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SM Effective potential

Standard Model Effective potential
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For large field values m? << ¢* and i = ¢ the potential is very well
approximated by
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SM Metastability

Aeff < 0 = Metastability
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D. Buttazzo, et al. [arXiv:1307.3536].
G. Degrassi, et al. [arXiv:1205.6497].

See lectures by G. Degrassi Corfu 2014
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Tunneling

Standard semiclassical formalism

S. R. Coleman, Phys. Rev. D 15 (1977) 2929.
C. G. Callan, Jr. and S. R. Coleman, Phys. Rev. D 16 (1977) 1762.

O(4) symmetric solution to euclidean equation of motion

Qb—|— 3¢_ 8V(¢)

s = \/)?2+X2.

o ¢(s=0) =0 near the true vacuum

@ ¢(s = 00) = Pmin at the false vacuum
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Action of the bounce solution

se = | dx{%z ((’ﬁfﬁf + v<¢(x))}
_ 27r2/d553 (%qﬂ(s) + V(¢(5))> :

allows us to calculate decay probability dp of a volume

o et SE | et =P+ V(@) [T s,
P= 472 | det[—0% + V" (¢o)]
Simplifying
@ normalisation factor replaced with width of the barrier o< ¢g
° is Ty = 10%0yr
we can calculate the lifetime of the false vacuum (p(7) = 1)
T _ 1 eSE
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New extrema created by quantum corrections
(Coleman-Weinberg mechanism)

condition for cancellation of corrections to the derivative of SM

h 4 2 2 4 4 2 2\ 2 g + 95 4 95 4 yi
A= 2562 [91 + 29195 + 395 — 48h; — 3(g1 + g3)° log 1 695 log 1 + 48y, log o
\\\\\\\\\ running A (2loop)
0.10}
< 0.05/ L —
I ] RHS
0.00 \\_——//

Hence sensitivity to New Physics



Effective potential with nonrenormalisable interactions

We add new nonrenormalisable couplings
(similar to V. Branchina and E. Messina, [arXiv:1307.5193].)

Vo~ eff(¢)¢+)\6¢ +_£8
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That modify the potential around the Planck scale
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Figure: effective potential with \¢ = —1 and A\g = 1.



Numerical vs Analytical again
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Figure: Decimal logatihm of lifetime of the universe in units of Ty as a
function of the nonrenormalisable A\¢(M,) and Ag(M,) couplings,
calculated numerically (left panel) and analytically (right panel).
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Figure 2: Standard Model phase diagram (left panel), the same diagram after including new operators
As(M),) = —1/2 and Ag(M,,) = 1 (middle panel) and A¢(M,) = —1 and Ag(M,) = 1/2 (right panel). The
green region corresponds to absolute stability, the red region to instability, and the yellow region to metasta-
bility.
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New Physics at the scale M

Magnitude of the suppression scale

Approximate lifetime:
T 1 _8m2
= e3|>‘min| .

Ty p*(Amin) T}
Positive A\g and A\g — stabilizing the potential
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Figure: Scale dependence of % = ¢—V4 with A\¢ = \g = 1 for different values of

suppression scale M. The lifetimes corresponding to suppression scales
M = 108,10%, 10 are, respectively, logo(F-) = 00,1302, 581 while for the
Standard Model log,,( ) = 540.
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Magnitude of the suppression scale

Positive A\g and negative A\g — New Minimum
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Figure: Scale dependence of % = ¢_V4 with A\¢ = —1 and A\g = 1 for

different values of suppression scale M. The lifetimes corresponding to
suppression scales M = 108,102, 10%°, are, respectively,
log1o( ;) = —45, =90, —110 while for the Standard Model
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Gauge dependence of the tunneling rate

It is well known that the effective potential, and in general the effective action,
are gauge-dependent objects

However, the statement about the spontaneous breaking of gauge symmetry is
gauge invariant (N. K. Nielsen 1975)

The gauge invariant ”observables” are the values of the effective potential at
the extrema, and the tunneling rate between different minima

When one computes the SM effective potential in a straightforward manner (say
naively), nothing looks gauge independent - neither the value of the effective
potential at the extrema (see L. Di Luzio and L. Mihaila 2014) nor the tunneling
rate (ML,PO,ZL)
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The leading gauge dependence comes from the gauge-dependent anomalous
rescaling of the field

Egauge fizing — 2§W (8M Waz) ElB (8M BMQ)

Contributes to:

« 1-loop potential - More important.

« v function of the scalar field One needs to remember that kinetic
contribution to the action is muliplied by Z.
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Y= 16 (4g2+20g1 3y; — 3V yr+2O€Bgl+4CWg2
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At one loop effective potential contains gauge-dependent terms

>\h4 2 2
VIS = — LAt epg? (log AEngiziwe) _ 3)
3112 +2 4 2 2 2
+ &y ga (log Ah 5ngi§?291+£wgz) — 9”

As pointed out by A. Andreassen, W. Frost and M. Schwartz 2014, who followed
E. Weinberg and D. Metaxas 1996 and S. Coleman and E. Weinberg 1973, the
key to save in the calculations the gauge independence of the potantial at the
extrema is to realize, that to create extrema radiatively, loop corrections have
to cancel between themselves or the tree-level contributions

he*
1672

In CW model \ ~
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In the SM the equivalent condition is

h 4 2 2 4 4 2 2\ 2 g% + g% 4 g% 4 yt2
A= gees |91+ 29192 + 392 — 48Ky — 3(g1 + 93)" log == — Gg; log 7~ + 48y, log =

which holds at the extrema h = u

Hence ) is of the order hg* and gives a higher order contribution

It has been shown that that taking this relation into account in counting radia-
tive contributions in the SM makes the value of the potential at the extrema
gauge independent at LO (hg?*) and NLO (hg°)
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In general, the tunneling rate has the form

= Ae B

Weinberg and Mataxas argued that if the reordering of the radiative corrections
used above holds everywhere, not only at the extrema, then the exponent B
shall be gauge independent at the NLO.
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Leading Order

Gauge-fixing dependent terms-in the effective potential are ord d correc-
tions to the kinetic term a

Observation, which allows one to ease the problem, is that once one includes in
the euclidean action which is used to compute the bounce the renormalization
factor in the 2-derivative term, and treats it consistently~as a fieldhdependent
quantity, then one can go over to the new field variable( h — \/Z(h)h)in terms
of which the whole action becomes gauge independent a ffed leading
order (that is assuming A ~ h), and only mildly gauge dependent in the more
standard expression, through small logarithmic terms.

The LO procedure leading to gauge independent estimate the tunneling rate can
easily be extended to the analysis of the role of the effective nonrenormalisable
operators, and the results shown correspond to such a case.
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Gauge fixing in-dependence

order g°

20



Gauge fixing independence in abelian Higgs model in t’Hooft
gauge

L =1L+ Lint + Lyt + Ly
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Explicit running
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where go = g(uo), etc.



Renormalized effective action

|
L=5 [+ Kp(pn, 1)] (901)° = Vgaleor, ) = Vgs(pr, )

o) =Topa(e) +un, L= [1+Kp(P)] 0,500~ Vs + V)9
K =3 pimton S — s (1os =52 1) 20

Vgr = %‘2)952 + %@4 + 36%‘@4 <log 9(29(;;’2 _ %)

Vgs = 357872 vo — (2vg + &) log _92%’095] 5%}5@)

Action is explicitly p-independent



Gauge fixing independence

EOM: —5F[¢]
5¢ P=dsol
e 0
gauge fixing independence: ¢ 8_§F[¢SOZ]

Nielsen identities:

orfg] _ af 4190 [¢]
LB f ¢ [¢] )
3 v
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73 1 o0& 9" 01 Ov )

or
S =TgleB], f[(b] =0
¢ ¢=¢B
: 0 0
desired property: Ea—gSB = ’U%SB =0

=0,

0
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(4 specific boundary conditions for ¢pg)
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Nielsen functions

£ _ go % _go VP

Cpo = ~ 39,2 log 2

2 R

Cpr = —332 vo + (2ug + o) log QZSJOSO
- EE——
1
L=L0+c+ ...,  L%)= 5(3u90)2+Vg4(90)
YB = QO% + 90}; + ... where by definition,
0L (p)

0 =

& Onpp = Via(eh) .

0P o=yt

bounce is derived from the lowest nontrivial order, o(g*), Lagrangian

with these ingredients Sp gauge fixing independent to the order ¢°
— —




Back to higher-order operators

5L 4 — )\6 (SOZSO’L)B )\8 (QO’LSO’L)ZL
J 6 A2 8 A4

=2
v op1 Yo 9° By
2 2, ~4 A6
) A —9pV0¥ ¥p a4
+ 3231_2 Vo — (27)0+§090) 1Og EL% ] ’ ()\GOF + )\SOP + ...

Action supplemented this way is explicitly scale invariant and gauge fixing
invariant
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Figure 3: Plots of the potential at the lowest order, V4, for a specific choice of couplings (see
text). The renormalisation scale g is used as a unit of energy.



Gauge dependence of the potential
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Gravity Corrections in Curved Space



Effective action in curved background: gauge-less Higgs model

1
— —qdt 2\ / 4 T v
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where:

1 1
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2t T 19
a = [m?X' o (§X - %)R+ 3)\mX2 + AhTXh2 Anx hX ]

R,

AnxhX m? — (&, — YR + 3\ph2 + X X2

The eigenvalues of the matrix a are
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(b) The running of the nonminimal couplings to the gravity for the

scalar fields, the initial conditions were &, = £x = 0 at the u = m;.

The energy range is po = 2.7K — ltmaz = 10** GeV.
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(c) The running of the nonminimal couplings to the gravity for the
scalar fields, the initial conditions were &, = £x = é at the u = my.
The energy range is po = 2.7K — ftmaz = 10 GeV.



In Robertson-Walker background one may express curvature invariant
through energy density and preassure

- _ 1
R=-3Mp ™" [—p+§/0]
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Quadratic part of the potential
in RD

1
V(h?) = 5mih2 +

1 4
6472 180

(—RagRaB + Ragw,Raﬁ’w) =
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Critical Temperature in RD
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Critical Temperature in dS
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Large field region

Stability in RD

vinty = 228 ey

4 grav
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For d = |Aess| ~ 0.02 we obtain the energy scale v ~ 10'* GeV

Stability in dS
1 R
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Figure 10: The effective quartic Higgs coupling, as defined by the relation Xheff(h) -
i:i@, for various equations of state: flat — flat spacetime result, rad — radiation
dominance (p = ép), dS — de Sitter like (p = —p). The energy density was given by
P = Phe + (yth)‘l, where pp. was specified by the relation (4.36) and equal to pp. =
(2.04 - 1014GeV)%. The X field was constant and set as equal to X = vx. The non-

minimal couplings were &, = £x = 0 at the 4 = m;. The insert shows a close up of the

S

difference for the flat spacetime and the radiation dominated era.
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Figure 11: The effective quartic Higgs coupling, as defined by the relation S\heff(h) =
i(hli@, for various equations of state: flat — flat spacetime result, rad — radiation
dominance (p = %p), dS — de Sitter like (p = —p). The energy density was given by
P = Phe + (%)4, where pp. was specified by the relation (4.36) and equal to pp. =
(2.04 - 10*GeV)*. The X field was constant and set as equal to X = vx. The non-
minimal couplings were &, = £x = % at the u = m;. The insert shows a close up of the

difference for the flat spacetime and the radiation dominated era.



Quantum gravity effects:
In Loop Quantum Cosmology holonomy corrections can be summarized as

0
ofe2)
pCT’

Hence, for given p the correction becomes smaller.



SM vacuum can be stabilized by higher order operators if they appear
t suffciently | I
asuticientiylomjencrzyisca ch IS TN A

SM vacuum lifetime can be dramatically shortened by higher order
operators for any suppression scale

Beyond the leading order one needs to define proper expansion of the
action to demonstrate perturbatively the cancellation of gauge-
dependent contributions to the lifetime of the EW vacuum

In the abelian Higgs model such a procedure can be carried out at the
level of the renormalized effective action

Peoperties of the electroweak vacuum - critical temperature and
lifetime - can be modified by a fast expansion of the gravitational
background



