Black holes, Boyle's Law and the Quark-Gluon plasma

Brian P. Dolan

Maynooth University, Ireland

Corfu, 17th Sept 2015

Outline

- Review of black hole thermodynamics
 - Temperature and entropy
 - First law of thermodynamics
- 2 Smarr relation
- 3 Pressure and enthalpy
 - Black hole enthalpy
 - Critical behaviour
- 4 Yang-Mills theory
 - AdS/CFT
 - Quark-gluon plasma
 - Critical exponents

Temperature and entropy First law of thermodynamics

Temperature and entropy

• Schwarzschild black hole: $ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2 d\Omega^2$, $f(r) = 1 - \frac{2GM}{r}$. • Event horizon: $(r_h) = 0 \Rightarrow r_h = 2GM$. (c = 1)• Area: $A = 16\pi GM^2$ • Entropy: $S \propto \frac{A}{\ell_{Pl}^2}$, $(\ell_{Pl}^2 = \hbar G)$ Bekenstein (1972) • Surface gravity: $\kappa = \frac{1}{4GM}$ • Temperature: $T = \frac{\kappa\hbar}{2\pi}$ Hawking (1974)

Hawking temperature

$$T = \frac{\hbar}{8\pi GM}$$

Solar mass black hole: $T=6 imes 10^{-8}~K$

Temperature and entropy First law of thermodynamics

Temperature and entropy

• Schwarzschild black hole: $ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2d\Omega^2$, $f(r) = 1 - \frac{2GM}{r}$. • Event horizon: $(r_h) = 0 \Rightarrow r_h = 2GM$. (c = 1)• Area: $A = 16\pi GM^2$ • Entropy: $S \propto \frac{A}{\ell_{Pl}^2}$, $(\ell_{Pl}^2 = \hbar G)$ Bekenstein (1972) • Surface gravity: $\kappa = \frac{1}{4GM}$ • Temperature: $T = \frac{\kappa\hbar}{2\pi}$ Hawking (1974)

Hawking temperature

$$T = \frac{\hbar}{8\pi GM}$$

Solar mass black hole: $T=6 imes 10^{-8}~K$

Temperature and entropy First law of thermodynamics

Temperature and entropy

• Schwarzschild black hole: $ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2 d\Omega^2$, $f(r) = 1 - \frac{2GM}{r}$. • Event horizon: $(r_h) = 0 \Rightarrow r_h = 2GM$. (c = 1)• Area: $A = 16\pi GM^2$ • Entropy: $S \propto \frac{A}{\ell_{Pl}^2}$, $(\ell_{Pl}^2 = \hbar G)$ Bekenstein (1972) • Surface gravity: $\kappa = \frac{1}{4GM}$ • Temperature: $T = \frac{\kappa h}{2\pi}$ Hawking (1974)

Hawking temperature

$$T = \frac{\hbar}{8\pi GM}$$

Solar mass black hole: ${\cal T}=6 imes 10^{-8}~K$

Temperature and entropy First law of thermodynamics

Temperature and entropy

• Schwarzschild black hole:

$$ds^{2} = -f(r)dt^{2} + \frac{1}{f(r)}dr^{2} + r^{2}d\Omega^{2}, f(r) = 1 - \frac{2GM}{r}.$$
• Event horizon: $(r_{h}) = 0 \Rightarrow r_{h} = 2GM.$ $(c = 1)$
• Area: $A = 16\pi GM^{2}$
• Entropy: $S \propto \frac{A}{\ell_{Pl}^{2}}, \quad (\ell_{Pl}^{2} = \hbar G)$ Bekenstein (1972)
• Surface gravity: $\kappa = \frac{1}{4GM}$
• Temperature: $T = \frac{\kappa\hbar}{2\pi}$ Hawking (1974)

Hawking temperature

$$T = \frac{\hbar}{8\pi GM}$$

Solar mass black hole: $T=6 imes 10^{-8}~K$

Temperature and entropy First law of thermodynamics

Temperature and entropy

• Schwarzschild black hole:

$$ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2 d\Omega^2$$
, $f(r) = 1 - \frac{2GM}{r}$.
• Event horizon: $(r_h) = 0 \Rightarrow r_h = 2GM$. $(c = 1)$
• Area: $A = 16\pi GM^2$
• Entropy: $S \propto \frac{A}{\ell_{Pl}^2}$, $(\ell_{Pl}^2 = \hbar G)$ Bekenstein (1972)
• Surface gravity: $\kappa = \frac{1}{4GM}$
• Temperature: $T = \frac{\kappa h}{2\pi}$ Hawking (1974)

Hawking temperature

$$T = \frac{\hbar}{8\pi GM}$$

Solar mass black hole: $\,{\cal T}=6 imes 10^{-8}\,\,K$

Temperature and entropy First law of thermodynamics

Temperature and entropy

• Schwarzschild black hole: $ds^{2} = -f(r)dt^{2} + \frac{1}{f(r)}dr^{2} + r^{2}d\Omega^{2}, f(r) = 1 - \frac{2GM}{r}.$ • Event horizon: $(r_{h}) = 0 \Rightarrow r_{h} = 2GM.$ (c = 1)• Area: $A = 16\pi GM^{2}$ • Entropy: $S \propto \frac{A}{\ell_{Pl}^{2}}, \quad (\ell_{Pl}^{2} = \hbar G)$ Bekenstein (1972) • Surface gravity: $\kappa = \frac{1}{4GM}$ • Temperature: $T = \frac{\kappa\hbar}{2\pi}$ Hawking (1974)

Hawking temperature

$$T = \frac{\hbar}{8\pi GM}$$

Solar mass black hole: $T=6 imes 10^{-8}~K$

Temperature and entropy First law of thermodynamics

Temperature and entropy

• Schwarzschild black hole:

$$ds^{2} = -f(r)dt^{2} + \frac{1}{f(r)}dr^{2} + r^{2}d\Omega^{2}, f(r) = 1 - \frac{2GM}{r}.$$
• Event horizon: $(r_{h}) = 0 \Rightarrow r_{h} = 2GM.$ $(c = 1)$
• Area: $A = 16\pi GM^{2}$
• Entropy: $S \propto \frac{A}{\ell_{Pl}^{2}}, \quad (\ell_{Pl}^{2} = \hbar G)$ Bekenstein (1972)
• Surface gravity: $\kappa = \frac{1}{4GM}$
• Temperature: $T = \frac{\kappa\hbar}{2\pi}$ Hawking (1974)
Hawking temperature

$$T = \frac{\hbar}{8\pi GM}$$

Solar mass black hole: $\, T = 6 imes 10^{-8} \; K \,$

Temperature and entropy First law of thermodynamics

Temperature and entropy

• Schwarzschild black hole:

$$ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2 d\Omega^2$$
, $f(r) = 1 - \frac{2GM}{r}$.
• Event horizon: $(r_h) = 0 \Rightarrow r_h = 2GM$. $(c = 1)$
• Area: $A = 16\pi GM^2$
• Entropy: $S \propto \frac{A}{\ell_{Pl}^2}$, $(\ell_{Pl}^2 = \hbar G)$ Bekenstein (1972)
• Surface gravity: $\kappa = \frac{1}{4GM}$
• Temperature: $T = \frac{\kappa\hbar}{2\pi}$ Hawking (1974)

$$T = \frac{\hbar}{8\pi GM}$$

Solar mass black hole: $T = 6 \times 10^{-8} K$

Temperature and entropy First law of thermodynamics

First Law

• Internal energy: identify M = U(S), $T = \frac{\partial U}{\partial S} \Rightarrow$

dM = T dS

• With
$$S \propto \frac{A}{\hbar} \propto \frac{16\pi M^2}{\hbar}$$
 and $T = \frac{\hbar}{8\pi M}$: $S = \frac{1}{4}\frac{A}{\hbar}$ (G = 1)

• More generally: angular momentum J, electric charge Q

First law of black hole thermodynamics

Temperature and entropy First law of thermodynamics

First Law

• Internal energy: identify M = U(S), $T = \frac{\partial U}{\partial S} \Rightarrow$

dM = T dS

• With $S \propto \frac{A}{\hbar} \propto \frac{16\pi M^2}{\hbar}$ and $T = \frac{\hbar}{8\pi M}$: $S = \frac{1}{4} \frac{A}{\hbar}$ (G = 1)

• More generally: angular momentum J, electric charge Q

First law of black hole thermodynamics

Temperature and entropy First law of thermodynamics

First Law

• Internal energy: identify $M = U(S), T = \frac{\partial U}{\partial S} \Rightarrow$ dM = T dS

• With $S \propto \frac{A}{\hbar} \propto \frac{16\pi M^2}{\hbar}$ and $T = \frac{\hbar}{8\pi M}$: $S = \frac{1}{4} \frac{A}{\hbar}$ (G = 1)

• More generally: angular momentum J, electric charge Q

First law of black hole thermodynamics

Temperature and entropy First law of thermodynamics

First Law

• Internal energy: identify M = U(S), $T = \frac{\partial U}{\partial S} \Rightarrow$

dM = T dS

• With
$$S \propto \frac{A}{\hbar} \propto \frac{16\pi M^2}{\hbar}$$
 and $T = \frac{\hbar}{8\pi M}$: $S = \frac{1}{4} \frac{A}{\hbar}$ (G = 1)

• More generally: angular momentum J, electric charge Q

First law of black hole thermodynamics

Homogeneous scaling

• Ordinary thermodynamics in *d* dimensions: $U(S, V, n_i)$ is a function of extensive variables $(n_i = n_i)$

 $(n_i = \text{number of moles})$

$$\lambda^{d} U(S, V, n) = U(\lambda^{d} S, \lambda^{d} V, \lambda^{d} n_{i})$$

$$\Rightarrow U = S \frac{\partial U}{\partial S} + V \frac{\partial U}{\partial V} + n_{i} \frac{\partial U}{\partial n_{i}}$$
Euler equation
$$\Rightarrow U = ST - VP + n_{i}\mu_{i} \quad (\mu_{i} = \text{chemical} potential)$$

$$\Rightarrow G(T, P, n) = U + VP - ST = n_{i}\mu_{i} \quad (\text{Gibbs-Duhem} relation)$$

Homogeneous scaling

Ordinary thermodynamics in *d* dimensions:
 U(S, V, n_i) is a function of extensive variables

 (n_i = number of moles)

$$\lambda^{d} U(S, V, n) = U(\lambda^{d} S, \lambda^{d} V, \lambda^{d} n_{i})$$

$$\Rightarrow U = S \frac{\partial U}{\partial S} + V \frac{\partial U}{\partial V} + n_{i} \frac{\partial U}{\partial n_{i}} \quad \text{Euler equation}$$

$$\Rightarrow U = ST - VP + n_{i}\mu_{i} \quad (\mu_{i} = \text{chemical} potential)$$

$$\Rightarrow G(T, P, n) = U + VP - ST = n_{i}\mu_{i} \quad (\text{Gibbs-Duhem} relation)$$

Homogeneous scaling

Ordinary thermodynamics in *d* dimensions:
 U(S, V, n_i) is a function of extensive variables

 (n_i = number of moles)

 $\lambda^{d} U(S, V, n) = U(\lambda^{d} S, \lambda^{d} V, \lambda^{d} n_{i})$ $\Rightarrow U = S \frac{\partial U}{\partial S} + V \frac{\partial U}{\partial V} + n_{i} \frac{\partial U}{\partial n_{i}}$ Euler equation $\Rightarrow U = ST - VP + n_{i}\mu_{i} \quad (\mu_{i} = \text{chemical} potential)$ $G(T, P, n) = U + VP - ST = n_{i}\mu_{i} \quad (\text{Gibbs-Duhem} relation)$

Homogeneous scaling

• Ordinary thermodynamics in *d* dimensions: $U(S, V, n_i)$ is a function of extensive variables $(n_i = n_i)$

 $(n_i = \text{number of moles})$

$$\lambda^{d}U(S, V, n) = U(\lambda^{d}S, \lambda^{d}V, \lambda^{d}n_{i})$$

$$\Rightarrow U = S\frac{\partial U}{\partial S} + V\frac{\partial U}{\partial V} + n_{i}\frac{\partial U}{\partial n_{i}}$$
Euler equation
$$\Rightarrow U = ST - VP + n_{i}\mu_{i} \quad (\mu_{i} = \text{chemical} \text{potential})$$

$$G(T, P, n) = U + VP - ST = n_{i}\mu_{i} \quad (\text{Gibbs-Duhem} \text{relation})$$

Homogeneous scaling

Ordinary thermodynamics in *d* dimensions:
 U(S, V, n_i) is a function of extensive variables

 (n_i = number of moles)

 $\lambda^{d}U(S, V, n) = U(\lambda^{d}S, \lambda^{d}V, \lambda^{d}n_{i})$ $\Rightarrow U = S\frac{\partial U}{\partial S} + V\frac{\partial U}{\partial V} + n_{i}\frac{\partial U}{\partial n_{i}}$ Euler equation $\Rightarrow U = ST - VP + n_{i}\mu_{i} \quad (\mu_{i} = \text{chemical} potential)$ $G(T, P, n) = U + VP - ST = n_{i}\mu_{i} \quad (\text{Gibbs-Duhem} relation)$

- Rotating black hole (*D* space-time dimensions, Q = 0): $M \rightarrow \lambda^{D-3}M, S \rightarrow \lambda^{D-2}S, J \rightarrow \lambda^{D-2}J \Rightarrow$ $\lambda^{D-3}M(S,J) = M(\lambda^{D-2}S, \lambda^{D-2}J)$ $\Rightarrow (D-3)M = (D-2)S\frac{\partial M}{\partial S} + (D-2)J.\frac{\partial M}{\partial J}$ $\Rightarrow (D-3)M = (D-2)ST + (D-2)J.\Omega$ Smarr (1973)
- Naïve relation fails in asymptotically AdS space-time • Cosmological constant is another dimensionful parameter $\Theta := \frac{\partial M}{\partial \Lambda}$ Henneaux+Teitelboim (1984 • $\Lambda \rightarrow \lambda^{-2}\Lambda \Rightarrow$ $\lambda^{D-3}M(S,\Lambda,\mathbf{J}) = M(\lambda^{D-2}S,\lambda^{-2}\Lambda,\lambda^{D-2}\mathbf{J})$ $\Rightarrow (D-3)M = (D-2)ST - 2\Theta\Lambda + (D-2)\mathbf{J}.\Omega$

- Rotating black hole (*D* space-time dimensions, Q = 0): $M \to \lambda^{D-3}M, S \to \lambda^{D-2}S, J \to \lambda^{D-2}J \Rightarrow$ $\lambda^{D-3}M(S, J) = M(\lambda^{D-2}S, \lambda^{D-2}J)$ $\Rightarrow (D-3)M = (D-2)S\frac{\partial M}{\partial S} + (D-2)J.\frac{\partial M}{\partial J}$ $\Rightarrow (D-3)M = (D-2)ST + (D-2)J.\Omega$ Smarr (1973)
- Naïve relation fails in asymptotically AdS space-time • Cosmological constant is another dimensionful parameter $\Theta := \frac{\partial M}{\partial \Lambda}$ Henneaux+Teitelboim (1984 • $\Lambda \rightarrow \lambda^{-2}\Lambda \Rightarrow$ $\lambda^{D-3}M(S,\Lambda,\mathbf{J}) = M(\lambda^{D-2}S,\lambda^{-2}\Lambda,\lambda^{D-2}\mathbf{J})$ $\Rightarrow (D-3)M = (D-2)ST - 2\Theta\Lambda + (D-2)\mathbf{J}.\Omega$

- Rotating black hole (*D* space-time dimensions, Q = 0): $M \rightarrow \lambda^{D-3}M, S \rightarrow \lambda^{D-2}S, J \rightarrow \lambda^{D-2}J \Rightarrow$ $\lambda^{D-3}M(S, J) = M(\lambda^{D-2}S, \lambda^{D-2}J)$ $\Rightarrow (D-3)M = (D-2)S\frac{\partial M}{\partial S} + (D-2)J.\frac{\partial M}{\partial J}$ $\Rightarrow (D-3)M = (D-2)ST + (D-2)J.\Omega$ Smarr (197)
- Naïve relation fails in asymptotically AdS space-time • Cosmological constant is another dimensionful parameter $\Theta := \frac{\partial M}{\partial \Lambda}$ Henneaux+Teitelboim (1984) • $\Lambda \rightarrow \lambda^{-2}\Lambda \Rightarrow$ $\lambda^{D-3}M(S,\Lambda,\mathbf{J}) = M(\lambda^{D-2}S,\lambda^{-2}\Lambda,\lambda^{D-2}\mathbf{J})$ $\Rightarrow (D-3)M = (D-2)ST - 2\Theta\Lambda + (D-2)\mathbf{J}.\Omega$

- Rotating black hole (*D* space-time dimensions, Q = 0): $M \rightarrow \lambda^{D-3}M, S \rightarrow \lambda^{D-2}S, J \rightarrow \lambda^{D-2}J \Rightarrow$ $\lambda^{D-3}M(S,J) = M(\lambda^{D-2}S, \lambda^{D-2}J)$ $\Rightarrow (D-3)M = (D-2)S\frac{\partial M}{\partial S} + (D-2)J.\frac{\partial M}{\partial J}$ $\Rightarrow (D-3)M = (D-2)ST + (D-2)J.\Omega$ Smarr (1973)
- Naïve relation fails in asymptotically AdS space-time • Cosmological constant is another dimensionful parameter $\Theta := \frac{\partial M}{\partial \Lambda}$ Henneaux+Teitelboim (1984) • $\Lambda \rightarrow \lambda^{-2}\Lambda \Rightarrow$ $\lambda^{D-3}M(S,\Lambda,\mathbf{J}) = M(\lambda^{D-2}S,\lambda^{-2}\Lambda,\lambda^{D-2}\mathbf{J})$ $\Rightarrow (D-3)M = (D-2)ST - 2\Theta\Lambda + (D-2)\mathbf{J}.\Omega$

- Rotating black hole (*D* space-time dimensions, Q = 0): $M \rightarrow \lambda^{D-3}M, S \rightarrow \lambda^{D-2}S, J \rightarrow \lambda^{D-2}J \Rightarrow$ $\lambda^{D-3}M(S, J) = M(\lambda^{D-2}S, \lambda^{D-2}J)$ $\Rightarrow (D-3)M = (D-2)S\frac{\partial M}{\partial S} + (D-2)J.\frac{\partial M}{\partial J}$ $\Rightarrow (D-3)M = (D-2)ST + (D-2)J.\Omega$ Smarr (1973)

- Rotating black hole (*D* space-time dimensions, Q = 0): $M \rightarrow \lambda^{D-3}M, S \rightarrow \lambda^{D-2}S, J \rightarrow \lambda^{D-2}J \Rightarrow$ $\lambda^{D-3}M(S, J) = M(\lambda^{D-2}S, \lambda^{D-2}J)$ $\Rightarrow (D-3)M = (D-2)S\frac{\partial M}{\partial S} + (D-2)J.\frac{\partial M}{\partial J}$ $\Rightarrow (D-3)M = (D-2)ST + (D-2)J.\Omega$ Smarr (1973)
- Naïve relation fails in asymptotically AdS space-time
 Cosmological constant is another dimensionful parameter
 Θ := ∂M/∂Λ Henneaux+Teitelboim (1984)

 Λ → λ⁻²Λ ⇒
 λ^{D-3}M(S,Λ,J) = M(λ^{D-2}S, λ⁻²Λ, λ^{D-2}J)
 ⇒ (D-3)M = (D-2)ST - 2ΘΛ + (D-2)J.Ω

- Rotating black hole (*D* space-time dimensions, Q = 0): $M \rightarrow \lambda^{D-3}M, S \rightarrow \lambda^{D-2}S, J \rightarrow \lambda^{D-2}J \Rightarrow$ $\lambda^{D-3}M(S, J) = M(\lambda^{D-2}S, \lambda^{D-2}J)$ $\Rightarrow (D-3)M = (D-2)S\frac{\partial M}{\partial S} + (D-2)J.\frac{\partial M}{\partial J}$ $\Rightarrow (D-3)M = (D-2)ST + (D-2)J.\Omega$ Smarr (1973)
- Naïve relation fails in asymptotically AdS space-time • Cosmological constant is another dimensionful parameter $\Theta := \frac{\partial M}{\partial \Lambda}$ Henneaux+Teitelboim (1984) • $\Lambda \rightarrow \lambda^{-2}\Lambda \Rightarrow$ $\lambda^{D-3}M(S,\Lambda,\mathbf{J}) = M(\lambda^{D-2}S,\lambda^{-2}\Lambda,\lambda^{D-2}\mathbf{J})$ $\Rightarrow (D-3)M = (D-2)ST - 2\Theta\Lambda + (D-2)\mathbf{J}.\Omega$

- Rotating black hole (*D* space-time dimensions, Q = 0): $M \rightarrow \lambda^{D-3}M, S \rightarrow \lambda^{D-2}S, J \rightarrow \lambda^{D-2}J \Rightarrow$ $\lambda^{D-3}M(S, J) = M(\lambda^{D-2}S, \lambda^{D-2}J)$ $\Rightarrow (D-3)M = (D-2)S\frac{\partial M}{\partial S} + (D-2)J.\frac{\partial M}{\partial J}$ $\Rightarrow (D-3)M = (D-2)ST + (D-2)J.\Omega$ Smarr (1973)
- Naïve relation fails in asymptotically AdS space-time • Cosmological constant is another dimensionful parameter $\Theta := \frac{\partial M}{\partial \Lambda}$ Henneaux+Teitelboim (1984) • $\Lambda \rightarrow \lambda^{-2}\Lambda \Rightarrow$ $\lambda^{D-3}M(S,\Lambda,\mathbf{J}) = M(\lambda^{D-2}S,\lambda^{-2}\Lambda,\lambda^{D-2}\mathbf{J})$ $\Rightarrow (D-3)M = (D-2)ST - 2\Theta\Lambda + (D-2)\mathbf{J}.\Omega$

Black hole enthalpy Critical behaviour

Black hole enthalpy $(\mathbf{J} = Q = 0)$

- Include cosmological constant Λ , contributes pressure P, energy density $\epsilon = -P = \frac{\Lambda}{8\pi}$
- Thermal energy $U = M + \epsilon V = M - PV \Rightarrow M = U + PV$ Legendre transform U = U(S, V)

Legendre transform U = U(S, V)

Enthalpy

$$M = U + PV = H(S, P)$$

(Kastor, Ray+Traschen [0904.2765])

Thermodynamic volume and the First Law

$$dU = T dS - P dV, \qquad V = \frac{\partial M}{\partial P}$$

Black hole enthalpy Critical behaviour

Black hole enthalpy $(\mathbf{J} = Q = 0)$

- Include cosmological constant Λ , contributes pressure P, energy density $\epsilon = -P = \frac{\Lambda}{8\pi}$
- Thermal energy

$$U = M + \epsilon V = M - PV \quad \Rightarrow \quad M = U + PV$$

Legendre transform U = U(S, V)

Enthalpy

$$M = U + PV = H(S, P)$$

(Kastor, Ray+Traschen [0904.2765])

Thermodynamic volume and the First Law

$$dU = T dS - P dV, \qquad V = \frac{\partial M}{\partial P}$$

Black hole enthalpy Critical behaviour

Black hole enthalpy $(\mathbf{J} = Q = 0)$

- Include cosmological constant Λ , contributes pressure P, energy density $\epsilon = -P = \frac{\Lambda}{8\pi}$
- Thermal energy

$$U = M + \epsilon V = M - PV \quad \Rightarrow \quad M = U + PV$$

Legendre transform U = U(S, V)

Enthalpy

$$M = U + PV = H(S, P)$$

(Kastor, Ray+Traschen [0904.2765])

Thermodynamic volume and the First Law

$$dU = T dS - P dV, \qquad V = \frac{\partial M}{\partial P}$$

Black hole enthalpy Critical behaviour

Black hole enthalpy $(\mathbf{J} = Q = 0)$

- Include cosmological constant Λ , contributes pressure P, energy density $\epsilon = -P = \frac{\Lambda}{8\pi}$
- Thermal energy

$$U = M + \epsilon V = M - PV \quad \Rightarrow \quad M = U + PV$$

Legendre transform U = U(S, V)

Enthalpy

$$M = U + PV = H(S, P)$$

(Kastor, Ray+Traschen [0904.2765])

Thermodynamic volume and the First Law

$$dU = T dS - P dV, \qquad V = \frac{\partial M}{\partial P}$$

Black hole enthalpy Critical behaviour

Black hole enthalpy $(\mathbf{J} = Q = 0)$

- Include cosmological constant Λ , contributes pressure P, energy density $\epsilon = -P = \frac{\Lambda}{8\pi}$
- Thermal energy

$$U = M + \epsilon V = M - PV \quad \Rightarrow \quad M = U + PV$$

Legendre transform U = U(S, V)

Enthalpy

$$M = U + PV = H(S, P)$$

(Kastor, Ray+Traschen [0904.2765])

Thermodynamic volume and the First Law

$$dU = T dS - P dV, \qquad V = \frac{\partial M}{\partial P}$$

Black hole enthalpy Critical behaviour

Rotating black holes: AdS Kerr

• T = const, *PJ* versus $V^{\frac{1}{3}}/J^{\frac{1}{2}}$ (dimensionless).

Critical point, mean field exponents (van der Waals gas) Caldarelli, Gognola+Klemm [hep-th/9908022]; Kubizňák+Mann [arXiv:1205.0559]; BPD [1106.6260], [1209.127

Black hole enthalpy Critical behaviour

Rotating black holes: AdS Kerr

Black hole enthalpy Critical behaviour

Phase diagram

- Line of first order phase transitions, with a critical point
- Latent heat: $L = T\Delta S = M_{large} M_{small}$
- Clapeyron equation: $\frac{dP}{dT} = \frac{\Delta S}{\Delta V}$

Black hole enthalpy Critical behaviour

Phase diagram

- Line of first order phase transitions, with a critical point
- Latent heat: $L = T\Delta S = M_{large} M_{small}$
- Clapeyron equation: $\frac{dP}{dT} = \frac{\Delta S}{\Delta V}$
Black hole enthalpy Critical behaviour

Phase diagram

- Line of first order phase transitions, with a critical point
- Latent heat: $L = T\Delta S = M_{large} M_{small}$
 - Clapeyron equation: $\frac{dP}{dT} = \frac{\Delta S}{\Delta V}$

Black hole enthalpy Critical behaviour

Phase diagram

- Line of first order phase transitions, with a critical point
- Latent heat: $L = T\Delta S = M_{large} M_{small}$
- Clapeyron equation: $\frac{dP}{dT} = \frac{\Delta S}{\Delta V}$

Black hole enthalpy Critical behaviour

T - P phase diagram

Higher dimensions

• 6-Dimensions: two angular momenta J_1 and J_2 , phase diagram depends on the ratio $q = \frac{J_1}{J_2}$

AdS/CFT Quark-gluon plasma Critical exponents

AdS/CFT

- Weak gravity in the bulk (classical GR, $\ell_{Pl} \rightarrow 0$) \Leftrightarrow strongly coupled CFT on the boundary.
- 10 D superstring compactified on $AdS_5 \times S^5$, $\Lambda = -\frac{4}{L^2}$.
- CFT: $\mathcal{N} = 4$ SUSY SU(N) Yang-Mills with $N = \frac{\pi^2 L^4}{\sqrt{2} \ell_{Pl}^4}$.
 - Vary Λ ⇒ vary N; Kastor, Ray+Traschen [0904.2765]; BPD [1406.7267]
 - Fix *N*, vary $\Lambda \Rightarrow$ vary volume of S^3 : $V = 2\pi^2 L^3$.

AdS/CFT Quark-gluon plasma Critical exponents

AdS/CFT

- Weak gravity in the bulk (classical GR, $\ell_{Pl} \rightarrow 0$) \Leftrightarrow strongly coupled CFT on the boundary.
- 10 D superstring compactified on $AdS_5 \times S^5$, $\Lambda = -\frac{4}{L^2}$.
- CFT: $\mathcal{N} = 4$ SUSY SU(N) Yang-Mills with $N = \frac{\pi^2 L^4}{\sqrt{2\ell^4} r^4}$
 - Vary $\Lambda \Rightarrow$ vary N;
 - Kastor, Ray+Traschen [0904.2765]; BPD [1406.7267]
 - Fix *N*, vary $\Lambda \Rightarrow$ vary volume of S^3 : $V = 2\pi^2 L^3$.

AdS/CFT Quark-gluon plasma Critical exponents

$\mathsf{AdS}/\mathsf{CFT}$

- Weak gravity in the bulk (classical GR, $\ell_{Pl} \rightarrow 0$) \Leftrightarrow strongly coupled CFT on the boundary.
- 10 D superstring compactified on $AdS_5 \times S^5$, $\Lambda = -\frac{4}{I^2}$.
- CFT: $\mathcal{N} = 4$ SUSY SU(N) Yang-Mills with $N = \frac{\pi^2 L^4}{\sqrt{2\ell_{P_I}^4}}$.
 - Vary $\Lambda \Rightarrow$ vary N;
 - Kastor, Ray+Traschen [0904.2765]; BPD [1406.7267
 - Fix *N*, vary $\Lambda \Rightarrow$ vary volume of S^3 : $V = 2\pi^2 L^3$.

AdS/CFT Quark-gluon plasma Critical exponents

$\mathsf{AdS}/\mathsf{CFT}$

- Weak gravity in the bulk (classical GR, $\ell_{Pl} \rightarrow 0$) \Leftrightarrow strongly coupled CFT on the boundary.
- 10 D superstring compactified on $AdS_5 \times S^5$, $\Lambda = -\frac{4}{L^2}$.
- CFT: $\mathcal{N} = 4$ SUSY SU(N) Yang-Mills with $N = \frac{\pi^2 L^4}{\sqrt{2\ell_{DI}^4}}$.
 - Vary Λ ⇒ vary N; Kastor, Ray+Traschen [0904.2765]; BPD [1406.7267]
 Fix N, vary Λ ⇒ vary volume of S³: V = 2π²L³.

AdS/CFT Quark-gluon plasma Critical exponents

$\mathsf{AdS}/\mathsf{CFT}$

- Weak gravity in the bulk (classical GR, $\ell_{Pl} \rightarrow 0$) \Leftrightarrow strongly coupled CFT on the boundary.
- 10 D superstring compactified on $AdS_5 \times S^5$, $\Lambda = -\frac{4}{I^2}$.
- CFT: $\mathcal{N} = 4$ SUSY SU(N) Yang-Mills with $N = \frac{\pi^2 L^4}{\sqrt{2\ell_{DI}^4}}$.
 - Vary Λ ⇒ vary N; Kastor, Ray+Traschen [0904.2765]; BPD [1406.7267]
 - Fix N, vary $\Lambda \Rightarrow$ vary volume of S^3 : $V = 2\pi^2 L^3$.

AdS/CFT Quark-gluon plasma Critical exponents

Yang-Mills at finite temperature

• Asymptotically AdS black hole in 5-D, with charge Q and entropy

$$S = \frac{\pi^2 r_h^3}{2G_5} = \pi N^2 \left(\frac{r_h}{L}\right)^3, \qquad \frac{1}{G_5} \sim \frac{L^5}{G_{10}} \sim \frac{N^2}{L^3}.$$

• Thermal energy of quark-gluon plasma:

$$U(S, V, Q) = M(r_h, L, Q) = \underbrace{\frac{3N^2}{4L}x^2(1+x^2)}_{V = 2\pi^2 L^3, \quad x = \frac{r_h}{L} = \left(\frac{S}{\pi N^2}\right)^{\frac{1}{3}} \underbrace{\frac{3N^2}{4L}x^2(1+x^2)}_{gluons} + \underbrace{\frac{Q^2}{8L^2 x^2}}_{quarks}$$
$$T = \frac{\partial U}{\partial S}\Big|_{V,Q}, \quad P = -\frac{\partial U}{\partial V}\Big|_{S,Q}, \quad \Phi = \frac{\partial U}{\partial Q}\Big|_{S,V}.$$

AdS/CFT Quark-gluon plasma Critical exponents

Yang-Mills at finite temperature

• Asymptotically AdS black hole in 5-D, with charge Q and entropy

$$S = \frac{\pi^2 r_h^3}{2G_5} = \pi N^2 \left(\frac{r_h}{L}\right)^3, \qquad \frac{1}{G_5} \sim \frac{L^5}{G_{10}} \sim \frac{N^2}{L^3}$$

• Thermal energy of quark-gluon plasma:

$$U(S, V, Q) = M(r_h, L, Q) = \underbrace{\frac{3N^2}{4L}x^2(1+x^2)}_{W = 2\pi^2 L^3, \quad x = \frac{r_h}{L} = \left(\frac{S}{\pi N^2}\right)^{\frac{1}{3}} \underbrace{\frac{3N^2}{4L}x^2(1+x^2)}_{gluons} + \underbrace{\frac{Q^2}{8L^2 x^2}}_{quarks}$$
$$T = \frac{\partial U}{\partial S}\Big|_{V,Q}, \quad P = -\frac{\partial U}{\partial V}\Big|_{S,Q}, \quad \Phi = \frac{\partial U}{\partial Q}\Big|_{S,V}.$$

AdS/CFT Quark-gluon plasma Critical exponents

Yang-Mills at finite temperature

• Asymptotically AdS black hole in 5-D, with charge Q and entropy

$$S = \frac{\pi^2 r_h^3}{2G_5} = \pi N^2 \left(\frac{r_h}{L}\right)^3, \qquad \frac{1}{G_5} \sim \frac{L^5}{G_{10}} \sim \frac{N^2}{L^3}$$

• Thermal energy of quark-gluon plasma:

$$U(S, V, Q) = M(r_h, L, Q) = \underbrace{\frac{3N^2}{4L}x^2(1+x^2)}_{V = 2\pi^2 L^3, \quad x = \frac{r_h}{L} = \left(\frac{S}{\pi N^2}\right)^{\frac{1}{3}} \underbrace{\frac{3N^2}{4L}x^2(1+x^2)}_{gluons} + \underbrace{\frac{Q^2}{8L^2x^2}}_{quarks}$$
$$T = \frac{\partial U}{\partial S}\Big|_{V,Q}, \quad P = -\frac{\partial U}{\partial V}\Big|_{S,Q}, \quad \Phi = \frac{\partial U}{\partial Q}\Big|_{S,V}.$$

AdS/CFT Quark-gluon plasma Critical exponents

QCD phase transition

- Hawking-Page phase transition in bulk
 ⇔ deconfining phase transition in QCD on the boundary. Witten, hep-th/9802150, 9803131
- Extends to non-zero Q. Line of first order phase transitions terminates at a critical point at finite quark density.

AdS/CFT Quark-gluon plasma Critical exponents

QCD phase transition

- Hawking-Page phase transition in bulk
 ⇔ deconfining phase transition in QCD on the boundary.
 - Witten, hep-th/9802150, 9803131
- Extends to non-zero Q. Line of first order phase transitions terminates at a critical point at finite quark density.

AdS/CFT Quark-gluon plasma Critical exponents

Isotherms in P - V plane

AdS/CFT Quark-gluon plasma Critical exponents

Critical exponents

$$p = rac{P - P_{crit}}{P_{crit}}, \quad v = rac{V - V_{crit}}{V_{crit}}, \quad t = rac{T - T_{crit}}{T_{crit}}.$$

•
$$C_P = T / \frac{\partial T}{\partial S} \Big|_{P,Q} \propto |t|^{-\alpha};$$

• At fixed
$$v < 0$$
, $\Delta p = p_{>} - p_{<} \propto |t|^{\beta}$;

• Inverse isothermal compressibility, $-V\left(\frac{\partial P}{\partial V}\right)_{T,O} \propto |t|^{-\gamma}$;

• At
$$t = 0$$
, $|v| \propto |p|^{\delta}$;

$$\alpha = 0$$
 $\beta = \frac{1}{2}$ $\gamma = 1$ $\delta = 3$

•
$$C_P < 0, C_V \longrightarrow +\infty.$$

AdS/CFT Quark-gluon plasma Critical exponents

Critical exponents

$$p = rac{P - P_{crit}}{P_{crit}}, \quad v = rac{V - V_{crit}}{V_{crit}}, \quad t = rac{T - T_{crit}}{T_{crit}}.$$

•
$$C_P = T / \frac{\partial T}{\partial S} \Big|_{P,Q} \propto |t|^{-\alpha};$$

• At fixed
$$v < 0$$
, $\Delta p = p_{>} - p_{<} \propto |t|^{\beta}$;

• Inverse isothermal compressibility, $-V\left(\frac{\partial P}{\partial V}\right)_{T,O} \propto |t|^{-\gamma}$;

• At
$$t = 0$$
, $|v| \propto |p|^{\delta}$;

$$\alpha = 0$$
 $\beta = \frac{1}{2}$ $\gamma = 1$ $\delta = 3$

•
$$C_P < 0, C_V \longrightarrow +\infty.$$

AdS/CFT Quark-gluon plasma Critical exponents

Critical exponents

$$p = rac{P - P_{crit}}{P_{crit}}, \quad v = rac{V - V_{crit}}{V_{crit}}, \quad t = rac{T - T_{crit}}{T_{crit}}.$$

•
$$C_P = T / \frac{\partial T}{\partial S} \Big|_{P,Q} \propto |t|^{-\alpha};$$

• At fixed
$$v < 0$$
, $\Delta p = p_{>} - p_{<} \propto |t|^{eta}$;

Inverse isothermal compressibility, -V (∂P/∂V)_{T,Q} ∝ |t|^{-γ};
At t = 0, |v| ∝ |p|^δ;

$$\alpha = 0$$
 $\beta = \frac{1}{2}$ $\gamma = 1$ $\delta = 3$

•
$$C_P < 0, \ C_V \longrightarrow +\infty.$$

AdS/CFT Quark-gluon plasma Critical exponents

Critical exponents

$$p = rac{P - P_{crit}}{P_{crit}}, \quad v = rac{V - V_{crit}}{V_{crit}}, \quad t = rac{T - T_{crit}}{T_{crit}}.$$

•
$$C_P = T / \frac{\partial T}{\partial S} \Big|_{P,Q} \propto |t|^{-\alpha};$$

• At fixed
$$v < 0$$
, $\Delta p = p_{>} - p_{<} \propto |t|^{eta}$;

• Inverse isothermal compressibility, $-V\left(\frac{\partial P}{\partial V}\right)_{T,Q} \propto |t|^{-\gamma}$;

• At
$$t = 0$$
, $|v| \propto |p|^{\delta}$;

$$\alpha = 0$$
 $\beta = \frac{1}{2}$ $\gamma = 1$ $\delta = 3$

•
$$C_P < 0, C_V \longrightarrow +\infty.$$

AdS/CFT Quark-gluon plasma Critical exponents

Critical exponents

$$p = rac{P - P_{crit}}{P_{crit}}, \quad v = rac{V - V_{crit}}{V_{crit}}, \quad t = rac{T - T_{crit}}{T_{crit}}.$$

•
$$C_P = T / \frac{\partial T}{\partial S} \Big|_{P,Q} \propto |t|^{-\alpha};$$

• At fixed
$$v < 0$$
, $\Delta p = p_{>} - p_{<} \propto |t|^{eta}$;

• Inverse isothermal compressibility, $-V\left(\frac{\partial P}{\partial V}\right)_{T,Q} \propto |t|^{-\gamma}$;

• At
$$t=0$$
, $|v|\propto |p|^{\delta}$;

$$\alpha = 0$$
 $\beta = \frac{1}{2}$ $\gamma = 1$ $\delta = 3$

•
$$C_P < 0, \ C_V \longrightarrow +\infty.$$

AdS/CFT Quark-gluon plasma Critical exponents

Critical exponents

$$p = rac{P - P_{crit}}{P_{crit}}, \quad v = rac{V - V_{crit}}{V_{crit}}, \quad t = rac{T - T_{crit}}{T_{crit}}.$$

•
$$C_P = T / \frac{\partial T}{\partial S} \Big|_{P,Q} \propto |t|^{-\alpha};$$

• At fixed
$$v < 0$$
, $\Delta p = p_{>} - p_{<} \propto |t|^{eta}$;

• Inverse isothermal compressibility, $-V\left(\frac{\partial P}{\partial V}\right)_{T,Q} \propto |t|^{-\gamma}$;

• At
$$t=0$$
, $|v|\propto |p|^{\delta}$;

$$\alpha = 0$$
 $\beta = \frac{1}{2}$ $\gamma = 1$ $\delta = 3$

•
$$C_P < 0, C_V \longrightarrow +\infty.$$

AdS/CFT Quark-gluon plasma Critical exponents

Critical exponents

$$p = rac{P - P_{crit}}{P_{crit}}, \quad v = rac{V - V_{crit}}{V_{crit}}, \quad t = rac{T - T_{crit}}{T_{crit}}.$$

•
$$C_P = T / \frac{\partial T}{\partial S} \Big|_{P,Q} \propto |t|^{-\alpha};$$

• At fixed
$$v < 0$$
, $\Delta p = p_{>} - p_{<} \propto |t|^{eta}$;

• Inverse isothermal compressibility, $-V\left(\frac{\partial P}{\partial V}\right)_{T,Q} \propto |t|^{-\gamma}$;

• At
$$t=0$$
, $|v|\propto |p|^{\delta}$;

$$\alpha = 0$$
 $\beta = \frac{1}{2}$ $\gamma = 1$ $\delta = 3$

•
$$C_P < 0, C_V \longrightarrow +\infty.$$

Conclusions

• Gravity: black hole mass is identified with enthalpy: M = H = U + PV.

- "Thermodynamic" volume: $V = \frac{\partial H}{\partial P}$
- $\Lambda = -8\pi P \neq 0 \Rightarrow P dV$ term in black hole 1st law
- First Law: $dU = TdS PdV + \Omega dJ + \Phi dQ$,
- Critical points (mean field exponents), triple points, Clapeyron equation.
- CFT: black hole mass is identified with **internal energy**: M = U.
 - $\Lambda = -\frac{4}{L^2}$ related to the volume, $V = 2\pi^2 L^3$: $P = -\frac{\partial U}{\partial V}$.
 - Line of first order phase transitions, terminates in a critical point at high density, with mean field exponents.
 - Jump in pressure across the phase transition line:

Conclusions

• Gravity: black hole mass is identified with enthalpy: M = H = U + PV.

- "Thermodynamic" volume: $V = \frac{\partial H}{\partial P}$
- $\Lambda = -8\pi P \neq 0 \Rightarrow P dV$ term in black hole 1st law
- First Law: $dU = TdS PdV + \Omega dJ + \Phi dQ$,
- Critical points (mean field exponents), triple points, Clapeyron equation.
- CFT: black hole mass is identified with **internal energy**: M = U.
 - $\Lambda = -\frac{4}{L^2}$ related to the volume, $V = 2\pi^2 L^3$: $P = -\frac{\partial U}{\partial V}$.
 - Line of first order phase transitions, terminates in a critical point at high density, with mean field exponents.
 - Jump in pressure across the phase transition line:

Conclusions

• Gravity: black hole mass is identified with enthalpy: M = H = U + PV.

- "Thermodynamic" volume: $V = \frac{\partial H}{\partial P}$
- $\Lambda = -8\pi P \neq 0 \quad \Rightarrow \quad P \, dV$ term in black hole 1st law
- First Law: $dU = TdS PdV + \Omega dJ + \Phi dQ$
- Critical points (mean field exponents), triple points, Clapeyron equation.
- CFT: black hole mass is identified with **internal energy**: M = U.
 - $\Lambda = -\frac{4}{L^2}$ related to the volume, $V = 2\pi^2 L^3$: $P = -\frac{\partial U}{\partial V}$.
 - Line of first order phase transitions, terminates in a critical point at high density, with mean field exponents.
 - Jump in pressure across the phase transition line:

Conclusions

• Gravity: black hole mass is identified with enthalpy: M = H = U + PV.

- "Thermodynamic" volume: $V = \frac{\partial H}{\partial P}$
- $\Lambda = -8\pi P \neq 0 \Rightarrow P dV$ term in black hole 1st law
- First Law: $dU = TdS PdV + \Omega dJ + \Phi dQ$,
- Critical points (mean field exponents), triple points, Clapeyron equation.
- CFT: black hole mass is identified with **internal energy**: M = U.
 - $\Lambda = -\frac{4}{L^2}$ related to the volume, $V = 2\pi^2 L^3$: $P = -\frac{\partial U}{\partial V}$.
 - Line of first order phase transitions, terminates in a critical point at high density, with mean field exponents.
 - Jump in pressure across the phase transition line:

Conclusions

• Gravity: black hole mass is identified with enthalpy: M = H = U + PV.

- "Thermodynamic" volume: $V = \frac{\partial H}{\partial P}$
- $\Lambda = -8\pi P \neq 0 \Rightarrow P dV$ term in black hole 1st law
- First Law: $dU = TdS PdV + \Omega dJ + \Phi dQ$,
- Critical points (mean field exponents), triple points, Clapeyron equation.
- CFT: black hole mass is identified with **internal energy**: M = U.
 - $\Lambda = -\frac{4}{L^2}$ related to the volume, $V = 2\pi^2 L^3$: $P = -\frac{\partial U}{\partial V}$.
 - Line of first order phase transitions, terminates in a critical point at high density, with mean field exponents.
 - Jump in pressure across the phase transition line:

Conclusions

• Gravity: black hole mass is identified with enthalpy: M = H = U + PV.

- "Thermodynamic" volume: $V = \frac{\partial H}{\partial P}$
- $\Lambda = -8\pi P \neq 0 \quad \Rightarrow \quad P \, dV$ term in black hole 1st law
- First Law: $dU = TdS PdV + \Omega dJ + \Phi dQ$,
- Critical points (mean field exponents), triple points, Clapeyron equation.
- CFT: black hole mass is identified with **internal energy**: M = U.
 - $\Lambda = -\frac{4}{L^2}$ related to the volume, $V = 2\pi^2 L^3$: $P = -\frac{\partial U}{\partial V}$.
 - Line of first order phase transitions, terminates in a critical point at high density, with mean field exponents.
 - Jump in pressure across the phase transition line:

Conclusions

• Gravity: black hole mass is identified with enthalpy: M = H = U + PV.

- "Thermodynamic" volume: $V = \frac{\partial H}{\partial P}$
- $\Lambda = -8\pi P \neq 0 \quad \Rightarrow \quad P \, dV$ term in black hole 1st law
- First Law: $dU = TdS PdV + \Omega dJ + \Phi dQ$,
- Critical points (mean field exponents), triple points, Clapeyron equation.
- CFT: black hole mass is identified with **internal energy**: M = U.
 - $\Lambda = -\frac{4}{L^2}$ related to the volume, $V = 2\pi^2 L^3$: $P = -\frac{\partial U}{\partial V}$.
 - Line of first order phase transitions, terminates in a critical point at high density, with mean field exponents.
 - Jump in pressure across the phase transition line:

Conclusions

• Gravity: black hole mass is identified with enthalpy: M = H = U + PV.

- "Thermodynamic" volume: $V = \frac{\partial H}{\partial P}$
- $\Lambda = -8\pi P \neq 0 \quad \Rightarrow \quad P \, dV$ term in black hole 1st law
- First Law: $dU = TdS PdV + \Omega dJ + \Phi dQ$,
- Critical points (mean field exponents), triple points, Clapeyron equation.
- CFT: black hole mass is identified with **internal energy**: M = U.
 - $\Lambda = -\frac{4}{L^2}$ related to the volume, $V = 2\pi^2 L^3$: $P = -\frac{\partial U}{\partial V}$.
 - Line of first order phase transitions, terminates in a critical point at high density, with mean field exponents.
 - Jump in pressure across the phase transition line: gluons + quarks ⇔ hadron

Conclusions

• Gravity: black hole mass is identified with enthalpy: M = H = U + PV.

- "Thermodynamic" volume: $V = \frac{\partial H}{\partial P}$
- $\Lambda = -8\pi P \neq 0 \quad \Rightarrow \quad P \, dV$ term in black hole 1st law
- First Law: $dU = TdS PdV + \Omega dJ + \Phi dQ$,
- Critical points (mean field exponents), triple points, Clapeyron equation.
- CFT: black hole mass is identified with **internal energy**: M = U.
 - $\Lambda = -\frac{4}{L^2}$ related to the volume, $V = 2\pi^2 L^3$: $P = -\frac{\partial U}{\partial V}$.
 - Line of first order phase transitions, terminates in a critical point at high density, with mean field exponents.
 - Jump in pressure across the phase transition line:

 $\mathsf{gluons} + \mathsf{quarks} \ \Leftrightarrow \ \mathsf{hadrons}$

Black hole volume

Thermodynamic Volume

Define the thermodynamic volume

$$(P\geq 0,\,\Lambda\leq 0)$$

$$V = \left. \frac{\partial H}{\partial P} \right|_{S,J,Q}$$

• AdS Schwarzschild:
$$V = \frac{4\pi}{3}r_h^3$$

Kastor, Ray+Traschen [0904.2765] • Higher dimensions: $V = \frac{\Omega_d}{d+1} r_h^d$ BPD [1008.5023] • AdS Myers-Perry Cvetic, Gibbons+Kubizňák [1012.2888] BPD [1106.6260]

• Rotating black hole in 4-D (Q = 0):

• with
$$V_0 = \frac{r_h}{3}A$$
,

$$V = V_0 + \frac{4\pi}{3} \frac{J^2}{M}$$

- gives a reverse isoperimetric inequality
- as $J \to 0$: $V \to \frac{4\pi}{3} r_h^3$, $S = \pi r_h^2$: isentropic \Leftrightarrow isovolumetric

Hawking radiation

Reverse isoperimetric inequality

• Thermodynamic volume:

$$V = \left(\frac{\partial H}{\partial P}\right)_{S}$$

- Non-rotating black hole, $V = \frac{4\pi}{3}r_h^3$ (Kastor, Ray+Traschen [0904.2765]; BPD [1008.5023])
- More generally, define $V_0 = \frac{r_h}{3}A$

Reverse iso-perimetric inequality

$$V = V_0 + rac{4\pi}{3}rac{J^2}{M} \qquad \Rightarrow \qquad rac{A}{V} \leq rac{A}{V_0}$$

$$\left(\frac{3V}{4\pi}\right)^{1/3} \ge \left(\frac{S}{\pi}\right)^{1/2}$$

Critical behaviour

• Critical point $(J \neq 0)$:

Caldarelli, Gognola+Klemm [hep-th/9908022]

Define

$$t := \frac{T - T_c}{T_c}, \qquad v := \frac{V - V_c}{V_c}, \qquad p := \frac{P - P_c}{P_c}$$

Expand the equation of state about the critical point:

$$p = 2.42t - 0.81tv - 0.21v^3 + o(t^2, tv^2, v^4)$$

cf. van der Waals gas: $p = 4t - 6tv - \frac{3}{2}v^3 + o(t^2, tv^2, v^4)$

Critical exponents

•
$$C_V = T / \frac{\partial T}{\partial S} \Big|_{V,J} \propto |t|^{-\alpha};$$

- At fixed p < 0, $v_> v_< \propto |t|^{\beta}$;
- Isothermal compressibility, $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{T,J} \propto |t|^{-\gamma};$

• At
$$t=0$$
, $|p|\propto |v|^{\delta}$;

Mean Field Exponents

$$\alpha = 0$$
 $\beta = \frac{1}{2}$ $\gamma = 1$ $\delta = 3$

Same as van der Waals gas

Non-zero charge, zero J

Reissner-Nordström — Anti-de Sitter (J = 0, $Q \neq 0$):

• Critical behaviour same as van der Waals

Champlin, Emparan, Johnson+Myers: [hep-th/9902170]; [hep-th9904197]

Equation of state:

$$p = \frac{8}{3}t - \frac{8}{9}tv - \frac{4}{81}v^3 + o(t^2, tv^2, v^4),$$

Critical exponents are mean field

Kubizňák+Mann [arXiv:1205.0559]

Kerr-Reissner-Nordström-AdS

Reissner-Nordström anti-de Sitter ($J \neq 0, Q \neq 0$)

Caldarelli, Gognola+Klemm [hep-th/9908022]
Thermodynamic stability de Sitter space-time Critical point Compressibility

Speed of sound

Compressibility

- Adiabatic compressibility: $\kappa = -\frac{1}{V} \frac{\partial V}{\partial P} |_{S,J}$
- Rotating black-hole in *D*-dimensions (Myers-Perry). Dimensionless angular momenta, $\mathcal{J}_i := \frac{2\pi J_i}{5}$,

Constraint:
$$T \ge 0 \Rightarrow \sum_{i} \frac{1}{1+\mathcal{J}_{i}^{2}} \ge \begin{cases} \frac{1}{2} & \text{even } D \\ 1 & \text{odd } D \end{cases}$$

Compressibility, $\Lambda \rightarrow 0$

$$\kappa = \frac{16\pi r_h^2}{(D-1)(D-2)^2} \left\{ \frac{(D-2)\sum_i \mathcal{J}_i^4 - (\sum_i \mathcal{J}_i^2)^2}{D-2 + \sum_i \mathcal{J}_i^2} \right\},$$

• $0 \le \kappa < \infty$

Thermodynamic stability de Sitter space-time Critical point Compressibility

Speed of sound

Compressibility

BPD [arXiv:1109.0198]

- For J = 0, $\kappa = 0$ (incompressible)
- 4-D: κ is greatest for J_{max} (T = 0)
- e.g. P = 0, $\kappa_{max} = \frac{4\pi M^2}{9} = 2.6 \times 10^{-38} \left(\frac{M}{M_{\odot}}\right)^2 m s^2 kg^{-1}$. *cf.* neutron star, $M \approx M_{\odot}$, $R \approx 10 km$, degenerate Fermi gas $\Rightarrow \kappa \approx 10^{-34} m s^2 kg^{-1}$

Black holes have a very stiff equation of state!

•
$$\rho = \frac{M}{V}$$
, "speed of sound" $v_s^{-2} = \frac{\partial \rho}{\partial P} \Big|_{S,J}$

"Speed of Sound"

$$v_s^{-2} = 1 + rac{(2\pi J)^4}{\left(2S^2 + (2\pi J)^2
ight)^2}$$

$$\Rightarrow \quad rac{1}{2} \leq v_s^2 \leq 1$$
, with $v_s = 1$ for $J = 0$