Higgs bosons: discovered and hidden, in extended supersymmetric standard models at the LHC

Priyotosh Bandyopadhyay

INFN Lecce & University of Salento, Lecce

arXiv:1506.03634 [hep-ph], work in progress

PB, Claudio Coriano, Antonio Costantini

Corfu2015

September 5, 2015

Outline

Plan

2 MSSM

3 TNSSM

Plan

- Observed Higgs boson
- MSSM and its status
- Triplet and singlet extended Supersymmetric scenarios
- Possibility of Hidden scalar
- Conclusion

Experimental constraints: LHC on 4th July, 2012

- Finally, on 4th of July 2012, we get evidence of a even-integer-spin particle similar to Higgs boson at the LHC.
- So far we have discovered Higgs boson around \sim 125 GeV in $WW^*, ZZ^*, \gamma\gamma$ modes.

Status of Higgs at the LHC

- CMS: $H \to ZZ \Rightarrow m_H = 125.5 \pm 0.2 (\mathrm{stat})^{+0.5}_{-0.4} (\mathrm{sys})$
- ATLAS: $H \rightarrow ZZ \Rightarrow m_H = 125.7 \pm 0.3 (\mathrm{stat}) \pm 0.3 (\mathrm{sys})$

Hierarchy problem and supersymmetry

- Higgs mass is not protected by any symmetry ⇒ Hierarchy problem.
- Supersymmetry protects the Higgs mass by giving possible cancellation.

• For each particle there is a super partner differing by spin 1/2.

Outline

Plan

2 MSSM

3 TNSSM

Higgs sector in MSSM

- Unlike Standard Model, MSSM has five Higgs bosons, h, H the CP-even neutral Higgs bosons A the CP-odd neutral Higgs bosons H[±] charged Higgs bosons
- Including R-parity, $P_R = (-1)^{3(B-L)+2s}$ conservation leads to the lightest supersymmetric particle as Dark matter candidate.

Lightest Higgs in MSSM

- While in the SM the Higgs mass is essentially a free parameter the lightest CP-even Higgs particle in the MSSM is bounded from above.
- At tree level the lightest CP-even Higgs (h) mass, $m_h \leq M_Z$
- For desired Higgs mass around 125 GeV, one has to look for quantum correction.

Higgs sector in MSSM

Lightest Higgs in MSSM

 Depending on the SUSY parameters that enter the radiative corrections, it is restricted to values

$$\begin{array}{ll} M_h^{\rm max} & \approx & M_Z |\cos 2\beta| + {\rm radiative~corrections} \\ & < & 110 - 135~{\rm GeV} \\ & \sim & \end{array}$$

- SUSY particles mass and other parameters enter in the radiative correction to the Higgs sector.
- \Rightarrow "Observed $M_h \approx 125$ GeV" at the LHC, would place very strong constraints on the MSSM parameters through their contributions to the radiative corrections to the Higgs sector.
- With the radiative correction at one-loop the lightest Higgs mass becomes,

$$\begin{array}{l} \mathit{m}_{h}^{2} < \mathit{m}_{Z}^{2} \cos^{2} 2\beta + \frac{3}{4\pi^{2}} \frac{\mathit{m}_{t}^{4}}{\mathit{v}^{2}} \Big[\mathit{ln} \frac{\mathit{M}_{S}^{2}}{\mathit{m}_{t}^{2}} + \frac{\mathit{X}_{t}^{2}}{\mathit{M}_{S}^{2}} (1 - \frac{\mathit{X}_{t}^{2}}{12\mathit{M}_{S}^{2}}) \Big] \end{array}$$

where
$$M_S = \sqrt{m_{\tilde{t_1}} m_{\tilde{t_2}}}$$
, the stop mixing parameter is $X_t = A_t - \mu \cot \beta$ and for maximal mixing scenario: $X_t^{max} = \sqrt{6} M_S$.

$$\mathbf{M_{\tilde{t}}^2} = \begin{pmatrix} M_L^2 & m_t X_t \\ m_t X_t & M_R^2 \end{pmatrix}.$$

Higgs sector in MSSM

Lightest Higgs in MSSM

- ullet Lightest CP-even Higgs boson is the candidate ~ 125 GeV Higgs boson.
- In MSSM, the main loop contributions come from the third generation strong sectors,
- lacktriangle push the mass scale $\gtrsim 1$ TeV to up to 10 TeV depending on the models.
- \bullet In most constrained SUSY scenarios viz mSUGRA , the required SUSY mass scale is $\,>10$ TeV.
- In pMSSM, TeV SUSY scale still a possibility but with large mixing in the stop mass matrix.
- ullet Fine tuning is necessary for MSSM to have lightest Higgs boson mass around ~ 125 GeV.

→ more

Heavy Higgs bosons

- The other CP-even and CP-odd Higgs search is still on.
- So far both CMS and ATLAS have not found any evidence of heavier Higgs bosons.

Charged Higgs bosons

- MSSM has one charged Higgs boson.
- The charged Higgs dominantly decays to au
 u
- So far no evidence has been found.

 \sim 125 GeV Higgs \Rightarrow very large SUSY mass scale or/and large mixings \Rightarrow fine tuning.

Solution!

Extended Higgs sector!

- New scalars give additional contributions to the lightest Higgs mass
- so no large mixing and/or heavy sfermions needed
- ullet Extended theory may solve the μ problem
- Possibility of spontaneous CP-violation.

Options ?
Triplet and/or singlet extensions.

Outline

Plan

MSSM

3 TNSSM

Triplet-Singlet extended Supersymmetric scenarios

- The μ_D term in the superpotenial can be generated spontaneously by the introduction of a gauge singlet superfield S.
- The scale invariant superpotential with the Y = 0 triplet T and singlet S is given by,

$$W_{S} = \lambda_{T} H_{d}.TH_{u} + \lambda_{S} SH_{d} \cdot H_{u} + \lambda_{TS} STr[T^{2}] + \frac{\kappa}{3} S^{3}.$$

- The complete Lagrangian with the soft SUSY breaking terms has an accidental Z_3 symmetry; $\phi_i \rightarrow e^{2\pi i/3}\phi_i$ representations.
- When the neutral parts get vev,

$$< H_{u,d}^0 > = \frac{v_{u,d}}{\sqrt{2}}, \quad < S > = \frac{v_S}{\sqrt{2}} \quad < T^0 > = \frac{v_T}{\sqrt{2}}$$

generate the the doublet mixing term $\mu_D = \frac{\lambda_S}{\sqrt{2}} v_S + \frac{\lambda_T}{2} v_T$

- Singlet does not couple to fermions and gauge bosons, whereas Y=0 triplet only couples to W^\pm
- Experimental ρ parameter gives strong bounds, $v_T \leq 5$ GeV.

TNSSM: Higgs bosons and mass spectrum at tree-level

Enhanced Higgs particle spectrum

CP - even CP - odd charged
$$h_1, h_2, h_3, h_4$$
 a_1, a_2, a_3 $h_1^{\pm}, h_2^{\pm}, h_3^{\pm}$.

 The extra interaction terms also enhances the Higgs mass contribution at the tree-level thus reduces required SUSY the fine-tuning further.

$$m_{h_1}^2 \le m_Z^2 (\cos^2 2\beta + \frac{\lambda_T^2}{g_L^2 + g_Y^2} \sin^2 2\beta + \frac{2\lambda_S^2}{g_L^2 + g_Y^2} \sin^2 2\beta),$$
 $\tan \beta = \frac{v_u}{v_d}$

TNSSM: Higgs mass spectrum at one-loop

Effective potential at one loop

- For one-loop neutral Higgs mass spectrum we follow the effective-potential approach by Coleman-Weinberg
- The one-loop radiative corrections to the Higgs potential can be calculated using the effective potential approach

$$\Delta V = rac{1}{64\pi^2} Str \left[\mathcal{M}^4 \left(ln rac{\mathcal{M}^2}{\Lambda^2} - rac{3}{2}
ight)
ight].$$

where $\mathcal M$ represents the field dependent mass matrices of the particles and Λ is the renormalization scale.

 The required stop mass is much lower and one should look for directed SUSY searches.

TNMSSM: Light pseduo-scalar

In the limit of a continuous symmetry

 In the limit when the A_i parameters go to zero, the discrete Z₃ symmetry of the Lagrangian is promoted to a continuos U(1) symmetry

$$(\hat{H}_u,\hat{H}_d,\,\hat{T},\hat{S})\rightarrow e^{i\phi}(\hat{H}_u,\hat{H}_d,\,\hat{T},\hat{S})$$

• If this symmetry is softly broken by very small parameters A_i of $\mathcal{O}(1)$ GeV, we get a very light pseudoscalar as pseudo-Nambu-Goldstone boson of the symmetry.

PB, Claudio Coriano, Antonio Costantini arXiv:1506.03634 [hep-ph] (accpeted in JHEP)

TNSSM Phenomenology and studies going on

Hidden Higgs phenomeology

- The possibility of very light hidden Higgs(es) is still viable in this scenario.
- Specially $h^{\pm} \to h_1 W^{\pm}$, $h_i \to a_j a_k$, $h_i \to Z a_j$ are very crucial in determining the Higgs sector.
- We are investigating $2b+2\tau$, $2\tau+2\mu$ and $2b+2\mu$ final states to probe the hidden Higgs scenario taking care of the possible backgrounds.

Charged Higgs phenomeology

- Triplet type charged Higgs does not couple to fermions.
- Tree-level $h_i^{\pm} W^{\mp} Z$ introduces new decay channel and production channels.

Conclusions

- ullet So far we have observed a CP-even Higgs boson around ~ 125 GeV.
- All possible Standard Model modes are yet to be discovered.
- Possibility of hidden Higgs is still a possibility.
- Observation of Charged Higgs would be a direct proof of extended Higgs sector.
- We have studied the triplet and triplet-singlet extended supersymmetric models in the context of 125 GeV Higgs.
- In the extended Higgs SUSY scenarios, lighter SUSY mass scale is still a possibility.
- $h_1^\pm o ZW^\pm$ could be a smoking gun signature for the triplet scenario.
- A very light speudo-scalar is still a possibility with extended Higgs sector.

Thank you

TNMSSM potential

$$V_{soft} = m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2 + m_T^2 |T|^2 + m_Q^2 |Q|^2 + m_U^2 |U|^2 + m_D^2 |D|^2 + (A_S S H_d . H_u + A_\kappa S^3 + A_T H_d . T . H_u + A_{TS} S Tr(T^2) + A_U U H_U . Q + A_D D H_D . Q + h.c),$$

while the D-terms are given by

$$V_D = rac{1}{2} \sum_k g_k^2 (\phi_i^\dagger t_{ij}^a \phi_j)^2.$$

