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OUTLINE

• Emergence of NC/NA in closed string theory vacua. [in brief]

• Magnetic field analogue of non-geometry in Maxwell-Dirac theory

– NC/NA of momenta and the fate of angular symmetry.

[classical and quantum]

– NC/NA is distributed, not localized, and it also closely related to

breakdown of integrability of charged point-particle motion.

• Deformation theory and cohomology

– 3-cocycles in Lie algebra and group cohomology.

– NC/NA star-product as substitute for canonical quantization.

– Universal characterization of obstructions.

• NC/NA structures for integrability in 2 + 1 dimensions. [in brief]



TOROIDAL FLUX MODELS

It has been established that non-geometric closed string backgrounds

exhibit non-commutativity/non-associativity among their coordinates.

The prime example is provided by backgrounds originating from torus

T 3 with constant H-flux

H3 = H dX1 ∧ dX2 ∧ dX3

satisfying the standard quantization condition

1

4π2

∫
H = k , k ∈ Z .

Choose the components of the anti-symmetric B-filed, H3 = dB, as



B12 = Hx3, B23 = 0 = B31

and perform T-duality, successively, thinking of T 3 as T n fibration over

the base space T 3−n for n = 0, 1, 2, 3.

• H-flux model, which is the original geometric background (n = 0).

The toroidal coordinates are commuting,

[xi, xj] = 0.

• f-flux model, which follows by performing T-duality in x1-direction

T 1
x1

(n = 1). The resulting background is the Heisenberg nilmanifold

(twisted torus) and it is fully geometric. It exhibits the relations

[x1, x̃2] ∼ fp̃3.



• Q-flux model, which follows by performing T-duality in x1 and x2

directions T 2
x1,x2

(n = 2). The resulting background is geometric only

locally but not globally, since the fibre is glued by T-duality when

transported around the base. It exhibits the commutation relations

[x1, x2] ∼ Qp̃3.

– The geometry has already become non-commutative.

• R-flux model, which follows by performing T-duality in all directions

T 3
x1,x2,x3

(n = 3). The resulting background is entirely non-geometric and

it exhibits the commutation relations

[x1, x2] ∼ Rp3.

– The geometry has become non-associative.



It is more convenient to work with symmetric choice of B-field

B12 =
H

3
x3, B23 =

H

3
x1, B31 =

H

3
x2.

Then, the commutation relations among xi and x̃i take the form

H : [xi, xj] = 0, [xi, x̃j] = 0, [x̃i, x̃j] = iHεijkp̃k,

f : [xi, xj] = 0, [x̃i, x̃j] = 0, [xi, x̃j] = ifεijkp̃k,

Q : [x̃i, x̃j] = 0, [xi, x̃j] = 0, [xi, xj] = iQεijkp̃k,

R : [x̃i, x̃j] = 0, [xi, x̃j] = 0, [xi, xj] = iRεijkpk.



MAGNETIC FIELD ANALOGUE OF NC/NA

A spinless point-particle (e, m) in magnetic field background ~B(~x)

has commutation relations among its coordinates and momenta:

[xi, pj] = iδij, [xi, xj] = 0, [pi, pj] = ie εijkBk(~x)

leading to non-commutativity of pi in Maxwell theory, ~∇ · ~B = 0.

In Dirac’s generalization of Maxwell theory we have ~∇ · ~B 6= 0 and

[[pi, pj], pk] + cyclic ≡ [pi, pj, pk] = −e εijk~∇ · ~B 6= 0

Associativity of momenta is lost in the presence of magnetic charges.

This provides a simple model for NC/NA of string theory with xi ↔ pi.



Consider a continuous spherically symmetric distribution of magnetic

charge in space, ρ(x), to study (some of) the implications of NC/NA

in classical and quantum theory. Setting x2 = ~x · ~x, we have

~∇ · ~B = ρ(x), ~∇× ~B = 0 (static).

The particular solution of the inhomogeneous equation is expressed as

~B(~x) =
~x

f (x)
, ρ(x) =

3f (x)− xf ′(x)

f2(x)
.

Some notable example are:

• f (x) = x3/g so that ρ(x) = 4πg δ(x) [Dirac monopole with charge g]

• f (x) = 3/ρ so that ρ(x) = ρ is constant and ~B(~x) = ρ ~x/3 [cf R-flux]

Study the dynamics of point-particle for general profile function f(x).



Using the Hamiltonian H = ~p · ~p/2m, the Lorentz force acting on the

spinless particle (e,m) in the magnetic field background is

d~p

dt
= i[H, ~p ] =

e

2m
(~p× ~B − ~B × ~p )

which for ~B(~x) = ~x/f (x) takes the special form

d2~x

dt2
= − e

mf (x)

(
~x× d~x

dt

)
.

Lorentz force is proportional to angular momentum and does no work.

Energy conservation provides one integral of motion, E = A/2m.

Simple manipulation shows that x2(t) = At2 + D, setting x2(0) = D.

[D provides the closest distance to the origin (perihelion of trajectory)]

Complete integrability requires three more integrals of motion.



For general choices of profile function f (x), however, there are no

additional integrals, since

d

dt

(
~x× d~x

dt

)
= − e

mf (x)
~x×

(
~x× d~x

dt

)
=

e x3

mf (x)

dx̂

dt
.

Angular symmetry is broken in the presence of magnetic charges!

The only exception is the Dirac monopole having f (x) = x3/g. In this

case, the improved angular momentum ~J = m~K is conserved, where

~K ≡ ~x× d~x

dt
− eg

m
x̂

is the celebrated Poincaré vector.

In all other case, including constant f (x), angular symmetry is broken

and the classical motion of the particle appears to be non-integrable.



Trajectory of a spinless particle in the field of a magnetic monopole:

the charged particle (e,m) precesses with angular velocity ~K/(At2 + D)

• The magnetic monopole g is located at the tip of the cone

• The Poincaré vector ~K provides the axis of the cone

• ~K · x̂ = −eg/m determines the opening angle of the cone



ANOTHER LOOK AT ANGULAR SYMMETRY

Try to follow as closely as possible the conventional definitions and

algebraic structures of particle dynamics, without assuming particular

representations nor Hilbert space [only that ~p acts as derivation].

Assume that ~x and ~p form a complete and irreducible set of observables

for the point-particle in a static magnetic field ~B(~x).

Angular momentum ~J ought to satisfy the algebraic relations

[J i, xj ] = iεijk xk, [J i, pj ] = iεijk pk, [J i, Jj ] = iεijk Jk

so that angular momentum is conserved, [H, J i] = 0, in the background

of any spherically symmetric magnetic field ~B(~x).



Let ~J be the orbital angular momentum, plus an improvement term

that accounts for the angular momentum of the electromagnetic field

~J = ~x× ~p− ~C.

Then, we obtain the following conditions for ~C

[xi, Cj ] = 0, [pi, Cj ] = ie
(
xiBj − δij(~x · ~B)

)
,

Ci = exi(~x · ~B) +
i

2
εijk [Cj, Ck ].

The only consistent solution corresponds to the magnetic field of a

Dirac monopole, in which case J = ~x× ~p− eg x̂ [Poincaré vector].



Non-associativity is responsible for the violation of angular symmetry.

The apparent violation of non-associativity in a Dirac monopole field

is eliminated by imposing the boundary conditions Ψ(0) = 0 on the

wave-functions so that ~p (derivations) are represented by self-adjoint

operators, even though they are defined in patches as ~p = −i∇− e ~A.

Rotations by an angle θ around an axis n̂ (take n̂ = x̂) are described by

R(n̂ = x̂, θ) = e−iθ x̂·
~J = e−ieg θ.

Then, for a point-particle in a monopole field, single valuedness of R

(up to a sign) yields Dirac’s quantization condition eg = n ∈ Z (×~/2).

Finite translations in space also associate when eg is quantized.

In all other cases, non-associativity is for real, obstructing canonical

quantization. What can be used as substitute? −→ star-product.



DEFORMATIONS AND COHOMOLOGY

First, we focus on the case of constant magnetic charge density ρ for

which we have the basic commutation relations

[pi, pj] = i ~e
ρ

3
εijkxk, [xi, pj] = i~δij, [xi, xj] = 0.

They should be compared to the commutation relations of the so called

parabolic R-flux model whose coordinates and momenta satisfy

[xi, xj] = i ~
1

T 2
R εijkpk, [xi, pj] = i~δij, [pi, pj] = 0

where T is the string tension, c = 1, and R is a 3-form constant flux.

Associator/Jacobiator does not vanish when ~ and ρ are not zero

[p1, p2, p3] = [[p1, p2], p3] + cycl. perm. = − e~2ρ.



Different contractions of commutation relations of constant ρ model:

~ = 0, any ρ: [pi, pj] = 0, [xi, pj] = 0 (Algebra of translations t6)

~ 6= 0, ρ = 0: [pi, pj] = 0, [xi, pj] = i~δij (Heisenberg algebra g)

whereas in all cases the coordinates commute, [xi, xj] = 0.

The algebra of a charged point-particle moving in the magnetic field

background ~B ∼ ~x is a deformation of the Lie algebras above.

Lie algebra cohomology characterizes the deformation which leads to

non-associativity — Chevalley-Eilenberg cohomology

• cochains of Abelian algebra t6 with real values — H∗(t6, R)

• cochains of Heisenberg algebra g with values in g — H∗(g, g)



H∗(t6, R): Let TI = xi, pi the generators of t6. Consider a 3-cochain

with c3(p
1, p2, p3) = 1, up to normalization, and c3(TI, TJ , TK) = 0 for all

other choices of generators (i.e., when at least one T is x). We have

[TI , TJ , TK ] ∼ c3(TI , TJ , TK)

and, thus, only the associator [p1, p2, p3] does not vanish.

The obstruction satisfies the 3-cocycle condition dc3(TI, TJ , TK, TL) = 0,

since for any four elements of t6 we have

c3([TI , TJ ], TK, TL)−c3([TI , TK ], TJ , TL)+c3([TI , TL], TJ , TK)+

c3([TJ , TK ], TI , TL)−c3([TJ , TL], TI , TK)+c3([TK, TL], TI , TJ) = 0

• c3 is not a coboundary, i.e., c3 6= df2 in H∗(t6, R).



H∗(g, g): Let c2(p
i, pj) = εijkxk, up to a multiplicative constant, and

c2(x
i, pj) = 0 = c2(x

i, xj). Acting with the coboundary operator, we obtain

dc2(p1, p2, p3) = −c2([p1, p2], p3) + c2([p1, p3], p2)− c2([p2, p3], p1)

+π(p1)c2(p2, p3)− π(p2)c2(p1, p3) + π(p3)c2(p1, p2)

where π(g) = Adg = [g, · ]. Then, for the Heisenberg algebra, we have

dc2(p1, p2, p3) = [p1, c2(p2, p3)]− [p2, c2(p1, p3)] + [p3, c2(p1, p2)]

leading to alternative cohomological interpretation of non-associativity

[p1, p2, p3] ∼ dc2(p1, p2, p3)

• The cohomological interpretation depends on the module (R vs g).



LIE GROUP COHOMOLOGY

Exponentiate the action of the position and momentum generators.

The formal group elements

U(~a, ~b) = ei(~a·~x+~b·~p)

satisfy the composition law, obtained by applying the BCH formula,

U(~a1,~b1)U(~a2,~b2) = e−
i
2(~a1·~b2−~a2·~b1) e−i

R
2 (~b1×~b2)·~x U(~a1+~a2, ~b1+~b2).

Successive composition of any three group elements Ui = U(~ai,~bi) yields

(U1 U2) U3 = e−i
R
2 (~b1×~b2)·~b3 U1 (U2 U3)

which do not associate when R ∼ eρ 6= 0, setting ~ = 1.



If R were zero, we would have a projective representation of the

Abelian group of translations in phase space. The phase factor

ϕ2(~a1,~b1;~a2,~b2) = ~a1 ·~b2 − ~a2 ·~b1
is a real-valued 2-cocycle in group cohomology, satisfying

dϕ2(~b1,~b2,~b3) ≡ ϕ2(~b2,~b3)−ϕ2(~b1+~b2,~b3)+ϕ2(~b1,~b2+~b3)−ϕ2(~b1,~b2) = 0

and, thus, it does not show up in the associator, as in ordinary QM.

If R 6= 0, there is an additional x-dependent factor in the composition

law that gives rise to a phase in the associator of three group elements

ϕ3(~b1,~b2,~b2) = (~b1 ×~b2) ·~b3



The new phase is a real-valued 3-cocycle in the cohomology of the

Abelian group of translations in phase space, satisfying

dϕ3(~b1,~b2,~b3,~b4) ≡ ϕ3(~b2,~b3,~b4)− ϕ3(~b1 +~b2,~b3,~b4)+

ϕ3(~b1,~b2 +~b3,~b4)− ϕ3(~b1,~b2,~b3 +~b4) + ϕ3(~b1,~b2,~b3) = 0 .

A schematic representation is provided by Mac Lane’s pentagon:

(U1U2)(U3U4)

U1(U2(U3U4)) ((U1U2)U3)U4

U1((U2U3)U4) (U1(U2U3))U4



~a

~b

~b1

~b2

~b3

Geometric interpretation of the non-trivial cocycles ϕ2 and ϕ3:

Area(~a,~b) =
1

2
|~a×~b|

Volume(~b1,~b2,~b3) =
1

6
|(~b1 ×~b2) ·~b3|



ALTERNATIVE INTERPRETATION of non-associativity is provided

by the cohomology of Heisenberg-Weyl group with cochains taking

values in the Heisenberg algebra. Introducing the elements

UW (g) = ei(~a·~x+~b·~p+c1)

the group composition law U(~a1,~b1)U(~a1,~b1) takes the form

UW (g1) UW (g2) = e−i
R
2ϕ2(g1,g2) UW (g1g2)

where ϕ2(g1, g2) = (~b1 ×~b2) · ~x takes values in the Heisenberg algebra.

Then, the obstruction to associativity assumes the coboundary form

(~b1 ×~b2) ·~b3 = dϕ2(g1, g2, g3).

Group cohomology can be employed to define a NC/NA ?-product.



THE STAR PRODUCT

When R = 0, all classical observables f (x, p) are assigned to operators

F̂ (x̂, p̂) acting on Hilbert space H. Their product is non-commutative

but associative.

An equivalent description is provided by Moyal star-product in phase

space: Fourier analyse

f (~x, ~p) =
1

(2π)3

∫
d3ad3b f̃ (~a,~b)ei(~a·~x+~b·~p)

and apply Weyl’s correspondence rule to assign self-adjoint operators

F̂ (~̂x, ~̂p) =
1

(2π)3

∫
d3ad3b f̃ (~a,~b)Û(~a,~b)



where

Û(~a, ~b) = ei(~a·~̂x+~b·~̂p).

The product of any two operators takes the form

F̂1·F̂2 =
1

(2π)6

∫
d3a1d

3b1d
3a2d

3b2 f̃1(~a1,~b1)f̃2(~a2,~b2)Û(~a1, ~b1)Û(~a2, ~b2)

and it can be worked out using the composition law

Û(~a1, ~b1)Û(~a2, ~b2) = e−
i
2(~a1·~b2−~a2·~b1)Û(~a1 + ~a2, ~b1 +~b2).

The 2-cocycle ϕ2(~a1,~b1;~a1,~b1) = ~a1 ·~b2 − ~a2 ·~b1 makes the product of the

corresponding phase space functions non-commutative but associative.

The result turns out to be



(f1?f2)(~x, ~p) = e
i
2

(
~∇x1·~∇p2−~∇x2·~∇p1

)
f1(~x1, ~p1)f2(~x2, ~p2)|~x1=~x2=~x; ~p1=~p2=~p

giving rise to the series expansion

(f1 ? f2)(~x, ~p) = (f1 · f2)(~x, ~p) +
i

2
{f1, f2} + · · · .

Non-commutative geometry: the notion of point becomes fuzzy.

Quantum dynamics is equivalently described by the Moyal bracket

{{f1, f2}} ≡ −i(f1 ? f2 − f2 ? f1) = {f1, f2} + higher derivatives

acting as derivation

{{f1, f2 ? f3}} = f2 ? {{f1, f3}} + {{f1, f2}} ? f3.



When R 6= 0, the rules of canonical quantization do not apply, but it is

still possible to define a star-product non-commutative/non-associative.

We follow the same line of thought as before, assigning to f (~x, ~p)

F (~x, ~p) =
1

(2π)3

∫
d3ad3b f̃ (~a,~b)U(~a,~b),

and using the generalized composition law,

U(~a1,~b1)U(~a2,~b2) = e−
i
2(~a1·~b2−~a2·~b1) e−i

R
2 (~b1×~b2)·~x U(~a1+~a2, ~b1+~b2).

The result is the NC/NA x-dependent star-product

(f1 ?x f2)(~x, ~p) = ei
R
2 ~x·(~∇p1×~∇p2)e

i
2

(
~∇x1·~∇p2−~∇x2·~∇p1

)
f1(~x1, ~p1)f2(~x2, ~p2)|~x1=~x2=~x; ~p1=~p2=~p .



The substitute for quantum dynamics is provided by the bracket

{{f1, f2}}x ≡ −i(f1 ?x f2 − f2 ?x f1)

which does not act as derivation, i.e.,

{{f1, f2 ?x f3}}x 6= f2 ?x {{f1, f3}}x + {{f1, f2}}x ?x f3.

A related result is that the associator/Jacobiator does not vanish

{{f1(p), f2(p), f3(p)}}x 6= 0.

• Symmetries appear to be broken as consequence of non-associativity

like the breakdown of angular symmetry discussed earlier.



FURTHER GENERALIZATIONS

In the more general case, [p1, p2, p3] = −e~2 ~∇ · ~B is not constant. Static

spherically symmetric fields ~B = ~x/f (x), with x2 = ~x · ~x, yield

~∇ · ~B = ρ(x) =
3f (x)− xf ′(x)

f2(x)
.

Since [pi, pj] = i ~e εijkBk(~x), one can still think of the basic commutation

relations as deformation of the Heisenberg algebra g by a 2-cochain

c2(pi, pj) ∼ εijkBk(~x)

taking values in the space of (say) local smooth functions of x, which

is a g-module, and let c2 be zero otherwise. As before, we have



dc2(p1, p2, p3) = −c2([p1, p2], p3) + c2([p1, p3], p2)− c2([p2, p3], p1)

+π(p1)c2(p2, p3)− π(p2)c2(p1, p3) + π(p3)c2(p1, p2) .

For the Heisenberg algebra the momenta act as derivation and they

commute, so the computation results to

dc2(p1, p2, p3) = [p1, c2(p2, p3)]− [p2, c2(p1, p3)] + [p3, c2(p1, p2)] =

−i ∂
∂x1

c2(p2, p3) + i
∂

∂x2
c2(p1, p3)− i ∂

∂x3
c2(p1, p2) = − i~∇ · ~B ,

while dc2 vanishes identically for all other entries with one or more x.



This provides a universal cohomological interpretation of NC/NA, as

[p1, p2, p3] ∼ dc2(p1, p2, p3) .

The cohomological characterization of NC/NA can also be considered

at group level and use it to define the star-product for more general

distribution of magnetic charge, ρ(x).

Question: Is there a one-to-one correspondence between magnetic field

backgrounds and non-geometric closed string models? [under x↔ p]

• A way to go about it is to find the closed string analogue of a Dirac

monopole and use it to engineer more general string models for given

distribution ρ.



NON-ASSOCIATIVITY FOR INTEGRABILITY

Let me end with a brief discussion of yet another (less well known)

aspect of NC/NA that works for rather than against integrability.

A number of two-dimensional models in statistical mechanics have been

exactly solved using the so called triangle (or Yang-Baxter) relations.

Schematically, they are of the following form,

RabRacRbc = RbcRacRab

and they can be regarded as the associativity condition for an

L-operator algebra

L1,aL1,bRab = RabL1,bL1,a .



The triangle relations are the conditions for the row-to-row transfer

matrices to commute. Alternatively, these models can be put into field

theoretic form by considering the transfer matrix that adds a single

face to the lattice and regarding this as an S-matrix. Then, the triangle

relations become the condition for the S-matrix to factorize.

These structures can be generalized to three-dimensional models of

statistical mechanics and field theory. Then, one has the so called

tetrahedron (or Zamolodchikov) equations

RabcRadeRbdf Rcef = Rcef Rbdf RadeRabc

regarded as compatibility condition of the L-operator algebra

L12,aL13,bL23,cRabc = RabcL23,cL13,bL12,a .



The tetrahedron equations are the integrability conditions for the

transfer matrices of statistical models to commute and the S-matrix

of field theory models to be factorizable in three dimensions.

[there are also higher simplex equations in higher dimensions]

Theorem (Baez-Crans, 2003): Any semi-strict Lie 2-algebra provides

a solution of the tetrahedron equations, just as any Lie algebra provides

a solution of the triangle relations. [arXiv:0307263 [math.QA]]

Bottom line: These diverse results provide common ground for using

homotopy associative algebras in string theory, Maxwell-Dirac theory,

as well in higher dimensional integrable systems that is worth exploring

further by putting them all together.
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