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d-dimensional hydrogen atom with 1/r potential
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d-dim hydrogen atom with potential from Gauss' law

A more physically relevant potential is the solution of Maxwell's
equations for a point charge in the d-dimensional space:

Va(|x]) ~ x>, (d #2)

@ The corresponding Schrodinger equation reads

h? e2
——ANyg— —94 |y =E

where ey is the d-dimensional charge.




The model, questions raised, methods used

Underlying spaces

o extra dimensions of an infinite extent R? (especially d = 4)
@ compactified extra dimensions: R3 x M (M =T™, m=1)

Definition of operators

@ Schrodinger operator of the hydrogen atom on the
corresponding space (to be defined soon)
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Questions raised, (main) methods used

@ Stability/instability of the system, existence of bound states?
(Functional analysis: Hardy's inequality, KLMN theorem,
spectral theory)

@ Energy spectrum due to extra dimensions?
(Hamiltonian diagonalization)
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Hamiltonians defined as quadratic forms

Definition

Let h(-,-) be a mapping from Dom (h) x Dom (h) to C, with
Dom (h) C H such that

h(¢p,ap + bn) = ah(y,¢) + fh(w, n)
h(ay + bo,n) = 3ah(y,n) + bh(,n)

for all ¥, ¢,n € Dom (h) and all a,b € C. Then h is called the
sesquilinear form and Dom (h) the domain of h.

| A\

Definition

The mapping h[-] from H to C defined by h[i)] = h(1), 1) is called
the quadratic form associated with the sesquilinear form h.
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Symmetry and relative boundedness of forms

Definition

A sesquilinear form h is said to be symmetric if h(¢, ¢) = h(¢, 1)
for all ¢, ¢ € Dom (h).

A symmetric form h is said to be bounded from below if there
exists a real constant ¢ such that h[z)] > c||+||? for all

1 € Dom (h). If ¢ > 0, the symmetric form is said to be
non-negative.

Definition

| A

Let hg be symmetric and bounded from below in H. A symmetric
form v (which need not be bounded from below) is said to be
relatively bounded with respect to hg if

e Dom (v) D Dom (ho),

o Vi € Dom (ho), |v[¥]| < alho[4]] + bl¥],
where a, b are non-negative constants.
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Closedness of a sesquilinear form

Definition

Let h be a symmetric sesquilinear form bounded from below. It is
said to be closed if for any sequence {¢n}neny € Dom (h) with

Yn — ¢ € Dom (h) and h[¢pp, — m] — 0 as n,m — oo, we have
h[¢p — ] =0 as n — co. A symmetric sesquilinear form bounded
from below is said to be closable if it can be extended to a closed
form.




KLMN (Kato-Lions-Lax-Milgram-Nelson) theorem

Theorem (KLMN)

Let hg : Dom (hy) x Dom (hg) — C be a densely defined,
symmetric, non-negative and closed sesquilinear form in H. Let v
be a symmetric sesquilinear form satisfying

1. Dom (hg) C Dom(v),
2. Vi € Dom (ho), |V[¥]l < ahole)] + b9,

where a, b are non-negative and a < 1. Then there exists a unique
self-adjoint and bounded from below operator H, associated with
the closed symmetric sesquilinear form

h:=hg + v, Dom (h) := Dom (hp).




Kato-Rellich theorem

Theorem (Kato-Rellich theorem)

@ Let Hy be self-adjoint and suppose V is a symmetric operator
with Dom (V') D Dom (Hp) so that for some a < 1 and b,

Vol < allHosll + bl4l]

for all ¢ € Dom (Hp).

@ Then Hp + V defined on Dom (Hp) N Dom (V') = Dom (Hp)
is self-adjoint. If Hy is bounded below, so is H = Hy + V.

@ The Kato-Rellich theorem is not always applicable: it requires
the potential to belong to L% + L. This restricts the possible
potentials —|x|~“ to singularities of the order 0 < v < 3/2.

@ For stronger singularities, a < 2: KLMN theorem




Self-adjoint vs. symmetric operators

Definition

Let H be a densely defined operator on a Hilbert space. H is called
symmetric, or Hermitian, if and only if

(Hp,¢) = (¢, HY), V6,1 € Dom (H).

A symmetric operator H is called self-adjoint if and only if

Dom (H) = Dom (H").

References:
@ Schrodinger operators and their spectra, David Krej&i¥ik
@ Methods of Modern Mathematical Physics, Reed M., Simon B.

@ Hilbert Space Operators in Quantum Physics, Blank J., Exner P.,
Havlitek M.




Hardy's inequality

Lemma (The classical Hardy inequality (for d > 3))

(9=2F [ WeoF

voe WHRRY), [ [vutopax > g o




Extra dimension of an infinite extent




Definition of the system under consideration

@ Schrodinger's equation
h2
(—2mA4 + V4(X)> ’lﬁ(X) = E¢(X),
with Vy(x) = —e2/|x|?, x € R*

@ We can rewrite it by using a dimensionless parameter
Z :=2me2 /h?, where € is the four dimensional charge:

(—A4 - Xzz) $(x) = E"9 ()




Stability Z < 1: Application of Hardy's Inequality

o Free Hamiltonian Hp := —A, Dom (Hp) := W?2(R%),
is associated with the quadratic form

hol¢] := [IV4|?>,  Dom (ho) := WH?(R?).
o V(x) = |x|~2 with x € R* is associated with
v[v] = (9, V),  Dom(v):={ € L*(R*): [(, V)| < oo}
@ The classical Hardy inequality (for d > 3)

@=2F [ WP,

4 [x|?

voewi2@), [ [VuePx
Rd
@ In d = 4 we get using the notation for quadratic forms that

vy € Dom (ho),  |v[¢]| < hol¥]-




Stability Z < 1: Application of Hardy's Inequality

e Hardy inequality (for d = 4, notation for quadratic forms):
V¢ € Dom (ho), [v[]] < ho[¥].
@ By KLMN theorem, if Z < 1, the quadratic form
hly] := ho[$]—=2v[],  Dom (h) := Dom (ho) = WH*(R?),

is symmetric, closed, and bounded from below, thus
associated with a unique self-adjoint operator H that
represents our Hamiltonian.

— H is stable, with non-negative spectrum [0, c0)



Instability Z > 1: Application of Hardy's Inequality

@ Problem in the definition of our Hamiltonian:
— 00 number of s-a operators that act on functions from
CP(R*\ {0}) as H := —A — ZV/(x).

@ There exists an optimizing sequence of functions
{¢n} € WL2(R#*) for the Hardy inequality, for instance

Yn(x) 1= n~H2|x|(FIFL/msen(i=ix)

o We analyse inf(1, Hy) by inserting ¢p:

{©n, HS0n> _ ||VSOnH2 - <<Pn> V90n> - (Z - 1)<‘Pm V‘Pﬂ)
lonll? ll0nl|2

— —00,

where we used that ¢, optimize the Hardy inequality.
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Infinite extra dimension - Schrodinger's equation

In d dimensions, introducing the function u(p) := p{?=1/2R(p),
we obtain the operator

d2 (d—1)(d - 3) 1 2me3 1

@ For d = 4, the potential can be merged with the centrifugal
term arising from radial reduction of the central potential.

@ Because of the absence of a characteristic length, a procedure
leading to dimensionless quantities, which works in the
treatment of the radial equation for d # 4, cannot be used

herel!
p = a4y with o = me? /h?




Instability for Z > 1: a more explicit argument

e Performing the transformation R(p) = p~3/2R(p), we get the
radial operator acting in L2((0,c0), dp):

d2 2%

"o

fog = =L
rad dp2 p

where v =27 —3/4 — I(1 + 2).

"Boundary values for an eigenvalue problem with a singular

potential”
Allan M Krall, J. Differ. Equations (1982).

@ One of the results of is that spectrum of any H, contains
continuous branch [0, 4+00) and negative eigenvalues having
accumulation point at 0 and and —cc.



Infinite extra dimensions - summary

Infinite extra dimension (d = 4)!

e weak coupling (0 < Z < 1): spectrum of H is the same as
that of Hy, i.e. consisting of a branch of the continuous one,
without any negative eigenvalues — Hamiltonian is stable
without any bound states

@ strong coupling (Z > 1): spectrum extends to —oo
— unstable hydrogen atom
Infinite extra dimensions, d > 5
Hydrogen atom is unstable: formally derived in earlier works:?

!Martin Bure¥ and Petr Siegl. “Hydrogen atom in space with a
compactified extra dimension and potential defined by Gauss’' law”. In: Annals
of Physics 354 (Jan. 2015), pp. 316-327. arXiv: 1409.8530v1.

2| Gurevich and V Mostepanenko. “On the existence of atoms in
n-dimensional space”. In: Physics Letters A 35.3 (1971), pp. 201-202, A
Keith Andrew and James Supplee. “A hydrogenic atom in d-dimensions”. In: »\
American Journal of Physics 58 (1990), p. 1177.


http://arxiv.org/abs/1409.8530v1

Compactified extra dimension (R3 x S?!)

@ But, how about if one of the dimensions is compact?
circular compactification: we idetify points x4 — x4 + 27R

@ How does that change the story?



Compactified extra dimension - method of images

@ The basic idea - unroll the curled-up dimension to get an
infinite space that repeats itself with a period of 27 R

electron 4
e nuclens

o
@ 27R

compactified dimension w




Compactified extra dimension - method of images

To calculate the force between two particles, the method of images
makes it easier

image image electron image image
@ 2k ® 5k O R @ @
r

proton




Definition of the system under consideration

@ Main research goal: consequences of one additional
compactified dimension for the stability of the non-relativistic
hydrogen atom, defined through the potential

00 2
e
V(x) = — 4d
(x) ,,_z_:ooxlanxfer32+(X4—Cn)2
ez, sinhr/R

" 2Rrcoshr/R —cosxs/R’

2

where r? := x2 + x2 + x2, ¢, := 27Rn, e4q is the charge.




Behaviour of the potential

@ For r < R and x4 < R, the lowest-order term in the
expansion of the potential is (p? := r? + x2):

V(r,xa) = —e3q/(r* +53) = —€aq/p°.

— the behaviour of the potential around the origin is the
same as in the uncompactified case

@ On the other hand, if r > R, we get
V(r,xs) = —eaq/2rR = —e3,/r,

— the usual three-dimensional behaviour is restored

o relation between the 3-d and the 4-d charge:

€iq = 2Re3q




Stability Z < 1: Application of Hardy's Inequality

@ the Hardy inequality establishes the relative form-boundedness
of ZV/(x):
v[¥]| < alholy]] + bllv .
o KLMN theorem

For any potential with the singularity 1/|x|?,

1
[x[?

V(x) = + W(x), with W e L®(R3xS8h),

the stability result remains the same as in R*,
i.e. the critical value Z = 1.



Critical Compactification Radius

o from the relation between charges e, = 2Re3, we have:

B 2me?, - 4Rme3, 4R

Z:
h2 h2 ag

@ we infer the existence of a critical compactifion radius R:

Roi=Zc—=—=—-+~132x1
©CTCY T T ame, 32> 107" m
@ the atom is stable for R < R. and not stable if R > R,

@ current experimental bounds on the size of extra dimensions:3

R™1>1.3TeV at 95% C.L. R~ 107¥m

3E.g. Datta A., Patra A. and Raychaudhuri S.: Higgs Boson Decay
Constraints on a Model with a Universal Extra Dimension, 2013,
arXiv:1311.0926




Summary of results for R® x S! (compactified case)
Compatifiaction radius R < ag/4

@ System is stable!

@ Essential spectrum remains [0, co)

@ As a consequence of compactification, infinite number of
negative energy eigenstates appear

@ Bound states extend at least to the ground state of the
hydrogen atom

Compatifiaction radius R > ag/4

System is not stable (spectrum (—o0, 00))

Martin Bure$ and Petr Siegl. “Hydrogen atom in space with a
compactified extra dimension and potential defined by Gauss' law”.
In: Annals of Physics 354 (Jan. 2015), pp. 316-327. arXiv:
1409.8530v1



http://arxiv.org/abs/1409.8530v1

Energy shifts due to a compactified extra dimension

We know that:*
@ size of extra compactified dimension has to be smaller than
R = 30/4
@ ground state energy for R = 0 equals the 3-dim hydrogen
atom energy (no perturbation due to extra dimension)
e for R = ap/4 the atom is unstable, so the energy should
diverge (E — —o0)
Question: how does the spectrum change?

@ Method used: Hamiltonian diagonalization®

*Martin Bure¥ and Petr Siegl. “Hydrogen atom in space with a
compactified extra dimension and potential defined by Gauss’ law”. In: Annals
of Physics 354 (Jan. 2015), pp. 316-327. arXiv: 1409.8530v1.

®Martin Bure¥. “Energy spectrum of the hydrogen atom in a space with one 1"
compactified extra dimension, R® x S'". In: (2015). arXiv: 1505.08100 M
[quant-ph].



http://arxiv.org/abs/1409.8530v1
http://arxiv.org/abs/1505.08100
http://arxiv.org/abs/1505.08100

Energy shifts due to a compactified extra dimension

Basis constructed from the hydrogen atom eigenstates

eiq@

\/27r’

leNyme{-I,.... I}, ne{l+1,14+2,...}, g €Z.

(X[nlmq) = Rn(r)Yim(Q2)

Matrix elements of the Hamiltonian:
2

o 1 q
U /
(n"I"'m’q [H|nlmq) = 616,/ {6"",5qq/ (_,Tz + ﬁ) - (1 - 5qq’) M, (Ll —q \/R)} )

where

min(n—1—1,n" ——1)

g/ 4 \"*2 [(n—1—=1)(n" —1—1) (2] +1)! n4 1

M”v"’?’(g’”)zi(iJ D + 1)) 2112 2 ( /-1 k)
nn (n+ D" +1)! o pr n—1—1-—

( n +1 ><k+2/+1><2>k< 2 )k( 2)'1*/*14( 2 )n —I=1—k

X — — 1- — 1—- — ,

n—1—1—k k no n’o no n'o

with o(|g — ¢'|/R) = 1/n+1/n" + |g — d'|/R.




Energy shifts due to a compactified extra dimension

Basis constructed from exponential functions

iqf
(Rlig) = 202%e™" =, ie{1,2,...,1}, e {-Q,...Q}
e

27

Matrix elements of the Hamiltonian:

2 eF1e 3
Uip|H]iq) = l“”"‘” <‘“"“f * Z») " (w +fji|7_)p|/m2]

where
i > 704-04-1'1 2ﬂ-170 2C¥,‘O&j ’
(pliq) = Haman)¥? /0 arrretorsonr L /0 eila—p) _ (av,-+a,- 5o

are the overlap integrals.
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Energy shifts due to a compactified extra dimension

0.0 05 1.0 15 2.0 25 3.0
R

0.0 0.5 1.0 15 20 25 3.0
R

(a) Ground state energy (b) Ground state energy
dependence on basis size dependence on basis size
(hydrogen atom basis, N =7, (exponential basis, N =7,
Q=1,...,50) Q=1,...,50)

Figure : Energy eigenvalues (in units €?/2a) as a function of the
compactification radius R (in units of the Bohr radius a). Hydrogen atom
basis (left-hand side), exponential basis (right-hand side). The
computational step in R was adjusted according to the second derivative
of the curves between AR = 0.005 and AR = 0.03.




Lifting of degeneracy

Figure : The lifting of degeneracy of energy levels (hydrogen atom basis,
N=7 Q=30): n=1{2,3}: I =0 (solid line) / =1 (dashed line),

m = 0. The almost vertical curve represents the first Kaluza-Klein state
n=1gq9=1.




(a) Hydrogen atom basis (N = 10, Q = 30)

R=0.1 R=0.2 ) ) R=0.3

(b) Exponential basis (N =10, Q = 30)
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The Friedrichs extension

If we are given a symmetric and bounded from below operator H,
then the sesquilinear form, defined as

h(¢,v) = (¢, Hy)  for all ¢,¢ € Dom (h),

with Dom (h) := Dom (H), is also symmetric and bounded from
below. Such form is closable and by the first representation
theorem, the operator associated with its closure is self-adjoint and
bounded from below, with the same lower bound of the spectrum
as the original symmetric operator H.




The first representation theorem

Theorem (The first representation theorem)

Let h: Dom (h) x Dom (h) — C be a densely defined, symmetric,
bounded from below and closed sesquilinear form in H. Then there
exists a self-adjoint operator H such that

i) Dom (H) € Dom (h) and h(¢,v) = (¢, Hy) for every
¢ € Dom (h) and ¢ € Dom (H);

i) Dom (H) is a core of h;

i) ifvy € Dom (h), n € H, and h(p, ) = (¢p,n) holds for every ¢
belonging to a core of h, then v € Dom (H) and Hy = n.
The self-adjoint operator H is uniquely determined by the
condition ).




Weyl's criterion

Theorem

Let H be a self-adjoint operator on H. A point \ belongs to o(H)
if, and only if, there exists a sequence {{n}neny C Dom (H) such
that ||¢n|| = 1 for all n € N and lim,_,o ||(H — A)¢n|| — 0.
Moreover, \ belongs to oess(H) if, and only if, in addition to the
above properties the {1} converges weakly to zero in H.




