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d-dim hydrogen atom with potential from Gauss’ law

A more physically relevant potential is the solution of Maxwell’s
equations for a point charge in the d-dimensional space:

Vd(|x |) ∼ |x |2−d , (d 6= 2)

The corresponding Schrödinger equation reads(
− ~2

2m
∆d −

e2d
|x |d−2

)
ψ = Eψ,

where ed is the d-dimensional charge.



The model, questions raised, methods used

Underlying spaces

extra dimensions of an infinite extent Rd (especially d = 4)

compactified extra dimensions: R3 ×M (M = Tm, m = 1)

Definition of operators

Schrödinger operator of the hydrogen atom on the
corresponding space (to be defined soon)

Questions raised, (main) methods used

Stability/instability of the system, existence of bound states?
(Functional analysis: Hardy’s inequality, KLMN theorem,
spectral theory)

Energy spectrum due to extra dimensions?
(Hamiltonian diagonalization)



Hamiltonians defined as quadratic forms

Definition

Let h(·, ·) be a mapping from Dom (h)×Dom (h) to C, with
Dom (h) ⊂ H such that

h(ψ, aφ+ bη) = ah(ψ, φ) + bh(ψ, η)

h(aψ + bφ, η) = āh(ψ, η) + b̄h(φ, η)

for all ψ, φ, η ∈ Dom (h) and all a, b ∈ C. Then h is called the
sesquilinear form and Dom (h) the domain of h.

Definition

The mapping h[·] from H to C defined by h[ψ] = h(ψ,ψ) is called
the quadratic form associated with the sesquilinear form h.



Symmetry and relative boundedness of forms

Definition

A sesquilinear form h is said to be symmetric if h(ψ, φ) = h(φ, ψ)
for all ψ, φ ∈ Dom (h).
A symmetric form h is said to be bounded from below if there
exists a real constant c such that h[ψ] ≥ c‖ψ‖2 for all
ψ ∈ Dom (h). If c ≥ 0, the symmetric form is said to be
non-negative.

Definition

Let h0 be symmetric and bounded from below in H. A symmetric
form v (which need not be bounded from below) is said to be
relatively bounded with respect to h0 if

Dom (v) ⊃ Dom (h0),

∀ψ ∈ Dom (h0), |v [ψ]| ≤ a|h0[ψ]|+ b‖ψ‖2,
where a, b are non-negative constants.



Closedness of a sesquilinear form

Definition

Let h be a symmetric sesquilinear form bounded from below. It is
said to be closed if for any sequence {ψn}n∈N ⊆ Dom (h) with
ψn → ψ ∈ Dom (h) and h[ψn − ψm]→ 0 as n,m→∞, we have
h[ψn − ψ] = 0 as n→∞. A symmetric sesquilinear form bounded
from below is said to be closable if it can be extended to a closed
form.



KLMN (Kato-Lions-Lax-Milgram-Nelson) theorem

Theorem (KLMN)

Let h0 : Dom (h0)×Dom (h0)→ C be a densely defined,
symmetric, non-negative and closed sesquilinear form in H. Let v
be a symmetric sesquilinear form satisfying

1. Dom (h0) ⊂ Dom (v),

2. ∀ψ ∈ Dom (h0), |v [ψ]| ≤ a h0[ψ] + b ‖ψ‖2,

where a, b are non-negative and a < 1. Then there exists a unique
self-adjoint and bounded from below operator H, associated with
the closed symmetric sesquilinear form

h := h0 + v , Dom (h) := Dom (h0).



Kato-Rellich theorem

Theorem (Kato-Rellich theorem)

Let H0 be self-adjoint and suppose V is a symmetric operator
with Dom (V ) ⊃ Dom (H0) so that for some a < 1 and b,

‖Vφ‖ ≤ a‖H0φ‖+ b‖φ‖

for all φ ∈ Dom (H0).

Then H0 + V defined on Dom (H0) ∩Dom (V ) ≡ Dom (H0)
is self-adjoint. If H0 is bounded below, so is H = H0 + V .

The Kato-Rellich theorem is not always applicable: it requires
the potential to belong to L2 + L∞. This restricts the possible
potentials −|x |−α to singularities of the order 0 < α < 3/2.

For stronger singularities, α < 2: KLMN theorem



Self-adjoint vs. symmetric operators

Definition

Let H be a densely defined operator on a Hilbert space. H is called
symmetric, or Hermitian, if and only if

〈Hφ, ψ〉 = 〈φ,Hψ〉 , ∀φ, ψ ∈ Dom (H).

A symmetric operator H is called self-adjoint if and only if

Dom (H) = Dom (H∗).

References:

1 Schrödinger operators and their spectra, David Krejčǐŕık

2 Methods of Modern Mathematical Physics, Reed M., Simon B.

3 Hilbert Space Operators in Quantum Physics, Blank J., Exner P.,
Havĺıček M.



Hardy’s inequality

Lemma (The classical Hardy inequality (for d ≥ 3))

∀ψ ∈W 1,2(Rd),

∫
Rd

|∇ψ(x)|2dx ≥ (d − 2)2

4

∫
Rd

|ψ(x)|2

|x |2
dx .



Extra dimension of an infinite extent



Definition of the system under consideration

Schrödinger’s equation(
− ~2

2m
∆4 + V4(x)

)
ψ(x) = Eψ(x),

with V4(x) = −e24/|x |2, x ∈ R4

We can rewrite it by using a dimensionless parameter
Z := 2me24/~2, where e24 is the four dimensional charge:(

−∆4 −
Z

x2

)
ψ(x) = E ′ψ(x).



Stability Z < 1: Application of Hardy’s Inequality

Free Hamiltonian H0 := −∆, Dom (H0) := W 2,2(R4),
is associated with the quadratic form

h0[ψ] := ‖∇ψ‖2, Dom (h0) := W 1,2(R4).

V (x) = |x |−2 with x ∈ R4 is associated with

v [ψ] := 〈ψ,Vψ〉, Dom (v) := {ψ ∈ L2(R4) : |〈ψ,Vψ〉| <∞}.

The classical Hardy inequality (for d ≥ 3)

∀ψ ∈W 1,2(Rd),

∫
Rd

|∇ψ(x)|2dx ≥ (d − 2)2

4

∫
Rd

|ψ(x)|2

|x |2
dx .

In d = 4 we get using the notation for quadratic forms that

∀ψ ∈ Dom (h0), |v [ψ]| ≤ h0[ψ].



Stability Z < 1: Application of Hardy’s Inequality

Hardy inequality (for d = 4, notation for quadratic forms):

∀ψ ∈ Dom (h0), |v [ψ]| ≤ h0[ψ].

By KLMN theorem, if Z < 1, the quadratic form

h[ψ] := h0[ψ]−Zv [ψ], Dom (h) := Dom (h0) = W 1,2(R4),

is symmetric, closed, and bounded from below, thus
associated with a unique self-adjoint operator H that
represents our Hamiltonian.
→ H is stable, with non-negative spectrum [0,∞)



Instability Z > 1: Application of Hardy’s Inequality

Problem in the definition of our Hamiltonian:
→ ∞ number of s-a operators that act on functions from
C∞0 (R4 \ {0}) as Ḣ := −∆− ZV (x).

There exists an optimizing sequence of functions
{ψn} ⊂W 1,2(R4) for the Hardy inequality, for instance

ψn(x) := n−1/2|x |(−1+1/n)sgn(1−|x |).

We analyse inf〈ψ,Hψ〉 by inserting ϕn:

〈ϕn,Hϕn〉
‖ϕn‖2

=
‖∇ϕn‖2 − 〈ϕn,Vϕn〉 − (Z − 1)〈ϕn,Vϕn〉

‖ϕn‖2
→ −∞,

where we used that ϕn optimize the Hardy inequality.



Infinite extra dimension - Schrödinger’s equation

In d dimensions, introducing the function u(ρ) := ρ(d−1)/2R(ρ),
we obtain the operator

− d2

dρ2
+

[(
(d − 1)(d − 3)

4
+ l(l + d − 2)

)
1

ρ2
−

2me2d
~2

1

ρd−2

]
.

For d = 4, the potential can be merged with the centrifugal
term arising from radial reduction of the central potential.

Because of the absence of a characteristic length, a procedure
leading to dimensionless quantities, which works in the
treatment of the radial equation for d 6= 4, cannot be used
here!
ρ′ = α1/(4−d)ρ, with α = me2d/~2



Instability for Z > 1: a more explicit argument

Performing the transformation R(ρ) = ρ−3/2R̃(ρ), we get the
radial operator acting in L2((0,∞),dρ):

Ḣrad := − d2

dρ2
− γ

ρ2
,

where γ = Z − 3/4− l(l + 2).

”Boundary values for an eigenvalue problem with a singular
potential”

Allan M Krall, J. Differ. Equations (1982).

One of the results of is that spectrum of any Hα contains
continuous branch [0,+∞) and negative eigenvalues having
accumulation point at 0 and and −∞.



Infinite extra dimensions - summary

Infinite extra dimension (d = 4)1

weak coupling (0 ≤ Z ≤ 1): spectrum of H is the same as
that of H0, i.e. consisting of a branch of the continuous one,
without any negative eigenvalues → Hamiltonian is stable
without any bound states

strong coupling (Z > 1): spectrum extends to −∞
→ unstable hydrogen atom

Infinite extra dimensions, d ≥ 5
Hydrogen atom is unstable: formally derived in earlier works:2

1Martin Bureš and Petr Siegl. “Hydrogen atom in space with a
compactified extra dimension and potential defined by Gauss’ law”. In: Annals
of Physics 354 (Jan. 2015), pp. 316–327. arXiv: 1409.8530v1.

2L Gurevich and V Mostepanenko. “On the existence of atoms in
n-dimensional space”. In: Physics Letters A 35.3 (1971), pp. 201–202,
Keith Andrew and James Supplee. “A hydrogenic atom in d-dimensions”. In:
American Journal of Physics 58 (1990), p. 1177.

http://arxiv.org/abs/1409.8530v1


Compactified extra dimension (R3 × S1)

But, how about if one of the dimensions is compact?
circular compactification: we idetify points x4 → x4 + 2πR

How does that change the story?



Compactified extra dimension - method of images

The basic idea - unroll the curled-up dimension to get an
infinite space that repeats itself with a period of 2πR



Compactified extra dimension - method of images

To calculate the force between two particles, the method of images
makes it easier

electron

proton

2πR 2πR

image image

2πR 2πR

r

image image



Definition of the system under consideration

Main research goal: consequences of one additional
compactified dimension for the stability of the non-relativistic
hydrogen atom, defined through the potential

V (x) := −
∞∑

n=−∞

e24d
x2
1 + x2

2 + x2
3 + (x4 − cn)2

= −
e24d
2Rr

sinh r/R

cosh r/R − cos x4/R
,

where r2 := x2
1 + x2

2 + x2
3 , cn := 2πRn, e4d is the charge.



Behaviour of the potential

For r � R and x4 � R, the lowest-order term in the
expansion of the potential is (ρ2 := r2 + x2

4 ):

V (r , x4) = −e24d/(r2 + x2
4 ) = −e24d/ρ

2.

→ the behaviour of the potential around the origin is the
same as in the uncompactified case

On the other hand, if r � R, we get

V (r , x4) = −e24d/2rR = −e23d/r ,

→ the usual three-dimensional behaviour is restored

relation between the 3-d and the 4-d charge:

e24d = 2Re23d



Stability Z < 1: Application of Hardy’s Inequality

the Hardy inequality establishes the relative form-boundedness
of ZV (x):

|v [ψ]| ≤ a|h0[ψ]|+ b‖ψ‖2.

KLMN theorem

For any potential with the singularity 1/|x |2,

V (x) = − 1

|x |2
+ W (x), with W ∈ L∞(R3 × S1),

the stability result remains the same as in R4,
i.e. the critical value Z = 1.



Critical Compactification Radius

from the relation between charges e24d = 2Re23d we have:

Z :=
2me24d
~2

=
4Rme23d

~2
=

4R

a0

we infer the existence of a critical compactifion radius Rc:

Rc := ZC
a0
4

=
a0
4

=
~2

4me23d
≈ 1.32× 10−11m

the atom is stable for R < Rc and not stable if R > Rc

current experimental bounds on the size of extra dimensions:3

R−1 > 1.3TeV at 95% C.L. R ∼ 10−18m

3E.g. Datta A., Patra A. and Raychaudhuri S.: Higgs Boson Decay
Constraints on a Model with a Universal Extra Dimension, 2013,
arXiv:1311.0926



Summary of results for R3 × S1 (compactified case)

Compatifiaction radius R < a0/4

System is stable!

Essential spectrum remains [0,∞)

As a consequence of compactification, infinite number of
negative energy eigenstates appear

Bound states extend at least to the ground state of the
hydrogen atom

Compatifiaction radius R > a0/4

System is not stable (spectrum (−∞,∞))

Martin Bureš and Petr Siegl. “Hydrogen atom in space with a
compactified extra dimension and potential defined by Gauss’ law”.

In: Annals of Physics 354 (Jan. 2015), pp. 316–327. arXiv:
1409.8530v1

http://arxiv.org/abs/1409.8530v1


Energy shifts due to a compactified extra dimension

We know that:4

size of extra compactified dimension has to be smaller than
R = a0/4

ground state energy for R = 0 equals the 3-dim hydrogen
atom energy (no perturbation due to extra dimension)

for R = a0/4 the atom is unstable, so the energy should
diverge (E → −∞)

Question: how does the spectrum change?

Method used: Hamiltonian diagonalization5

4Martin Bureš and Petr Siegl. “Hydrogen atom in space with a
compactified extra dimension and potential defined by Gauss’ law”. In: Annals
of Physics 354 (Jan. 2015), pp. 316–327. arXiv: 1409.8530v1.

5Martin Bureš. “Energy spectrum of the hydrogen atom in a space with one
compactified extra dimension, R3 × S1”. In: (2015). arXiv: 1505.08100

[quant-ph].

http://arxiv.org/abs/1409.8530v1
http://arxiv.org/abs/1505.08100
http://arxiv.org/abs/1505.08100


Energy shifts due to a compactified extra dimension

Basis constructed from the hydrogen atom eigenstates

〈~x |nlmq〉 = Rnl(r)Ylm(Ω)
e iqθ√

2π
,

l ∈ N, m ∈ {−l , . . . , l}, n ∈ {l + 1, l + 2, . . . }, q ∈ Z.

Matrix elements of the Hamiltonian:

〈n′ l′m′q′|Ĥ|nlmq〉 = δll′δmm′

{
δnn′δqq′

(
−

1

n2
+

q2

R2

)
−
(
1− δqq′

)
Mn,n′ ;l (1, |q − q′|/R)

}
,

where

Mn,n′ ;l (g, µ) =
g

2

(
4

nn′

)l+2
√

(n − l − 1)!(n′ − l − 1)!

(n + l)!(n′ + l)!

(2l + 1)!

σ2l+2

min(n−l−1,n′−l−1)∑
k=0

(
n + l

n − l − 1− k

)

×
(

n′ + l

n′ − l − 1− k

)(
k + 2l + 1

k

)(
2

nσ

)k ( 2

n′σ

)k (
1−

2

nσ

)n−l−1−k (
1−

2

n′σ

)n′−l−1−k

,

with σ(|q − q′|/R) = 1/n + 1/n′ + |q − q′|/R.



Energy shifts due to a compactified extra dimension

Basis constructed from exponential functions

〈~x |iq〉 = 2α
3/2
i e−αi r

e iqθ√
2π
, i ∈ {1, 2, . . . , I}, q ∈ {−Q, . . .Q}

Matrix elements of the Hamiltonian:

〈jp|Ĥ|iq〉 =

[
〈jp|iq〉

(
αiαj +

q2

R2

)
−

(2
√
αiαj)

3

(αi + αj + |q − p|/R)2

]
,

where

〈jp|iq〉 = 4(αmαn)3/2
∫ ∞
0

drr2e−(αi+αj )r
1

2π

∫ 2π

0

ei(q−p)θ =

(
2
√
αiαj

αi + αj

)3

δp,q

are the overlap integrals.



Energy shifts due to a compactified extra dimension
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(a) Energy levels: hydrogen basis
(l = m = 0, size N = 10, Q = 30)
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(b) Energy levels: exponential basis
(l = m = 0, size N = 10, Q = 30)
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Energy shifts due to a compactified extra dimension
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(a) Ground state energy
dependence on basis size
(hydrogen atom basis, N = 7,
Q = 1, . . . , 50)
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(b) Ground state energy
dependence on basis size
(exponential basis, N = 7,
Q = 1, . . . , 50)

Figure : Energy eigenvalues (in units e2/2a) as a function of the
compactification radius R (in units of the Bohr radius a). Hydrogen atom
basis (left-hand side), exponential basis (right-hand side). The
computational step in R was adjusted according to the second derivative
of the curves between ∆R = 0.005 and ∆R = 0.03.



Lifting of degeneracy
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Figure : The lifting of degeneracy of energy levels (hydrogen atom basis,
N = 7, Q = 30): n = {2, 3}: l = 0 (solid line) l = 1 (dashed line),
m = 0. The almost vertical curve represents the first Kaluza-Klein state
n = 1, q = 1.



Electron probability density in the (r , θ) plane

(a) Hydrogen atom basis (N = 10, Q = 30)

(b) Exponential basis (N = 10, Q = 30)



Σας ευχαριστώ πολύ για την

προσοχή σας!



The Friedrichs extension

If we are given a symmetric and bounded from below operator H,
then the sesquilinear form, defined as

h(φ, ψ) := 〈φ,Hψ〉 for all φ, ψ ∈ Dom (h),

with Dom (h) := Dom (H), is also symmetric and bounded from
below. Such form is closable and by the first representation
theorem, the operator associated with its closure is self-adjoint and
bounded from below, with the same lower bound of the spectrum
as the original symmetric operator H.



The first representation theorem

Theorem (The first representation theorem)

Let h : Dom (h)×Dom (h)→ C be a densely defined, symmetric,
bounded from below and closed sesquilinear form in H. Then there
exists a self-adjoint operator H such that

i) Dom (H) ⊂ Dom (h) and h(φ, ψ) = 〈φ,Hψ〉 for every
φ ∈ Dom (h) and ψ ∈ Dom (H);

ii) Dom (H) is a core of h;
iii) if ψ ∈ Dom (h), η ∈ H, and h(φ, ψ) = 〈φ, η〉 holds for every φ

belonging to a core of h, then ψ ∈ Dom (H) and Hψ = η.
The self-adjoint operator H is uniquely determined by the
condition i).



Weyl’s criterion

Theorem

Let H be a self-adjoint operator on H. A point λ belongs to σ(H)
if, and only if, there exists a sequence {ψn}n∈N ⊂ Dom (H) such
that ‖ψn‖ = 1 for all n ∈ N and limn→∞ ‖(H − λ)ψn‖ → 0.
Moreover, λ belongs to σess(H) if, and only if, in addition to the
above properties the {ψn} converges weakly to zero in H.


