Gauge Unification from Split Supersymmetric String Models

Christos Kokorelis NTUA & ATHENS MILITARY ACADEMY

Summer School and Workshop on the Standard Model and Beyond September 1-11 2015

ATLAS and CMS experiments shed light on Higgs properties

improvement in precision (also G.Tonelli in the school)

...all experinents consistent up to now...with the SM ...�.BUT ..!

<u>Standard model</u> is an <u>incomplete theory</u>

WHY?

1) does not incorporate **GRAVITY**

2) <u>Dark matter and dark energy</u> Cosmological observations tell us the standard model explains about 5% of the matter present in the universe --> About ~27% should be dark matter, which would behave just like other matter, but which only interacts weakly (if at all) with the Standard Model fields

At the SM $m_v = 0$, but

measurements however indicated that neutrinos spontaneously change flavour, which implies that neutrinos have a mass.

This necessitates an extension of the standard model, which not only needs to explain how neutrinos get massive, but also why the mass is so small

Super-K looks for the faint flashes of light emitted when passing neutrinos interact with its water

•••

SOLUTION> The SM may be extended BEYOND.. 1st possibility=><u>use</u> <u>N=1 SUSY (Supersymmetry)</u> to promote SM > SSM

- For every Standard Model particle there exists its supersymmetric partner with the same charge but with different spin
- Solves the gauge hierarchy problem
- Gauge couplings unify at the unification scale/energy

 $M_{GUT} \sim 2 \ \bullet 10^{16} \ GeV$

SSM Gauge unification

SU(5) gauge unification :1/ α vs log E (SU(3), SU(2), U(1)_Y gauge couplings) :Running couplings in the SSM at one-loop/ from top to bottom, $\alpha 1^{-1}$, $\alpha 2^{-1}$, $\alpha 3^{-1}$

S.Dimopoulos, S.Raby and F.WilczekL. E. Ibanez and G. G. RossS. Dimopoulos and H. GeorgiN. Sakai

The SM RG equations for SU(3), SU(2), $U(1)_Y$

$$\frac{1}{\alpha_s(M_s)} = \frac{1}{a_s(M_s)} - \frac{b_3}{2\pi} \ln \left| \left(\frac{M_z}{M_s} \right) \right|$$

$$\frac{1}{\alpha_w(M_s)} = \frac{1}{a_w(M_s)} - \frac{b_2}{2\pi} \ln \left| \left(\frac{M_z}{M_s} \right) \right|$$
$$\frac{1}{\alpha_Y(M_s)} = \frac{1}{a_Y(M_s)} - \frac{b_1}{2\pi} \ln \left| \left(\frac{M_z}{M_s} \right) \right|$$

Remark..! I<u>n a gauge theory context, there</u> is no fundamental reason from

first principles why the

unification scale should be so

high, if not by accident..!

However

in the (perturbative) <u>Heterotic</u> <u>String Theory</u> >

the string scale M^{STRING} is <u>determined</u>

 $M_{STRING} \stackrel{def}{=} \frac{2e^{(1-\gamma))}}{\sqrt{27\pi\alpha'}} \approx 0.7 \ g_{STRING} \ 10^{18} \ GeV$ V. Kaplunovsky; J.P. Derendinger, S. Ferrara, C. Kounnas, F. Zwirner

BUT

(FORGETING PROTON DECAY PROBLEMS....!!)

it appears that M^{STRING} is <u>2</u> orders of magnitude LARGER than that of the SUSY gauge theory $M_{GUT} \sim 2 \ 10^{16} \ GeV$ Several explanations..were invoked to reconcile the apparent discrepancy... A threshold corrections, extra states etc.

INSTEAD..IN THE

FOLLOWING WE PREFER TO STUDY. A STRING THEORY where E STRING UNIFICATION SCALE is FREE PARAMETER. LD BE "ADJ RALE (with the SSM UNIFICATION SCALE + a conserved baryon \neq

**** SPLIT SUPERSYMMETRIC MODELS DO NOT NEED SUPERSYMMETRY TO SUPPORT THEIR <u>EXISTENCE...!!!!</u>

Such > String Theories exist>

Four dimensional compactifications of 10D IIA orientifolds with D6 branes intersecting at angles

[R.Blumenhagen,L.Goerlich,B.Kors,D.Lust-Berlin Group], [L.Ibanez, F.Marchesano,R.Rabadan, D.Cremades,C.K-Madrid Group]

Fermions appear as open strings stretched at the intersections between the D6-branes

SPLIT SUSY as a Gauge Theory

(N. Arkani-Hamed, S. Dimopoulos '04)

• does not solve the Gauge Hierarchy problem but keeps the unification and dark matter candidate

• Gauge couplings unify at a scale < 10¹⁶ GeV

•all superpartners become massive,

& Higgsinos, gauginos remain at low energy

• (claim)there is a light and a heavy Higgs

Running couplings at one-loop, with the scalars at $10^9 \, {
m GeV}\,$ –table 1

table 2 - Close-up of the one-loop couplings near the unification scale with the heavy scalars at 10^9 GeV. Note that the prediction for $\alpha_3(MZ)$ is lower than in the SSM. We observe partial unification of the gauge couplings...

With the SM + Higgsinos > Unification at ~10¹⁴ GeV

Split Susy in String Theory (I.Antoniadis, S.Dimopoulos, C. K /'04)

String Theory can achieve SPLIT SUSY if a number of conditions are satisfied :

i) Sin² \(\Theta\) w = 3/8 at the string/
unification scale even with partial unification of 2 of the 3 gauge couplings of the SM
ii) there are light gauginos in the presence of gravity

iii) there are light Higgsinos

(you don't need N=1SUSY)

I.Antoniadis and S.Dimopoulos(2004)

Explicit string realizations > C.K(2004)

1^* Model	Particles	$(\mathbf{SU}(3) imes \mathbf{SU}(2))_{(\mathbf{Q_a},\mathbf{Q_b},\mathbf{Q_c})}$	$\mathbf{U}(1)^{\mathbf{Y}}$
7* MSSM	$\{Q_L\}$	$3(3,2)_{(1,-1,0)}$	1/6
	$\{u_L^c\}$	$\# = 3(3,1)_{(2,\ 0,\ 0)}$	-2/3
	$\{d_L^c\}$	$3(3,1)_{(-1,\ 0,\ -1)}$	1/3
	$\{L + H_d\}$	$6(1,2)_{(0,\ 1,\ -1)}$	-1/2
	$\{H_u\}$	$3(1,ar{2})_{(0,\ -1,\ -1)}$	1/2
	$\{e_L^+\}$	$\# = 3(1,1)_{(0,-2,0)}$	1
	$\{N_R\}$	$\# = 9(1,1)_{(0,\ 0,\ 2)}$	0
2*Extra Matter	$\{C_1\}$	$3(3, 1)_{(1, 0, -1)}$	1/3
	$\{C_2\}$	$3(\bar{3},1)_{(-1,\ 0,\ -1)}$	-1/3

3 - generation non-supersymmetric model with the fermion content of N=1 MSSM on top of the table + N_R 's + 3 pairs of H_u , H_d Higgsinos

> A four dimensional String model realization of Split supersymmetry : massless spectrum of IIA orientifolds with D6-branes intersecting at angles The extra matter $C_1 C_2$ become massive, leaving at low energies the rest of the spectrum: SM+ 3 pairs of Higgses + 3 pairs of Higgsinos-->partial unification as in table 1 at $M_{STRING} \sim 5.03 \times 10^{13} GeV$

	Matter	$(SU(3) \times SU(2))_{(Q_a,Q_b,Q_c)}$	$U(1)^Y$
$\{Q_L\}$		$3(3,2)_{(1,\ 1,\ 0)}$	1/6
$u_L^c\}$		$3(\bar{3},1)_{(2,\ 0,\ 0)}$	-2/3
$\{d^c_L\}$		$3(3,1)_{(-1,\ 0,\ 1)}$	1/3
$\{L\}$		$3(1,2)_{(0,-1,-1)}$	-1/2
$\{e_L^+\}$		$3(1,1)_{(0,-2,0)}$	1
$\{N_R\}$		$3(1,1)_{(0,\ 0,\ 2)}$	0

Table 1: A three generation chiral (open string) spectrum accommodating the split susy SM with no Higgsinos & $sin^2\theta = 3/8$. The value of $sin^2\theta$ comes from the "presence" of an SU(5)-like unification relation at the string scale that relates the gauge couplings of the SM gauge groups.

SM + 6 Higgses at low energy- *partially* unify as in table 1 at (gauginos receive loop corrections): $M_{STRING} = 5.03 \times 10^{13} GeV$ Because at the string scale C.K 2014

$$\frac{1}{a_Y} = \frac{2}{3}\frac{1}{a_s} + \frac{1}{a_w}$$
or

$$\frac{2}{3}\frac{1}{\alpha_s(M_Z)} + \frac{2sin^2\theta_w(M_Z) - 1}{\alpha_{em}(M_Z)} = \frac{B}{2\pi} \ln \frac{M_Z}{M_s} ,$$

$$B = -\frac{2}{3}b_3 + b_2 - b_Y$$

=>IF THE NUMBER OF HIGGSES IS 1, 3, 6 > <u>String Theory Standard</u> <u>Model couplings **partially unify** at</u>

$$M_S \sim 5.03 \ 10^{13} \ GeV$$

..Conclusions..

Split supersymmetry is a beautiful idea that originated in a gauge theory context and is accommodated naturally in the massless spectrum of a special class of nonsupersymmetric string theories

(based on four dimensional compactications of IIA string theories on the orientifolded torus $T^6/Z_3 \times Z_3$)