Connes’s D′0
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The spin property

By straightforward (though meticulous and tedious) considerations:

Prop

A spectral triple with γF -odd operator DF is not spin.
For a γ′F -odd Modified Chamseddine-Connes’s operator D′F with
all coefficients different from zero, if at least one of

1. Υν 6= ±Υu , 2. Υe 6= ±Υd ,

holds, then:
i) the odd spectral triple (AF , HF , D

′
F , JF ) is not spin;

ii) the even spectral triple (AF , HF , D
′
F , γ

′
F , JF ) is spin;
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Conclusions

Corollary

i) the spectral triple with DF of Connes-Chamseddine (∆ = 0 or
Ω = 0), is not spin.

ii) our D′F is a minimal modifiation of Connes-Chamseddine DF ,
for which the even spectral triple is spin.

Final remarks

i) γ′F does not belong to the algebra generated by AF and
[D,AF ], so the modified even spectral triple is not orientable.
Thus it is pin rather than spin, and the elements of H are
”quantum Dirac pinors”.

ii) It is irreducible in the sense that {0} and H are the only
subspaces stable under A, D′F , J and γ′F .

iii) So far Math. Phys. implications, e.g. ”small” Ω, ∆;
lepto-quark interactions (cf. [PSS97]);
how the Higgs mass is modified ...: under scrutiny.
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