Hydrodynamical Simulations in f(R) gravity Galaxy Cluster Properties and the Lyman- α Forest

Christian Arnold, Ewald Puchwein, Volker Springel

Heidelberg University / HITS

Corfu TR33 meeting, 18.09.2015

Cosmological Simulations in f(R) gravity

Outline

- f(R) gravity
- The simulations: MG-GADGET
- Galaxy cluster scaling relations
- Galaxy cluster mass measures
- The Lyman- α forest in f(R) gravity

What drives the accelerated expansion of the universe?

Rys Taylor, Cardiff University

What drives the accelerated expansion of the universe?

- ACDM
- Quintessence
- k-essence
- Phantom

What drives the accelerated expansion of the universe?

f(R) gravity

Add another term to the action of GR:

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[rac{R+f(R)}{16\pi G} + \mathcal{L}_m
ight]$$

Obtain field equation by variation with respect to $g_{\mu\nu}$.

f(R) gravity

Add another term to the action of GR:

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[rac{R+f(R)}{16\pi G} + \mathcal{L}_m
ight]$$

Obtain field equation by variation with respect to $g_{\mu\nu}$.

Newtonian limit:

$$\nabla^2 \Phi = \frac{4}{3} \times 4\pi G \delta \rho - \frac{1}{6} \delta R \qquad \nabla^2 f_R = \frac{1}{3} \left(\delta R - 8\pi G \delta \rho \right)$$

f(R): the Hu & Sawicki model

Model should reproduce

- GR in high density regions,
- expansion history close to ACDM.

f(R): the Hu & Sawicki model

Model should reproduce

- GR in high density regions,
- expansion history close to ACDM.

Choice for f(R) (*Hu & Sawicki* 2007):

$$f(R) = -m^2 \frac{c_1 \left(\frac{R}{m^2}\right)^n}{c_2 \left(\frac{R}{m^2}\right)^n + 1} \qquad m^2 \equiv H_0^2 \Omega_m$$

f(R): the Hu & Sawicki model

Model should reproduce

- GR in high density regions,
- expansion history close to ACDM.

Choice for f(R) (Hu & Sawicki 2007):

$$f(R) = -m^2 \frac{c_1 \left(\frac{R}{m^2}\right)^n}{c_2 \left(\frac{R}{m^2}\right)^n + 1} \qquad m^2 \equiv H_0^2 \Omega_m$$

 \Rightarrow Chameleon screening:

Galaxy Clusters

The Lyman- α Fores

Conclusions

Chameleon Screening in f(R) gravity

- based on p-GADGET3 \Rightarrow allows hydrodynamical simulations in modified gravity

- based on p-GADGET3 \Rightarrow allows hydrodynamical simulations in modified gravity

$$abla^2 \Phi = 4\pi G (\delta
ho + \delta
ho_{ ext{eff}}) \qquad
abla^2 f_R = rac{1}{3} \left(\delta R - 8\pi G \delta
ho
ight)$$

- based on p-GADGET3 \Rightarrow allows hydrodynamical simulations in modified gravity

$$\nabla^2 \Phi = 4\pi G (\delta \rho + \delta \rho_{\rm eff})$$

- based on p-GADGET3 \Rightarrow allows hydrodynamical simulations in modified gravity

- based on p-GADGET3 \Rightarrow allows hydrodynamical simulations in modified gravity

Comparison to other f(R) codes

Velocity dispersion

Chameleon screening

Chameleon screening

Christian Arnold, Ewald Puchwein, Volker Springel

Hydrodynamical Simulations in f(R) gravity 10

Intracluster and intragroup temperatures

Hydrostatic masses

Sunyaev-Zeldovich signal

Sunyaev-Zeldovich signal

Sunyaev-Zeldovich signal

- create synthetic Lyman- α absorption spectra from hydrodynamical simulations

- create synthetic Lyman- α absorption spectra from hydrodynamical simulations

- create synthetic Lyman- α absorption spectra from hydrodynamical simulations

• create synthetic Lyman- α absorption spectra from hydrodynamical simulations

Lyman- α flux PDF

Lyman- α flux PDF

Lyman- α flux power-spectrum

Lyman- α flux power-spectrum

Lyman- α flux power-spectrum

Galaxy Clusters

Conclusions

Conclusions

• Higher gravitational force in low density regions influences galaxy cluster properties

- Higher gravitational force in low density regions influences galaxy cluster properties
- Threshold for screening in the simulations meets theoretical expectations

- Higher gravitational force in low density regions influences galaxy cluster properties
- Threshold for screening in the simulations meets theoretical expectations
- Statistical properties of the Lyman- α forest only weakly influenced

- Higher gravitational force in low density regions influences galaxy cluster properties
- Threshold for screening in the simulations meets theoretical expectations
- Statistical properties of the Lyman- α forest only weakly influenced
- f(R) gravity is still a valid theory to explain the accelerated expansion of the universe

f(R) gravity	The Simulations	Galaxy Clusters	The Lyman- α Forest	Conclusions

Expansion history of a f(R) universe

Current constraints on f_{R0}

Christian Arnold, Ewald Puchwein, Volker Springel

Subhalo abundance

X-ray luminosities

