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One of the approaches to the theory describing Planck scale is
to consider deformations of relativistic symmetries and
noncommutative spacetimes.

The κ-Poincaré algebra was obtained by the contraction of
q-deformed Anti de Sitter Hopf algebra Uq(o(3, 2))
[J. Lukierski, A. Nowicki, H. Ruegg, V. N. Tolstoy ’91];

The κ-Minkowski space was introduced as a quantum space
covariant under the action of κ-Poincaré Hopf algebra[S.
Majid, H. Ruegg ’94; S. Zakrzewski ’94];

Quantum deformations for Lorentz and Poincaré symmetries
have been classified in terms of classical r-matrices [S.
Zakrzewski ’96-7];

Parallel to Zakrzewski the dual matrix quantum group version
of Poincaré Hopf algebras were classified [P. Podles, S.
Woronowicz ’96];



Various physical applications of this mathematical framework
have been broadly investigated [G. Amelino-Camelia, M.
Arzano, P. Aschieri, M. Dimitrijevic, G. Fiore, L. Jonke,
J.Kowalski-Glikman, J. Lukierski, S. Majid, S. Meljanac, J.
Wess, M. Woronowicz].
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Preliminaries

Let V be a D-dimensional (real) vector space, with a metric
tensor g of arbitrary signature.
For an arbitrary basis {eµ}D−1µ=0 the metric components are
gµν = g (eµ, eν).
In the dual basis {eµ}D−1µ=0 in the dual vector space V# one

can write g = gαβe
α ⊗ eβ.

The (special) orthogonal group of g we denote as
SO (g) = {Λ ∈ GL(V ) : ΛTgΛ = g , det Λ = 1} and the
corresponding inhomogeneous orthogonal group as ISO (g) -
Poincaré group.



The Lie algebra of ISO(g) consists of 1
2D(D + 1) generators

(Mµν ,Pα) satisfying the standard commutation relations

[Mµν ,Mρλ] = i(gµλMνρ − gνλMµρ + gνρMµλ − gµρMνλ),

[Mµν ,Pρ] = i(gνρPµ − gµρPν) , [Pµ,Pλ] = 0.

The relation with the basis {eµ}D−1µ=0 of V is through the
(complex) vector representation

Mµν 7→ −i(gµαeν − gναeµ)⊗ eα ∈ EndV ⊗ C

The generators (Mµν ,Pα) can be treated as determining the
real form of the complex Lie algebra iso(g).



The original κ-deformation of Poincaré algebra corresponds to
the following classical r-matrix r = M0i ∧ P i .

The more general family was found (for any non-zero vector τ
and any metric tensor gµν) by Zakrzewski:

r(τ, g) = ταMαµ∧Pµ ≡ ταgβσMαβ ∧Pσ ≡
1

2
τxΩg ∈ ∧2iso(g)

where Ωg = Mµν ∧ Pµ ∧ Pν is the only invariant element in
∧3iso(g).

Additional vector field parametrizes classical r−matrices.
Non-equivalent deformations are labelled by the corresponding
type of stability subgroups of τ .

We are considering the Drinfeld-type quantization of
inhomogeneous orthogonal groups determined by a metric
tensor of an arbitrary signature living in a spacetime of
arbitrary dimension.



The Schouten bracket reads:
[[
r(τ, g), r(τ, g)

]]
= −τ2g Ωg where

τ2g ≡ τµτµ ≡ gµντ
µτν is the scalar square of τ w.r.t. the metric g .

This implies two possibilities:

1 τ 2g 6= 0 - the r-matrix satisfies MYBE (Modified Yang-Baxter Equation)
< − > providing the standard (a.k.a. Drinfeld-Jimbo) quantization with
the quasi-triangular quantum R−matrix.
In this case there exists a basis providing 1 + (D − 1) orthogonal
decomposition.
The stability subgroup of τg is a homogeneous orthogonal group SO(gij)
in D − 1 dimensions.
The signature of the metric gij indicates the orbit type.

2 τ 2g = 0 (provided non-Euclidean signature) with rτ satisfying CYBE
(Classical Yang-Baxter equation) < − > the non-standard (a.k.a.
twisted) triangular deformation.
Light-cone basis provides 2 + (D − 2) orthogonal decomposition.
The signature of the metric gab indicates the orbit type.
The stability subgroup is an inhomogeneous orthogonal group ISO(gab) in
D − 2 dim in this case.



κ (τ)-deformed (inhomogeneous) orthogonal Lie algebra

U (iso (g)) [[ 1κ ]] denoted as Uκ,τ (iso (g))- besides the standard
orthogonal Lie algebra structure, has deformed coalgebraic sector:

∆τ (Pµ) = Pµ ⊗ Πτ + 1⊗ Pµ −
τµ
κ
PαΠ−1

τ ⊗ Pα −
τµ

2κ2
CτΠ−1

τ ⊗ Pτ

∆τ (Mµν) = Mµν ⊗ 1 + 1⊗Mµν +
1

κ
PαΠ−1

τ ⊗ (τνMαµ − τµMαν)

− 1

2κ2
CτΠ−1

τ ⊗ (τµMτν − τνMτµ)

where Pτ = τµPµ,Mτλ = ταMαλ, τµ = gαµτ
µ. where

Πτ =
1

κ
Pτ +

√
1 +

τ 2

κ2
C , Π−1

τ =

√
1 + τ2

κ2
C − 1

κ
Pτ

1 + 1
κ2 (τ 2C − P2

τ )

τ 2Cτ = κ2

(
Πτ + Π−1

τ − 2 +
1

κ2

(
τ 2C − P2

τ

)
Π−1
τ

)
= 2κ2

(√
1 +

τ 2

κ2
C − 1

)

as formal power series in 1
κ

.

C ≡ PαPα = gαβPαPβ is the Casimir element.
For the case τ2 = 0 one should take Cτ = C .



Simultaneous re-scaling of τ and κ by the same factor does
not change coproducts involving these symbols, so it can be
treated as an isomorphism of the corresponding Hopf algebras,
i.e.

Uκ,τ (iso (g)) ∼= Uλκ,λτ (iso (g))

Thus one finds that the vector τ can be normalized to the
values τ2 = ±1, 0.



This unified description has the general covariance manifested via
tensorial character of all defining formulas.

Consider a change of basis in V : eµ 7→ ẽµ = Aαµeα by a

non-degenerate matrix Aβα ∈ GL(D,R).

Considering the new generators

P̃α = AµαPµ, M̃αβ = AµαA
ν
βMµν

together with g̃αβ = AµαAνβgµν and τ̃α = Aµατµ.

Note that τ̃α = (A−1)αµτ
µ and therefore Pτ̃ = Pτ .

Uκ,τ (iso (g)) ∼= Uκ,τ̃ (iso (g̃)) as Hopf algebras.

In particular, if Aβα ∈ O(g) then gαβ = g̃αβ (internal
authomorphism).
This fact is important for possible physical applications and
interpretations.

This transformation does not change the metric signature.



The universal formulas describe κ-Poincare Hopf algebra not
only in different Lie algebra basis induced by different basis in
the underlying vector space V but also provide the different
types of deformations.

This can be seen from

lim
κ�∞

κ(∆τ −∆op
τ )(X ) = [∆0(X ) , rτ ]

relating deformed coproducts with the corresponding classical
r−matrices, where ∆0(X ) = X ⊗ 1 + 1⊗ X denotes primitive
(undeformed) coproduct for X ∈ iso(g) and ∆op stands for
the opposite coproduct with flipped legs.

The right hand side defines cobracket determining Lie
bialgebra structures on iso(g).
Therefore our coproducts can be considered as their
quantization.



The orthogonal D = 1 + (D − 1) decomposition

For τ2 6= 0, one can assume τµ = (1, 0, . . . , 0), without a loss
of generality, by the choice of the suitable basis (eµ)D−1µ=0 in

the vector space V with e0 = τ and (ei )
D−1
i=1 being orthogonal

to τ : g00 = τ2 ; g0i = g(e0, ei ) = 0.

This provides the orthogonal decomposition
(V , gµν) ∼= (R, g00)× (VD−1, gij).

The (D-1) dimensional metric gij does not need to be in the
diagonal form.

Contracting the universal formula for coproducts with τµ yields

∆(Pτ ) = Pτ ⊗ Πτ + Π−1
τ ⊗ Pτ −

τ 2

κ
PαΠ−1

τ ⊗ Pα −
τ 2

2κ2
CτΠ−1

τ ⊗ Pτ

∆τ (Mτν) = Mτν ⊗ 1 + 1⊗Mτν +
1

κ
PαΠ−1

τ ⊗
(
τνMατ − τ 2Mαν

)
−

− τ 2

2κ2
CτΠ−1

τ ⊗Mτν



In the corresponding Lie algebra basis {Pτ ,Pi ,Mτ i ,Mij} one can

choose the new system of generators → {P̃τ , P̃i ,Mτ i ,Mij} with

P̃τ
.

= κ ln Πτ , P̃i
.

= PiΠ
−1
τ ⇒ Πτ = e

P̃τ
κ

which provides the deformed coproducts in the bicrossproduct (a.k.a.
Majid-Ruegg) basis

∆κ

(
P̃τ
)

= 1⊗ P̃τ + P̃τ ⊗ 1, ∆κ (Mij) = 1⊗Mij + Mij ⊗ 1 (1)

∆κ

(
P̃i

)
= exp(− P̃τ

κ
)⊗ P̃i + P̃i ⊗ 1 (2)

∆κ (Mτ j) = Mτ j ⊗ 1 + exp(− P̃τ
κ

)⊗Mτ j −
1

κ
τ 2P̃k ⊗Mkj (3)

The algebraic relations in this basis are

[Mτ i , P̃τ ] = −iτ 2P̃i , [Mij , P̃k ] = i(gjk P̃i − gik P̃j), [Mij , P̃τ ] = 0 (4)

[Mτ i , P̃j ] =
i

2
κgij

(
1− exp(−2P̃τ

κ
)− τ 2

κ2
P̃i P̃

i

)
+

iτ 2

κ
P̃j P̃i (5)

Comments:
− > The Lie algebra of the stability group Gτ consist of the elements {Mij} for
which the coproduct remains primitive.
− > The expressions (1)-(5) cover all the standard κ−deformations; for the
Lorentzian signature they describe both the time-like and the space-like
quantizations.



The light-like deformation and the 2+(D-2) decomposition

[A. Ballesteros, F.J. Herranz, M.A. Olmo, M. Santander (1995)]

In this case, i.e. when τ2 = 0, one deals with the
non-Euclidean geometry ISO(p, q); p, q 6= 0.
We use the ”light-cone” Poincaré generators:

Pµ = (P+ ,P− ,Pa) , Mµν = (M+− ,M+ a ,M− a ,Mab) , a, b = 1, 2 . . .D−2

as a basis in the Lie algebra iso(gp,q).

We have to decompose the space VD = V 2 × VD−2, by a
suitable choice of basic vectors, into the orthogonal product of
the two-dimensional Lorentzian space {V 2, gAB} with a D − 2
dimensional one {VD−2, gab}: (A,B = +,−),
(a, b = 1, 2 . . .D − 2).



The total metric gµν = gAB × gab becomes a product metric.

We choose gAB =

(
0 1
1 0

)
in its anti-diagonal (light-cone)

form as well as two null-vectors τµ ≡ τµ+ = (1, 0, . . . 0),
τ̃µ ≡ τµ− = (0, 1, 0 . . . 0): τ+τ− = 1 in order to obtain the
convenient light-cone basis in the space of the Lie algebra
generators.

This algebra consists of the following (non-vanishing)
commutators:

[M+ a ,M− b] = −i (Mab + gabM+−) , [M± a ,M± b] = 0

[M± a ,Mb c ] = i (gabM± c − ga cM± b) , [M+− ,M± a] = ±iM± a

[M+−,P±] = ±i P± , [M± a ,Pb] = igabP±

[M± a ,P±] = [M+− ,Pa] = 0 , [M± a ,P∓] = − iPa

together with the standard commutation relations within the
D − 2 dimensional sector (Ma b ,Pa , gab).



The total metric gµν = gAB × gab becomes a product metric.

We choose gAB =

(
0 1
1 0

)
in its anti-diagonal (light-cone)

form as well as two null-vectors τµ ≡ τµ+ = (1, 0, . . . 0),
τ̃µ ≡ τµ− = (0, 1, 0 . . . 0): τ+τ− = 1 in order to obtain the
convenient light-cone basis in the space of the Lie algebra
generators.

This algebra consists of the following (non-vanishing)
commutators:

[M+ a ,M− b] = −i (Mab + gabM+−) , [M± a ,M± b] = 0

[M± a ,Mb c ] = i (gabM± c − ga cM± b) , [M+− ,M± a] = ±iM± a

[M+−,P±] = ±i P± , [M± a ,Pb] = igabP±

[M± a ,P±] = [M+− ,Pa] = 0 , [M± a ,P∓] = − iPa

together with the standard commutation relations within the
D − 2 dimensional sector (Ma b ,Pa , gab).



The universal formula for the coalgebra structure, in this case,
reduces to

∆τ (M) = M ⊗ 1 + 1⊗M for M ∈ {M+ a ,Mab}
∆τ (P) = P ⊗ Π+ + 1⊗ P for P ∈ {P+ ,Pa}

∆τ (P−) = P− ⊗ Π+ + Π−1
+ ⊗ P− −

1

κ

(
P− +

1

2κ
C+

)
Π−1

+ ⊗ P+

− 1

κ
PaΠ−1

+ ⊗ Pa

∆τ (M+−) = M+− ⊗ 1 + Π−1
+ ⊗M+− −

1

κ
Pa Π−1

+ ⊗M+ a

∆τ (M− a) = M− a ⊗ 1 + Π−1
+ ⊗M− a −

1

κ

(
P− +

1

2κ
C+

)
Π−1

+ ⊗M+ a

− 1

κ
PbΠ−1

+ ⊗Mba

where Π+
.

= 1 + 1
κP+ and(

1− 1
κP+Π−1+

)
=

(
Π+ − 1

κP+

)
Π−1+ = Π−1+ and C+ is still to be

determined.

The Lie subalgebra corresponding to the stability group
of τ+ consists of iso(p − 1, q − 1) = gen{Ma b,M+ b}, i.e. the
generators with the primitive coproducts.



The classical r−matrix corresponding to the vector τ+ reads

rLC = M+− ∧ P+ + M+ a ∧ Pa

Since τ2+ = 0 it satisfies the CYB equation and generates the
non-standard (triangular) deformation.

Its construction involves two Abelian D − 1 dimensional
subalgebras Γ+ = gen{M+− ,P

a} and Γ− = gen{P+ ,M+ a}
satisfying certain cross-commutation relations.

The corresponding twisting element (extended Jordanian twist) has
the following form:

F = exp (−i ln Π+ ⊗M+−) exp

(
− i

κ
PaΠ−1

+ ⊗M+ a

)
= exp

(
− i

κ
Pa ⊗M+ a

)
exp (−i ln Π+ ⊗M+−)

Calculating coproducts directly from the twist:

∆LC (X ) = F∆0(X )F−1 = ∆τ (X )

And R = F21F−1 is a triangular quantum R−matrix.



Specialization of the deformation parameter κ to a
numerical value

One can consider sub-Hopf algebra generated by elements(
Mij ,Pi ,Mτ i ,Πτ ,Π

−1
τ

)
ΠτΠ−1

τ = 1 = ΠτΠ−1
τ ,

[Pi ,Πτ ] = [Mij ,Πτ ] = 0 , [Mτ i ,Πτ ] = − i

κ
Pi ,

[Mτ i,Pj ] = igij
κ

2

(
Πτ − Π−1

τ

(
1 +

τ 2

κ2
PmPm

))
.

Commutators with Π−1
τ can be easily calculated from the above (e.g.[

Mτ i ,Π
−1
τ

]
= ı

κ
PiΠ

−2
τ ).

∆τ (Πτ ) = Πτ ⊗ Πτ , ∆τ (Π−1
τ ) = Π−1

τ ⊗ Π−1
τ

∆τ (Pi ) = Pi ⊗ Πτ + 1⊗ Pi , i , j = 1, . . . ,D − 1

∆τ (Mij) = Mij ⊗ 1 + 1⊗Mij

∆τ (Mτ i ) = Mτ i ⊗ 1 + Π−1
τ ⊗Mτ i +

τ 2

κ
P jΠ−1

τ ⊗Mij

Further we can eliminate κ by setting κ = 1 or re-scaling Pi → 1
κ
Pi .



κ-Minkowski algebra
Mκ,τ - unital associative algebra generated by the noncommutative
spacetime coordinate generators x̂µ modulo the following relations:

[x̂µ, x̂ν ] =
i

κ
(τµx̂ν − τν x̂µ)

where τµ is a fixed four-vector from V ; µ, ν = 0, 1, . . . ,D − 1.

This algebra becomes a Hopf module algebra with respect to
the κ−deformed Hopf algebra structure, i.e. under the
module action . of the quantum Uκ,τ (iso(g))

Pµ . x̂
ν = −ıδνµ , Mµν . x̂

ρ = i
(
gµαδ

ρ
ν − gναδ

ρ
µ

)
x̂α

Under this action the algebra becomes a covariant quantum
space in a sense of the compatibility condition (a.k.a.
generalized Leibniz rule):

L . (x̂µ · x̂ν) =
(
L(1) . x̂

µ
)
·
(
L(2) . x̂

ν
)



Remarks:

the metric components are not involved in the definition of
κ, τ -Minkowski algebra, so the algebra is independent of the
metric itself and the metric signature in particular.

It is generally covariant, i.e. introducing new generators
x̃α = (A−1)αµ x̂

µ and new components τ̃α = (A−1)αµτ
µ

(ẽα = Aµαeµ,A
µ
α ∈ GL(D)) one preserves the form of

κ, τ -Minkowski algebra.

It shows that the κ, τ -Minkowski algebra is, in fact,
independent of the components of the vector τ 6= 0 (for τ = 0
one obtains undeformed Abelian algebra).

One can always reach the well-known standard form of the
κ-Minkowski spacetime algebra - by taking any basis with
e0 = τ :[

x̂0, x̂ i
]

=
i

κ
x̂ i ,

[
x̂ i , x̂ j

]
= 0, i , j = 1, . . . ,D − 1

One can conclude that up to the isomorphism mentioned above,
for any dimension there is only one κ−Minkowski spacetime
algebra Mκ,τ .



Extended κ−deformations
Zakrzewski already proposed a list of Abelian extensions of rτ
which we can be used in the time-, light- and space- like cases of
the vector τ :

rτ,ext = rτ + ξPτ ∧ X , [Pτ ,X ] = 0

where X belongs to a Lie algebra for the stability subgroup Gτ of τ
(rememberthat for time-like case, Gτ = SO (3); for light-like case
Gτ = E (2) = ISO (2); for space-like case Gτ = SO(2, 1). Here ξ is
a new (independent) deformation parameter. Later on Lyakhovsky
found more sophisticated extensions of a time-like κ−Poincaré case
(11 subcases) showing at the same time that the list presented by
Zakrzewski is incomplete (as already mentioned by Zakrzewski
himself). According to our best knowledge the problem of final
classification is still open. It what follows we are using twist
(star-product type) technique in order to deform κ-Minkowski
algebraic relation as well as the corresponding quantum group
coproducts.



type r-matrix algebra type

light-like case with τ+ = (1, 0, 0, 0) metric in 2 + 2 decomposition

L1 ξP+ ∧ M+1 M3
a=1

L2 ξP+ ∧ M3 M6
a,b with a = −

(
3+(2κξ)2

)
9

; b =

(
1+(2κξ)2

)
27

space-like case with τµ = (0, 1, 0, 0) and ηµν = (+,−,−,−)

S1 ξP1 ∧ M1 M6
a,b with a = −

(
3+(κξ)2

)
9

; b =

(
1+(κξ)2

)
27

S2 ξP1 ∧ (M1 + N3) the same as S1

S3 ξP1 ∧ N3 the same as S1

time-like case with τ = (1, 0, 0, 0) and ηµν = (−,+,+,+)

T1 ξM3 ∧ P0 M6
a,b with a = −

(
3+4(ακ)2

)
9

, b =

(
1+4(ακ)2

)
27

T3 ± 1
2κ

M3 ∧ P0 + ξM̃± ∧ P̃± M13

b=− 2
9

(as complex algebra)

T4 ± 1
κ
M3 ∧ P0 ± ξ(P3 ∧ M̃± + M3 ∧ P̃±) M8 (as complex algebra)



Solvable Lie algebras

For given Lie algebra g we define a sequence of subalgebras of g
(the so-called lower derived series) by setting g(0) = g,
g(1) = [g(0), g(0)], ..., g(i) = [g(i−l), g(i−l)]. We call g solvable if
g(n) = 0 for some finite n. In a similar manner, the upper sequence

g(0) = g, g(1) = [g, g(0)], ..., g(i) = [g, g(i−l)] determines nilpotent
Lie algebras. For example, nilpotent (e.g. Abelian) algebras are
solvable, whereas semisimple algebras are definitely nonsolvable.
Moreover, a finite dimensional Lie algebra g over a field of
characteristic zero is solvable if and only if g(1) ≡ g(1) is nilpotent.
Classification of all three dimensional real Lie algebras is well
known for a long time since Bianchi 1898 (Lie himself had earlier
classified the complex ones).
Four dimensional case has been solved by J.Patera 1976.



Some four-dimensional solvable Lie algebras according to
W. A. de Graaf, Experiment. Math. Volume 14, Issue 1,
15-25 (2005)

M2 where
[
x0, x1

]
= x1;

[
x0, x2

]
= x2;

[
x0, x3

]
= x3

(four-dimensional κ−Minkowski spacetime algebra); In dim=3
corresponds to Bianchi V.

M3
a :[
x0, x1

]
= x1;

[
x0, x2

]
= x3;

[
x0, x3

]
= −ax2 + (a + 1) x3,

where a ∈ R (or C)

M6
a,b:

[
x0, x1

]
= x3;

[
x0, x2

]
= x1;

[
x0, x3

]
= x3 + ax2 + bx1,

where a, b ∈ R (or C)

M8 :
[
x1, x2

]
= x2;

[
x0, x3

]
= x3

M13
b :[
x0, x1

]
= x1 + bx3;

[
x0, x2

]
= x2 =

[
x3, x1

]
;
[
x0, x3

]
= x1,

where b ∈ R (or C)



L1) From twist one obtains the ?-commutators:[
x+, x1

]
?

=
i

κ
x1 + 2iξx−;

[
x+, x2

]
?

=
i

κ
x2;

[
x+, x−

]
?

=
i

κ
x−(6)

Check that for arbitrary (real) values of κ, ξ this is a solvable Lie
algebra. Firstly we notice that the coordinates

(
x1, x2, x−

)
make a

L1 Abelian 3 dimensional subalgebra. Thus 4-dimensional algebra
can be classified as M3

a=1 in the following way:

1. firstly we rescale x+ as κ
i x

+ = x̃0 to obtain[
x̃0, x1

]
= x1 + 2κξx−;

[
x̃0, x2

]
= x2;

[
x̃0, x−

]
= x−.

2. then change the generators as x̃1 = x1 + βx− and
x̃− = x1 + γx− to get[
x̃0, x̃1

]
= x̃− with γ = (2κξ + β) and

[
x̃0, x2

]
= x2;

together with
[
x̃0, x̃−

]
= −x̃1 + 2x̃−.

Finally, this algebra can be classified regardless the specific values
for the parameters κ.ξ as

M3
a=1 :

[
x0, x1

]
= x3;

[
x0, x2

]
= x2;

[
x0, x3

]
= −ax1+(1 + a) x3; for a = 1

(7)



Summary

The universal formulas for the deformed Poincaré algebra -
depend on the choice of the additional vector field τ and
allow one to consider three cases of deformations all being
the symmetry of the corresponding noncommutative
κ(τ)-Minkowski spacetimes.

Thus non-equivalent deformations are classified by the
stability subgroups of the vector τ .

Extending κ−deformations one obtains a new class of
(covariant) quantum spaces (deformed κ−Minkowski
spaces). In some cases specialization is possible.

more in SIGMA 10 (2014), 107 [arXiv:1404.2916]


