Physics at FCC-ee

A. Blondel

see presentations and contributions by M. Dam, M. Klute, P. Janot, S. Monte:il,
M. Koratzinos, A. Blondel at HEP-EPS 2015 in Vienna.
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Finding the
Higgs boson




1994-1999: top mass predicted (LEP, mostly Z mass&width)
top quark discovered (Tevatron)
t’Hooft and Veltman get Nobel Prize

T II IIT

Bosons

(c) Sfyrla




1997-2013 Higgs boson mass cornered (LEP H, M, etc +Tevatron m, , M,,)
Higgs Boson discovered (LHC)
Englert and Higgs get Nobel Prize

T II IIT

Bosons

IT LOOKS LIKE THE
STANDARD MODEL
IS COMPLETE.....

(c) Sfyrla
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(G
- Is it the end?

Certainly not!
-- Dark matter
-- Baryon Asymmetry in Universe
-- Neutrino masses

are experimental proofs that there is more
to understand.
We must continue our quest

HOW?

Detection through direct observation or
deviations from precise predictions (ref. uranus to Neptune)
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THE LHC is a Higgs Factory

several Million Higgs already produced - more than most Higgs factory projects.
15 Higgs bosons / minute - and more to come (gain factor 3-6 going to 13 TeV)

Difficulties: several production mechanisms to disentangle and
significant systematics in the production cross-sections o, -
Challenge will be to reduce systematics by measuring related processes.
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at least 3 pieces are still missing
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Since 1998 it is established that neutrinos have mass

and this very probably implies new degrees of freedom

=>» «sterile», very small coupling to known particles

completely unknown masses (eV to ZeV), nearly impossile to find.
.... but could perhaps explain all: DM, BAU,v-masses




Future Circular Collider Study - SCOPE

CDR and cost review for the next ESU (2018)
international design study:

» pp-collider (FCC-hh)
-> defining
infrastructure
requirements

~16 T = 100 TeV pp in 100 km
~20 T =100 TeV pp in 80 km

« e*e collider (FCC-ee) as
potential intermediate
(i.e. first) step
ECM=90-400 GeV

« p-e (FCC-he) option

« 80-100 km infrastructure
in Geneva area ture Circular Colliders




y Tunnel Iocati'on:-- tO
7%
¢ Minimize ground coverage

— Hydrostatic pressure for TBM tunnelling
— Shaft depth/cost

Lac Léman
300 - 372 m/mer

_ Plaine du
genevois

' *’f“ Rhone 350~ 550 mimer
& I[I ‘m/mer "

pA-OPAHm FCC-ee Workshop Paris Oct 2014 10 46



93km

Alignment shatt lools

Choose alignment optien

“optimised” racetr:

PRELIMINARY

me.

_|—||—| e [y

shaft Lepths

Geology (m}
9km quasieircular ¥ Shef) Maiehie Mudaase Calcaie
: S — 3
Tunnzl depth at centre: 236mASL =
2 :
Grodiont Paramotors 3
Azimuth (7} -15 4
Slope Angic x k[%): 3 E
¢
Siopahngle y4T%) el
7
CAL CLNATF A =T i
Alignment centre g -
¥ 2493001 Y. 1105695 10 247
LHEC Intersection P71 Ip2 11 |
Anglo 37 =k 12 IR . 187
Depth J42m  Dd4Zm Total 2014 3801 3607 242N 11 2062 247
Alignmant Profila
o —3urface
—Lake
%00 —Molasse
00 “Calcaire
" = alignmert
03 —shzft

'E'I‘x‘l'l'!’

F #00m

=

L #90nw
200w

M

100w

DOk 10km

Bi: L ebrhn

i agkm - o
Tstenes along sy cdockease Do CFRK (i

£0km
1

ToEM F0Em BOkmy

J. Osborne & C. Cook

FCC-ee Workshop Paris Oct 2014 L ] )



(Eg)ojggjpossible long-term strategy

FCC-ee (80-100 km,
e*e, up to
~350 GeV c.m.)

FCC-hh

(pp, up to
100 TeV c.m.)




GD)

LEP3, CEPC and TLEP/FCC-ee

Circular e+e- colliders designed to study the Higgs boson
but also: Z, W and top factories

Accelerator ring

Collider ring

AB, F. Zimmermann
Dec. 13 2011
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Origincil motivation (end 2011): now that m_H and m_top are known,
explore EW region with a high precision, affordable, high luminosity machine

=> Discovery of New Physics in rare phenomena or precision measurements

ILC studies > need increase over LEP 2 (average) luminosity by a factor 1000
How can one do that without exploding the power bill?

Answer is in the B-factory design: a low vertical emittance ring with

higher intrinsic luminosity, and small °, (1mm vs 5cm at LEP) 50
Electrons and positrons have a much higher chance of interacting

= much shorter lifetime (few minutes)

= top up continuously with booster ==> increase operation efficiency 5
Increase SR beam power to 50MW/beam 4
1000

Accelerator rinE

at ZH threshold

in LEP/LHC tunnel
X4 in FCC tunnel

X 4 interaction points
ah-ah!

Collider ring -

06.07.2015 14




Q“:”E ) (D)
SuperKEKB — TLEP demonstrator!

beam
commissioning will
start in 2016

* B,*=300 um (TLEP: 1 mm)
* lifetime 5 min (TLEP: “15min) = ‘s

* £,/€,=0.25% (“TLEP) | C
* off momentum acceptance
* e* production rate

06.07.2015 Alain Blondel FCC Future Circular Colliders 15 2 A




( FCCS Toping up ensures constant current, settings, etc...
Hih 22 ha

and greater reproducibility of system
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LEP2 in 2000 (12th year!):
fastest possible turnaround but
average luminosity ~ 0.2 peak luminosity
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B factory in 2006 with toping up
average luminosity = peak luminosity




The Higgs at a e+e- Collider has been studied for many years (Tesla, ILC, CLIC)

At a given Ecm and Luminosity, the physics has marginally
to do with the fact that the collider is linear or circular

--specifics:
-- e- polarization is easy at the source in LC, (not critical for Higgs)
-- EM backgrounds from beam disruption at LC
-- knowledge and definition of beam energy at CC
-- one IP (LC) vs several IPs (CC)
-- Dependence of Luminosity on Center-of-mass energy =2

-- detectors are likely to share many qualities.

06.07.2015 Alain Blondel FCC Future Circular Colliders 17




/e N0\
Provide highest possible luminosity from Z to tt by exploiting b-factory technologies:
¢ separate e- and e+ storage rings

e very strong focussing: B*y = 1mm

¢ top-up injection

¢ crab-waist crossing

10°

TG
ILC cLuml Upgrqdel

—e
o
T2

Luminosity [10%* cm2s™]
o

R s
|_(_15 5DC GeV 18% 10 em®

0 1000 2000 - 3000
Vs [GeV]

Overlap in Higgs/top region, but differences and complementarities
between linear and circular machines:

Circ: High luminosity, experimental environment (up to 4 IP), E., calibration
Linear: higher energy reach, longitudinal beam polarization




«F'I )) Experimental conditions

--2-4IPs L™~2m

-- bunch crossing spacing from 2-5 ns (Z) up to 3us (top)
-- no pile-up (<0.001 at FCC-Z/CrabWaist)

-- beamstrahlung is mild for experiments

3 | [FCCZ FCCZcw  CEPC
% 107 3 Npairs / BX 200 9900 3260 640 165000
£ ot i Leading 96% LL 65%LL  |80%LL  90%LL |60% BH
3 f j process
3 Epairs/BX 86 2940 2600 570 400000
otk 1 (GeV)
10k j b | y Leading 100% LL 100% LL 98% LL 96% LL 70% BH
200 210 220 230 2-'1-?_5 {Gaé:;jﬂ' pmcess

-- Beam energy calibration for Z and W running
-- IR design with crossing angle is not trivial

=» a challenging magnet design issue.

9/10/2015 Alain Blondel FCC Future Circular Colliders




(Fco)

Of particular importance

Requirements dominated by Z line shape and peak cross-section measurements

t |
25 250

: luminosity monitors

Shift in parameter for a shift

of +10* in acceptance

=
e ]

“front | Tmin  Tmax frain Pmax 7 | 02front  9"min  OTmax
lmm| | [mm] [mm| | [mrad] [|mwrad| | [ob] | [gm]  [pm]  [gun)
1000 30 115 30 115 10 50 —2.1 6.1
1300 39 157 68 121 15 69 —3.0 17
1500 95 185 63 123 2;3 7 —3.5 26

9/10/2015

Alain Blondel FCC Future Circular Colliders
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(Fco)

Final Focus layout: sketch of solenoids

| Trajectories at 20 | G0=-92.4 T/m, R0=1.2 cm, A x=3.5cm, E=175 GeV
R G1=87.7.T/m, R1=1.9 cm, A x=14.2 cm, 26=30 mrad
0.2 - 100mrad —85mrad ; -

0.15E ' |

0.1F

Main H=2 T , ; 5 5 5 .
"02 PO T T T T T N S T T N i | f, T I [ T T T T T O |

0 1 2 3 4 5 6 S

Solenoid compensation and integration (similar to superKEKB)
integration of luminosity monitors
Synchrotron radiation

=>» creation of dedicated MDI group.
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Q Higgs production mechanism

“higgstrahlung” process close to threshold
Production xsection has a maximum at near threshold ~200 fb
1034/cm?2/s =» 20’000 HZ events per year.

Z — tagging
by missing mass

For a Higgs of 125GeV, a centre of mass energy of 240GeV is sufficient
=» kinematical constraint near threshold for high precision in mass, width, selection purity

06.07.2015 Alain Blondel FCC Future Circular Colliders 22




Events / (0.2)

2 B 3

ZH - ptpX

« Sig+Bkg

Sig

— Fit to Sig+Bkg
--=== Fit to Bkg

by miss
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Mecoi (GEV)

150

| Z -> I+l- with H -> anything |

Z — tagging

Ing mass

total rate o< g,,,2

277 final state oc g,;,,%/ 'y

=>» measure total width 'y
empty recoil = invisible width
‘funny recoil’ = exotic Higgs decay
easy control below theshold

CMS Simulation
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( ( F-CIFcceeas " o
Higgs factory W

. : - H
-(const-ralned fI’F aips TLEP (2 IPs) e
including ‘exotic’)
gHTT, 0.05% (0.06%9) 2 10° ZH events in 5 years
gaww | 0.09% (0.11 ‘?‘E:} «A tagged Higgs beamn.
U‘. ] grxt {U‘ 2 ,}!r sensitive to new physics in loops
JHbb
(Hee 0.68% 0. .5_[";,[ ) incl. invisible = (dark matter?)
" NB leptonic tag only.
o7
1 JHgg 0.79%) (0.97%) /' Will improve with Hadronic Z tag
107
GHrT 0.49%  (0.60% )/ A big challenge, but unique:
QH## 62:’ {?}}({} Higgs s-channel production at \s = my,
T~ I 4, /(/] 700) et x . f
: - NG
BR [}. 169%) (0.20%) ¢ N
X0
10* events per year. limits or signal?
= total width <1% monochromators?
HHH [ (hest at FCC-hh) 28% —z, from HZ thresh IarCA/eksan, D’Enterria, Woijcik »

Hi#t (best at FCC-hh) 13% —> from tt thresh
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Measurement precision on ks, k-, and k; measured both directly via ttH and through global

fits at different facilities.

Figure 1-4.
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Measurement precision on kw, Kz, K+, and kg at different facilities.

Figure 1-3.
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(Fco) :
rheshe Performance Comparison

Oz X 9124229 and o HZ W L BR(H — XX)oc gIZ-IZZ,HVWVgIZ-I)O( /Ty

e Same conclusion when I'}; is a free parameter in the fit

‘C‘l‘i‘t 4 f_ ..... L C3E0)

S E |=TLEP240 o .

.§ 3 - _TLEP350 ........................................................................................................................................ Expected preCISIon on the total Wldth
o

[T T ILC350 ILC1000 | TLEP240 TLEP350

+1% 5% | 5% 3% 2% 1%

HZZ Hbb Hcce Hgg HWW Hrtt

TLEP : sub-percent precision, BSM Physics sensitivity beyond several TeV
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‘ very accurate precision on threshold cross-section sensitive to loop corrections
( T

2

" . ot _ g &
\ ) ' VA A
+ I > .f rrr \ur’f‘ﬂ/ i > JJJJ
ye| Yotd (ol Y )
/ 0 J / h [ N |

6240 — 100 (267 + 0.0146;) %

OZh =

arxiv:1312.3322

100f e sncey L
. - — 2P=04%, 53P=1%
= \ery large datasets at high energy
allow extreme precision gz+ SO 1L
measurements | meitev \
. g 0" fociTev-1L \_\
= |ndirect and model-dependent & | LN
probe of Higgs self-coupling | :
—50}!
= Note, the time axis is missing from '
the plot _100} -
-15 —-10 -05 00 05 10 15
19 07 %)
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First generation couplings

= s-channel Higgs production
@ Unique opportunity for measurement close to SM sensitivity

@ Highly challenging; o(ee—H) = 1.6fb; 7 Higgs decay channels studied

i > S .. Convolution Breit-Wigner (I',=4.2 MeV)
. F: E ! with Gaussian beam spread X(MeV)
i § . S
ol v - -V Preliminary Results
.'E J-:'-!' - T E £ ;
% o9 v = n% 0.6 . 1
g _a* @ : L =10 ab-1 {
* 0 ‘ = — | — =
'¢ T 1#.-'___:‘.0_..' sebb ]
" . 1259 115950 ‘:_:E:E::]‘“ 12% 050 126 100 KE < 2.2 at 30 i
10| .*° o4 e e
e 3 3 0 o ;
e L1 10
mass (GEV) Energy € beam spread (MeV)

= Work in progress
@ How large are loop induced corrections? How large are BSM effects?

@ Do we need an energy scan to find the Higgs?
@ How much luminosity will be available for this measurement? By how much is the
luminosity reduced by monochromators?

06.07.2015 LRRGAER AFAUVAIVILA & L A MLMAL AL VWAL UL
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Exclusive Higgs boson decays

= [irst and second generation
couplings accessible

@ otudy of py channel most
promising; expect ~50 evts.

@ Sensitivity to u/d quark Yukawa
coupling

@ Sensitivity due to interference

BRh—I'p'r ol HT [(lgi 0-15).‘5-:.- = 0-24&-“ = Dl?f_ﬂd]

=%
BR,, . 0.57%2 %

= Also interesting to FCC-hh program

= Alternative H—MV decays should
be studied (V=vy, W, and Z)

06.07.2015
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CP Measurements

= CP violation can be studied by
searching for CP-odd contributions;
CP-even already established

= Snowmass Higgs paper ntpaniv.org/abs/
1310.8361

= Higgs to Tau decays of interest

= \ore detailed presentation by Felix Yu
http-//arxiv.org/abs/1308.1094
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Rare and Exotics Higgs Bosons

= 2 000,000 ZH events allow for detailed studies of rare and
exotic decays
h — ,l/l

@ requires hadronic and invisible Z decays s

@ set requirements for FCC-ee detector N
= Coupling measurements have sensitivity to BSM decays h — 2b2p
= Dedicated studies using specific final states improve sensitivity ::I“

= Example: Higgs to invisible, flavor violating Higgs, and many P
more h— dy

= Potential at the LHC (and HL-LHC) currently not fully explored  *— 7?77~ 4

= Modes with of limited LHC sensitivity are of particular : ) :’; -
importance to FCC-ee program MH;_
@ currently under study h — 4 ISOLATED LEPTONS + &,
= FCC-ee might allow precision measurement of exotic Higgs ho 2 X
decays h — ONE LEPTON-JET + X |
= Detailed discussion of exotic Higgs decays at Phys. Rev. D 90. | .. |
075004 (2014) More from David Curtin e et
06.07.2015 32



FCC-hh parameters

parameter FCC-hh

energy cms [TeV] 100 14

dipole field [T] 16 8.3

#IP 2 main & 2 2 main & 2
bunch intensity [10"] 1 1 (0.2) 1.1 2.2
bunch spacing [ns] 25 25 (5) 25 25
luminosity/lp [10%4 cm2s-1] 5 20 1 5
events/bx 170 680 (136) 27 135
stored energy/beam [GJ] 8.4 0.36 0.7
synchr. rad. [W/m/apert.] 30 0.2 0.35

2.5 103°cms? is the goal luminosity of FCC-hh
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8 TeV

Process

HIGGS AT FCC-pp
- > 4 oF

=] L
1'.'}'5

10E

—_—1
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P -
Lam R e Ryl el
F ey QUL T .
1E AN T e e
E o HLNE E

T R
EFT FRCSITE TR AT 2

T . M, = 125GeV -
'_ P ] MSTW2008 .
aF to HH o] o il | | R
78910 20 30 40 50 B0 ?EE[TE’]
Proton-proton LHC + HL *. FCC
Higgs datasets Runl o000 EHC 000 Pp
HL-LHC HELHC VLHC  gw: e —
Vs (TeV) 14 33 100 ﬁ o |
J £t (fb71) 3000 3000 3000 5233 | } | -
o-BR(pp = HH — bbyy) (fo)  0.089 0.545 3.73 -aa;— l
S/VB 2.3 6.2 15.0 ol ' !
X (stat) 50% 0% 8% o ] \
arXiv:1310.8361 L e
1 0 - &5:1, : .D’i“ HIL:-:H{ ILF.:‘TN, HE: HC EI.:C:‘I'-"!, 'm'r.iE-LH{
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(/E%\

= ... but also new measurements not possible at the LHC/HL-LHC

ttH / ttZ

= Theoretical uncertainties cancel mostly
@ PDF (CTEQ 6.6) +£0.5%
@ Missing higher orders = 1.2%

= One can not conclude that one can measure the cross section ratio with
~2% (dA\iop = 1%) precision. More detailed studies are ongoing.

=» Lots of statistics and ideas for small systematics
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FCC Higgs physics program

TT cc SS MM uudd ee M

-4 015 0.19 15 0.42 0.54 0.71 H-Vy H-Vy ee-»H 0.9

= Summary of FCC-ee studies and “guesses” for FCC-hh
performance. Uncertainty in %.

= Almost perfect complementarity between FCC-ee and
FCC-hh program
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FCC

TERA-Z, Oku-W, Megatops

Precision tests of the
closure of the Standard Model
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Precision tests of EWSB

Z pole ssymmetries, lineshape

WW threshold scan
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TLEP : Repeat the LEP1 physics programme every 15 mn
Transverse polarization up to the WW threshold

» Exquisite beam energy determination (10 keV)
Longitudinal polarization at the Z pole
> Measure sin%0,, to 2.10°¢ from A
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relationship between the 2 Gg m, I+ ﬂ? | = ﬁa
input quantities and the others. w
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ey
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at first order:
Ap=a /m (My,/my)?

-a /4n log (m,/m,)?

g, = €0s20,, a /91 log (m,/m,)?

Oy =20/13 o /m (My,,/m;)?

complete formulae at 2d order
including strong corrections
are available in fitting codes

e.g. ZFITTER, GFITTER

Alain Blondel Futur




EmmFurs_E;; LooPs

23 A\ Zo 1 Z propegalor
= ?-w-'d'“-v,, ﬂ.&’ﬂmwﬁ{&
e T - univensal
B¢ , €

VEETEY (oRRECTIONS
nom - wema-ﬂ
b
By

W mp&gﬂi@f

= wwmass
€a

W pro pagelor
ﬂ." Eou:r q’l
orrehion B G'F _

10.09.2015 Alail 40




Exam pIe (from Erler &Freytas PDG 2014)
Ap =g;=a(M,) . T
€5=4sin’0,, a(M,) . S

Ap today = 0. 00040 +- 0.00024

-- is consistent with O at 1.7c

-- is sensitive to non-conventional Higgs bosons (e.g. in SU(2) triplet with ‘funny v.e.v.s)
-- is sensitive to Isospin violation such as m,# m, or ibid for stop-sbottom

-- does not decouple!

3Gr C'; 5
po=1+—~L Y —EAm?, (10.63)
8212 &~ 3
i
) X . ' g0 )
where the sim includes fourth-family quark or lepton doublets, (;,) or (- ). right-handed
(mirror) doublets, non-degenerate vector-like fermion doublets (with an extra factor of

2), and scalar doublets such as (!}) in Supersymmetry (in the absence of LR mixing).

have these symmetries

C ¢;} # 1)
Present measurement implies E TT‘ Am; < (52 GeV)~. Most e.g. SUSYmodels
¢ embedded from the start

" -

Today, the larger possible mass splitting of an SU(2) doublet is 50 GeV
no matter what its mass is.




Beam polarization and E-calibration @ FCC-ee

E [MeV]

Precise meast of E, ., by resonant depolarization g

~100 keV each time the meast is made i\ ‘ T Jﬁ%ﬂ%
+

At LEP transverse polarization was achieved routinely at Z peak.

instrumental in 103 measurement of the Z width in 1993 - + N

led to prediction of top quark mass (179+- 20 GeV) in March 1994 ™ & e e s
Polarization in collisions was observed (40% at BBTS = 0.04)

At LEP beam energy spread destroyed polarization above 60 GeV
Of ocEZ/x{o =» At FCC-ee transverse polarization up to at least 80 GeV
to go to much higher energies requires spin rotators and siberian snake

FCC-ee: use ‘single’ bunches to measure the beam energy continuously
no interpolation errors due to tides, ground motion or trains etc...
but saw-toothing must be well understood! require Wigglers to speed up pol. time

<< 100 keV beam energy calibration around Z peak and W pair threshold.
'"Ani)'~0.1 MeV, AT, ~0.1 MeV, Am,, ~ 0.5 MeV .



best-of ee-FCC/TLEP #2: Precision EW measts

Asset: -- high luminosity (10'? Z decays + 102 Wpairs + 10° top pairs )
-- exquiste energy calibration up and above WW threshold

target precisions
Quantity Present Measured Statistical Sy stematic
precision from uncertainty uncertainty

my (keV)

91187500 £ 2100

Z Line shape scan

D (6) keV

100 keV)

T'z (keV)

2495200 + 2300

Z Line shape scan

8(10) keV

< 100 keV

Ry 20.767 4 0.025 Z Peak 0.00010 (12) < 0.001
N, 2.984 4+ 0.008 Z Peak 0.00008 (10) < (.004
N, 2.92 4+ 0.05 L. 161 GeV 0.0010 (12) < (0.001
iy, (0.21629 4+ 0.00066 Z Peak 0.000003 (4) < 0.000060
Arr 0.1514 4+ 0.0022 Z peak, polarized 0.000015 (18) | < 0.000015

mw (MeV)

B03%85 £ 15

WW threshold scan

0.3 (0.4)MeV

€05 MeV>

m t.UP {P\'L‘] C \"I'III }

173200 -+ 9500

tt threshold scan

10 (12) MeV

< 10 MeV

Also -- Asin? 0y, =106
-- Aag=0.0001 from W and Z hadronic widths
-- orders of magnitude on FCNCs and rare decays etc. etc.

Design study to establish possibility of corresponding precision theoretical calculations.

9/10/2015

Alain Blondel FCC Future Circular Colliders




(Fco)

best-of ee-FCC/TLEP #2: Precision EW measts

Asset: -- high luminosity (102 Z decays + 102 Wpairs + 55, Y pairs )
’:}‘* L
-- exquiste energy calibration up and abo;: @\Q\@ «F ‘old
A
¥ b 2 3 v
— T g7 N g W - ;
Quantity Present Muhun,dx L S Sy stematic
precision fror ,@:@3 .@,W\fcg \e}u\ﬂ Aty uncertainty
. e e S e =3 >
my, (keV) 91187500 £2100 | Z L:@@fﬂi\@%‘*_ & 2 () keV 100 keV.)
Ty (keV) 2495200 + 2300 ;;:;@K - Wa &< & 8(10) keV < 100 keV
X Ak - -
R, 20.767 £ 0.025 <%, R, 0.00010 (12) | < 0.001
N, 2984 £ 0.0 %é&\@ﬂ SN 0.00008 (10) | < 0.004
N, 202 o N “\{}i@“ & .ol GeV 0.0010 (12) < 0.001
Ry, 0.215 % ~\~‘\ A 0.000003 (4) | < 0.000060
Arr {{Q‘g‘ N ‘\’x ;;_{‘@?’\l@i\\w Z peak, polarized 0.000015 (18) | < 0.000015
mw (M dﬁ\. . _@e’-a\%e%@@« WW threshold scan | 0.3 (0.4)MeV @ MLD
Mo ’Q;:C‘\ @-‘t{b&;«_@o\@t@ .- 900 tt threshold scan 10 (12) MeV < 10 MeV
B ﬁrﬁﬁﬁ‘@“q%@x
@\{1}\ 53 QQ\}X&’ ~rom W and Z hadronic widths
X 54

o5
q\i’i\ \@:&

Qs.
9/10/2015

.1 magnitude on FCNCs and rare decays etc. etc.

Alain Blondel FCC Future Circular Colliders

study to establish possibility of corresponding precision theoretical calculations.




((EEB\

|A Sample of Essential Quantities: I

P
Physics resent
precision
M, Input 91187.5
MeV/c2 +2.1
I, Ap (T) 2495.2
Mev/c2  (no Aaul) +2 3
R o O 20.767
‘ + 0.025
Nv Unitarityof 2.984
PMNS, +0.008
sterile v's
R, 8 0.21629
+0.00066
A Ap, &5 Aot 0.1514
‘R (T,S) +0.0022
MW Ap, €38, Ao 80385
MeV/c2 (T, S, U) + 15
m{ lorRPHEC Future difd2410

2rs

+ 900

Z Line shape
scan

Z Line shape
scan

Z Peak

Z Peak

Z+y(161 GeV)
Z Peak

Z peak,
polarized

Threshold
(161 GeV)

Threshold
scan

TLEP stat

Syst Precision TLEP key Challenge

0.005 MeV E_cal QED

<+0.1 MeV corrections

0.008 MeV E_cal QED

<+0.1 MeV corrections

0.0001 Statistics QED

+ 0.002 corrections

- 0.0002

0.00008 ->lumi meast QED

+0.004 corrections to

0.0004-0.001 Statistics Bhabha scat.

0.000003 Statistics, Hemisphere

+0.000020 - 60 small IP correlations

+0.000015 4 bunch Design
scheme experiment

0.3 MeV E cal & QED

<1 MeV Statistics corections

10 MeV E cal & Theory limit
Statistics at 100 MeV?



(EE5) 350 GeV: the top mass

» Advantage of a very low level of beamstrahlung in circular machines

* Could potentially reach 10 MeV uncertainty (stat) on m,

« Comparing ILC and FCCee - assuming identical detector performance

b]

£50.8 |- fithreshold - 1S mass 174.0 GeV i | 09 — tf threshold - 1S mass 174.00 GeV =

R 50 e e i | § 08— TOPPIK NNLO + FCCee 350 GeV LS + ISR -

E 3 BRKERBEA TG T o ] 0.7 Simulated data: 10 fb /point s

YERLER [=0R e L 200 MV 3 = Top mass = 200 MeV 3

% ] 0.6 H : El = e i _‘ ......

(=] 4 @ = H A I= -1 oyl ]I : 3
5 2 o5 = =

0.4 4 Q K i B | =

- 04 _ £ e S i _

0.2 il R— s el o'

- 1 - i A ; i : ; =

. E .= || baskdon QLICALG Top Study J

= 01 s np?=" [ | EPJGT3, 2p40 (2013) | ]

D | L I | I T EET. I D Ciialiia el Lo sl vial iy VO U1 B

345 350 355 342 344 346 348 350 352 354 356
\ s [GeV] Nominal CMS energy [GeV]

NB: Assuming unpolarized beams - LC
| beams can be polarized, increasing cross-
1 sections / reducing backgrounds

Simulated data points -
same integrated luminosity

ENELD

FrotnFrank Simon, presented at 7" TLEP-FCC-ee workshop, CERN, June 2014 o 4




Potential of agep(m,) measurement (1)

For exploitation of precision EW measurements, need precise knowledge of oqep(m;)
* Standard method involves extrapolation from a,.,(0) to aep(m,)
» Dispersion integral over hadronic cross section — low energy resonances: da/a = 1.1 x 104

oy (m,)=128.952+0.014

New idea: exploit |large statistics of FCC-ee to measure aep(m,) directly close to m,
» Extrapolation error becomes negligible!

Two methods considered: Meast. of cross section, o(e*e -> pu*l), and asymmetry, AH+
* yexchange proportional to o?q(Vs)

* Zexchange independent of o (Vs) %135: e

* yZinterference proportional to a,.,(Vs) ; o
B g8 —— Z exchange
G

— Zy interf.

f- : : i : 4 i
S T T N -] i_LI |_i_l Lk | L . II 1 |I I I| L I_I,,I I
P. Janot: FCC-ee Physics Vidyo Meeting, June 29" 2015 WOME A M 50 T R Nt M g
G'Ab%‘ﬁﬂ‘ﬂ‘ch 2005 Alain Blondel FCC Future Circular Colliders
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Potential of o gp(m,) measurement (2)

~— From o, i

| — From AL |

| = Gambination

== Statistical uncertainty for one year of
running at any centre-of-mass energy.

10°

Crab-waiste, 4 IP.

n {1 2 et

-

|R|i|l|l|l Mll=llllilli 1 i
1 110

|
|
|
10-5 1 L1l 1 1 1 |
50 70 _80-=" a0 120 130 140 150
- s (GeV)

-

From o, measurement From AggH* measurement
Sensitivity best "far” away from Z peak, *  Sensitivity best at 88 and 95 GeV
particularly at the low side . Experimental systs. looks controlable;
Systematics (normalisation) probably a further studies needed
killer *  Theoretical systs. to large degree cancel

by “averaging” over 88 and 95 GeV point

By running six months at each of 88 and 95 GeV points:
» Could potentially reach a precision of : da/a = 2 x 107°

25/07/15

EPS-HEP-15 / Mogens Dam, NBI




Strong coupling constant, a (m,)

At LEP, a precise a (m,) measurement was derived from the Z decay ratioR, =T, _/T,.
Reinterpreting this measurement in light of: i) new N,LO calculations; ii) improved m
iii) knowledge of the my,..., the uncertainty is now something like:

top @Nd

0 (a(my) ) g =+ 0.0038 (exp.) £ 0.0002 (others)

R, measurement was statistics dominated: Foresee a factor 225 improvement at FCC-ee.
From the Z-pole, therefore a resonable experimental target is

8 (0t,(M,) )rccee = * 0.00015

Similarly, from the WW threshold, a(m,,) can be derived from the high stats measurement
of Byag = (Thad/ Tiot)w

8 (ot (My) Jrcc.ce = * 0.00015

Combining the two above, a realistic target precision would be

0 (a,(My) Jeccee =1 0.0001

25/07/15 EPS-HEP-15 / Mogens Dam, NBI




Theoretical limitations FCC-ce

SM predictions (using other input)

:\[H = 80.3593 j:@OOZ G?Tlt 0.0001 iﬂfz +  0.00022 Aapad
0.0003 + 0000257 | £G4 0.0000 2,

= 80.359 £ 0.011¢0t

S S

. 90 . . - ' '
snrﬁéﬂc = 0.231496 £ 0.0000015 ) =~ 4 0.000001 5,/, =( 0.0000072 Ao,

0.000001 + 0.00000142 . = 0.000000 2,7, 000047 theo

= 0.23150 £ 0.00010¢0t

Experimental errors at FCC-ee will be 20-100 times smaller than the present errors.
BUT can be typically 10 -30 times smaller than present level of theory errors
Will require significant theoretical effort and additional measurements!

Radiative correction workshop 13-14 July 2015 stressed the need for 3 loop calculations for the future!
Suggest including manpower for theoretical calculations in the project cost.




s F
& 8037~ [—=TLEP (Z pole) ;
< | |—TLEP (Direct '
= - | — ILC (Direct)
80.365 —| — LHG (Future) ]
| |===- Tevatron :
- | — Standard Model ':
80.36 —
80.355 — :
80.35— U :
_I I L1 1 | |1- L1 1 1 | 1 L1 | | L1 1 I | L1 | L1 1 :I | | | I

715 172 172.5 173 173.5 174 174.5 175
/ M, (GeV)

NB width of this line : Z mass error. Without FCC-ee its 2.2 MeV!

in other words .... A(Ap)= =+ 105 + several tests of same precisi
Alain Blondel FCC Future Circular Colliders 51 - ;
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(D) new

Determination of top-quark EW couplings via
measurement of top-quark polarization.

In semileptonic decays, fit to lepton
momentum vs scattering angle

_ o1 Fii)
% - : Typically best sensitivity
= T just above production
1072 ; threshold
: Momenta up to: 175 GeV
1078
350

Lirnsartainty

1077k

no need for High Energy

or beam polarization! 19

109}

10.09.2015
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But at least 3 pieces are still missing

Three Gensrations

of Matter (Fermions]) spin 32

1]

THE STANDARD MODEL IS COMPLETE

Thres Generations
of Matier (Fermnions) spin ¥

mass T e = 1307 Bew 5 1IAZ Oey E o - TR .37 G A0y |ﬁ
charge - |35 LI C t o g chamg=~ |34 u 2 c 5 t b
riame up chamm tap # N up AR e __m
: 4.8 ey Fr— Py o R P T
= |4 o - o - £ L % 24 Eﬁ &Y
ka <= o | B¥ Fa s Fb | By
dawm =mnge baotioen iﬁ_? L syangs botorn ﬂrﬂ
T = IH-.MH 126 GV 0 ket [ pr-RY o] ot [:g_“ PEFYEY
o o 0 d o 0 0 - (g a
Ve Vi V: 4 Ve/N|||*Vi/ N, "Vo/Ny | "H
= | = = e 2 i = =
HEE] Hay L5 M L7977 e = ’”".“#:E, spin 0 . 0511 Hew L1057 Med 1.7 Gy 08 G spin O
1 1 -E SEIAAT = |1 = | : | BAN.S
€ T W 2 e LL T ‘W
= slectron muon mu @ ﬁ - slecyon I 1= g

neutrinos have mass...

and this very probably implies new degrees of freedom
=» Right-Handed, Almost «Sterile» (very small couplings) Neutrinos
completely unknown masses (meV to ZeV), nearly impossile to find.
.. but could perhaps explain all: DM, BAU,v-masses 'J\

10.09.2015"
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| Right handed neutrinos
are singlets
no weak interaction
no EM interaction
no strong interaction

can’t produce them
can’t detect them
-- so why bother? --




_ " Adding masses to the Standard model neutrino 'simply' by adding a Dirac

mass term (Yukawa coupling)
— _ - S
MpV VR mpv; vy e

implies adding a right-handed neutrino (new particle)

No SM symmetry prevents adding then a term like

S Mg ., VL
C
m M V R V R ;.

and this simply means that a neutrino turns into a antineutrino
(the charge conjugate of a right handed antineutrino is a left handed neutrino!)

It is perfectly conceivable (‘natural’?) that both terms are present = ‘see-saw’

B. Kayser, the physics of massive neutrinos (1989)

10.09.2015




‘( FCC )) Mass eigenstates
== .

See-saw in a general way :

| o () M 1Y
L=< Np)| . Mg =0
2 mp  Mp Np mD¢0
Dirac + Majorana
mass terms
2mp
tan 20 = — <1
M R — 0
1 v 9 2 A
m,, = 1 [(o + Mg) — /(0 —Mp)2 +4m3| =~ —m2 /Mg
A, 1 , 2 ,-
M =3 |(0+ Mg) + /(0= M) + 5 ~ Mg
general formula if mp < Mg
Mg =0 M, # 0 Mp>m,#0 see-saw
my, = 0 my, =0 : .
/]\ Dirac only, (like e- vs et): T Majorana only T DlraiMalorana_
m — — m
V.. VR VR VL Vi, VR dominantly: Y
Iweak= Y 0 V2 0 Iweak= 7 72 | = \1’/L ?R };R ONL
4 states of equal masses 2 states of equal masses weak 4 Zs tates . 2 m;ss levels
Some have I=1/2 (active) All have [I=1/2 (active) m. have ’~I=1 /2 (~active) \
1Gomeisave I=0  (sterile) m1 have ~I=0 ( gerile) 9
2 = ~ Y




( FCC ) Manifestations of right handed neutrinos

v = light mass eigenstate

gne famil:z’ see-saw: | V= V.00 - N sind N = heavy mass eigenstate
- Lmi)/z ) N = Np cosO + v, sin0 # V; , active neutrino

v M which couplesto weak inter.
myx~M what is produced in W, Z decays is: and = N, which does’nt.
|UJ? o 02~ m,,/ my v, = vcosd + N sind
can be larger with 3 families

-- mixing with active neutrinos leads to various observable consequences
-- if very light (eV) , possible effect on neutrino oscillations (short baseline)
-- if in keV region (dark matter), monochromatic photons from galaxies with E=m,/2

-- possibly measurable effects at High Energy
If N is heavy it will decay in the detector (not invisible)
=» PMNS matrix unitarity violation and deficit in Z «invisible» width
=>» Higgs, W, Z exotic decays H> v; N; andZ> v; N;, W->|; N,
=>» also in charm and b decays via W*-> |, N;
=>» violation of unitarity and lepton universalityin Z, W or T decays

-- etc... etc...

-- Couplings are small (m,,/ my) (but who knows?) and generally out of reach of hadron
colliders (but this deserves to be revisited for detached vertices @LHC, HL-LHC, FCC-hh} R




Indirect effects

-- neutrino Majorana mass term can lead to lepton number violating processes
by virtual neutrino exchange and to flavour violation

-- neutrinoless double beta decay (the most powerful one)
-- FCNC (n—ey) etc...

--ataZfactory:Z> tu Z>te Z->11,T> Uy T eyetc...

10.09.2015 59




end of LEP:

Phys.Rept.427:257-454,2006

N, =2.984 +0.008 | ALEPH
DELPHI
30 [3
-20 MU | OPAL
'E‘ L
= 20F
This is determined from the Z line shape scan - ,
. 2 L+ average measurements, i
and dominated by the measurement of the e error bars increased

by Factor 10

hadronic cross-section at the Z peak maximum = - -
The dominant systematic error is the theoretical
uncertainty on the Bhabha cross-section (0.06%)
which represents an error of +0.0046 on N, 0= 88 " 90 92 93

E_ [GeV]

cm

Improving on N, by more than a factor 2 would require a large effort
to improve on the Bhabha cross-section calculation!

10.09.2015 60




‘ Volume 241, number 4 PHYSICS LETTERS B 24 May 1990

NEUTRINO COUNTING AT THE Z-PEAK AND RIGHT-HANDED NEUTRINOS

C. JARLSKOG

CERN, CH-1211 Geneva 23, Switzerland
and Department of Physics, University of Stockholm, S-113 46 Stockhnlm, Sweden

Received 20 February 1990

We consider the implications of extending the minimal standard model, with »# families of quarks and leptons, by introducing
an arbitrary number of right-handed neutrinos, for neutrino-counting via the “invisible width™ of the Z. It is shown that the
effective number of neutrinos, {#>. satisfies, the inequality {n) < »n, where (2 is defined by M{Z—-neutnnos)z= {n) fand Iy
is the standard width for one massless neutrino. Thus, in the case of three families, the neutrine-counting can give a result which
i5 less than three, if there are right-handed neutrinos.

Theorem.

In the standard model, with » left-handed lepton
doublcts and N - n right-handed neutrinos, the effec-
tive number of neutrinos, ¢ # >, defined by

[’'{Z—-neutrinos )= (n)ly,

where [, 1s the standard width for one massless neu-
trino, satisfies the inequality

(ndy<n. (15)




( FCC ) eutrino counting at TLEP ( L:_CE ,

en the very high luminosity, the following measurement can be performe

vZ(inv)
_YZ - eeuu

FV
e (SM)

N,

The commony tag allows cancellation of systematics due to photon selection, luminosity
etc. The others are extremely well known due to the availability of O(10!2) Z decays.

The full sensitivity to the number of neutrinos is restored, and the theory uncertainty

on % (SM) is very very small.

A good measurement can be made from the data accumulated at the WW threshold
where o (y Z(inv) ) ~4 pb for |cosO,| <0.95

161 GeV (107 s) running at 1.6x10%°/cm?/s x4 exp = 3x10’ y Z(inv) evts, AN,=0.0011
adding 5 yrs data at 240 and 350 GeV .........eeririeniireccreece e nen e e e aneaes AN,,=0.0008

A better point may be 105 GeV (20pb and higher luminosity) may allow AN, =0.0004?
10.09.2015 62




(( FCC )) RHASNuU’s production in Z decays

Production:

. ) .
. . - L, me | e
BR(L — v,v)=BR{4A —wvv) U° [ 1 ——% | + ——
Fitgo* 2y *

multiply by 2 for anti neutrino and add contributions of 3 neutrino species (with different |U|?)

Decay
Decay length:
3 ecm
+ f‘"’ % ( » ‘) i ' (-1 \., IIII- .2 % E'I.
.fj Uj, Sl Laev fer))
d TREE
FIG. 2. Typical decays of a neutral heavy lepton via (a) NB CC decay always leads to
charged current and (b) neutral current. Here the lepton [ > 2 charged tracks

denotes ¢, u, or 7.

Backgrounds : four fermion: e+e- > W** W* e+e- > Z*(vv) + (Z/y)*

10.09.2015 63
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maybe achievable with
10 - 1013 Z decays?
see-saw
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( @5 Interesting region

Decay length |UI~ 1010 102 @ 50 GeV

10-19

el

S 1078

]'D_]'D

M [ GeV] N
heavy neutrino mass ~ M

a large part of the interesting region will lead to detached vertices
... =2very strong reduction of background!

Exact reach domain will depend on detector size
and details of displaced vertex efficiency & background
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SHIP

TLEP expected sinsitivity to HNL (IH)
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NB very large detector caverns for FCC-hh may allow very large FCC-ee detector (R=15m?)

leading to improved reach at lower masses.
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Comment/Outlook for FCC-hh

We have seen that the Z factory offers a clean method
for detection of Heavy Right-Handed neutrinos

At the 100 TeV hadron machine the W is the dominant particle.

There is a lot of /pile-up/backgrounds/lifetime/trigger issues which need to be investigated.
BUT.... in the regime of long lived HNLs the simultaneous presence of

-- the initial lepton from W decays

-- the detached vertex with kinematically constrained decay

allows for a significant background reduction and may allow search reach in the 10 region

But it allows also a characterization both in flavour and charge of the produced neutrino, thus
information of the flavour sensitive mixing angles and a test of the fermion violating nature

of the intermediate (Majorana) particle.

VERY interesting...
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(f’ ———N) [nput from Physics to the accelerator design

0. Nobody complains that the luminosity is too high (the more you get, the more you want)
no pile up, even at the Z: at most 1ev /300bx

1. Do we need polarized beams?
-1- transverse polarization:
continuous beam Energy calibration with resonant depolarization
central to the precision measurements of m,, m,,, I,
requires ‘single bunches’ and calibration of both e+ and e-
a priori doable up to W energies -- workarounds exist above (e.g. yZ events)
large ring with small emittance excellent. Saw-tooth smaller than LEP for Z
need wigglers (or else inject polarized e- and e+) to polarize ‘singles’;
simulations ongoing (E. Gianfelice, M. Koratzinos, |.Kopp)

-2- longitudinal polarization requires spin rotators and is very difficult at high energies
-- We recently found that it is not necessary to extract top couplings (Janot)
-- improves Z peak measurements if loss in luminosity is not too strong
but brings no information that is not otherwise accessible

2. What energies are necessary?
-- in additionto Z, W, H and top listed the following are being considered
-- e+e- 2 H(125.2) (requires monochromatization A. Faus) (under study)

-- e+e- at top threshold ~20 GeV for top couplings (E_max up to 180 -185 GeV)
-- no obvious case for going to 500 GeV
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FCC-ee activities

Working groups conveners appointed and regular VIDYO meetings
for physics, accelerator and joined, as well as WG.

mini-workshops

-- detector mini-workshop (C. Leonidopoulos, E. Perez, M. Dam) 17-18 June 2015

-- precision calculations mini-workshop 13-14 July 2015 (Heinemeyer, Ellis, Grojean)
-- Higgs mini-workshop 24-25 September 2015 (Klute, Peters)

-- alpha_s workshop 12-13 October 2015 (D’Enterria)

FCC-ee workshop 9-11 November in London (Ellis et al)

General FCC week in Rome 11-18 April 2016




(: hh == hea : ) What we believe now and work to demonstrate in a few years:

The combination of the FCC machines offers
outstanding discovery potential by
exploration of new domains of

-- precision

and

-- direct search,

both at high energy and at very small
couplings

join us! http:cern.ch/fcc-ee
http://espace2013.cern.ch/fcc/Pages/Science.aspx




