

Power counting and scaling for tensor models

THOMAS KRAJEWSKI in collaboration with Reiko Toriumi Centre de Physique Théorique, Marseille krajew@cpt.univ-mrs.fr

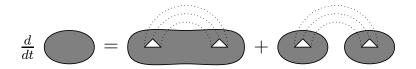
"Corfu Summer Institute 2015"

Corfu, Greece September 21-26, 2015

Polchinski's equation for tensor models and tensorial group field theories

Formulation of an exact renormalization group equation in terms of bubble couplings (boundary triangulation)

- Evolution of bubble couplings in tensor models
 ⇒ Melonic bubble dominance at large N
- Dimensional analysis for abelian group field theories
 - \Rightarrow Classification of renormalizable theories



Renormalization group equation for boundary couplings

Tensorial group field theories

in

What is a tensor models

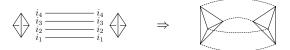
Tensor modelz

Tensor models = generalizations of matrix models for random geometry in dimension ${\it D}$

$$\int d\overline{T} dT \exp \left\{ -\overline{T} \cdot C^{-1} \cdot T + S(\overline{T}, T) \right\} = \sum_{\substack{\text{Feynman graph } \mathcal{G} \Leftrightarrow \\ \text{dimension } D \text{ triangulation}}} \frac{\mathcal{A}_{\mathcal{G}}}{\sigma_{\mathcal{G}}}$$

$$\bullet \ T_{i_1, \dots, i_D} \text{ and } \overline{T}_{i_1, \dots, i_D} \text{ propagating } (D-1) \text{-simplex}$$

• Covariance C: identifications of (D-2)-simplices



• Action: $S(\overline{T}, T)$ basic building blocks (boundary triangulation)

lintroduction

Tensor models ○●○○○○○○○

Tensorial group field theories

Expansion over bubble couplings

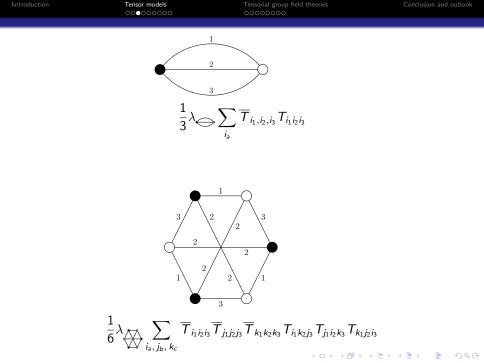
Expansion over bubble couplings ⇔ boundary triangulation

$$S(\Phi,\overline{\Phi}) = \sum_{\substack{\mathcal{B} \\ \text{bubble}}} \frac{1}{\sigma_{\mathcal{B}}} \sum_{\left\{i_{e},\overline{i}_{e}\right\}} u_{\mathcal{B}}(\left\{i_{e},\overline{i}_{e}\right\}) \prod_{\substack{v \\ \text{white vertex}}} \Phi_{I_{\mathcal{B}}(v)} \prod_{\substack{\overline{v} \\ \text{black vertex}}} \overline{\Phi}_{\overline{I}_{\mathcal{B}}(\overline{v})}$$

- \mathcal{B} bipartite graph (white vertex T, black vertex \overline{T}) with vertices of valence D (dual to a triangulation of dimension D-1)
- Proper coloring of the edges by 1, ..., N
- $I_{\mathcal{B}}(v) = D$ -tuple of indices $\{i_e\}$ pertaining to the lines of colour $1, \ldots, D$ attached to the white vertex v ($\overline{I}_{\mathcal{B}}$ for black vertex \overline{v})
- Summation over $\{i_e, \overline{i}_e\}$ from 1 to N for each edge
- $\sigma_{\mathcal{B}}$ = order of the symmetry group (including color permutation)
- $\lambda_{\mathcal{B}}(\{i_e, \bar{i}_e\})$ bubble coupling
- \mathcal{B} not necessarily connected ("multitrace operator" $\prod_{i} [Tr(\Phi)^{n_i}]^{k_i}$))

Special case: Invariant models

Invariance under
$$U(N)^{D}$$
: $T \to U^{\otimes N}T$, $\overline{T} \to \overline{U}^{\otimes N}\overline{T}$
 $\Rightarrow \lambda_{\mathcal{B}} \{ i_{e}, \overline{i}_{e} \} = \lambda_{\mathcal{B}} \prod_{e} \delta_{i_{e}, \overline{i}_{e}}$ with $\lambda_{\mathcal{B}}$ scalar



lintroduction

Tensor models

Tensorial group field theories

э

Exact renormalisation group for tensors

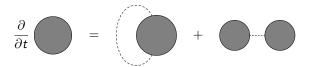
Wilsonian effective action obtained by a partial integration with covariance $C_{t,t_0} = \int_{t_0}^t ds K_s$ ($dsK_s =$ integration over infinitesimal shell)

$$S_{t,t_0}[\Phi,\overline{\Phi}] = \log \int \frac{d\overline{\Psi}d\Psi}{\mathcal{N}_{t,t_0}} \exp\left\{-\overline{\Psi}\cdot C_{t,t_0}^{-1}\cdot\Psi + S_{t_0}[\Phi+\Psi,\overline{\Phi}+\overline{\Psi}]\right\},$$

 $\mathcal{N}_{t,t_0} = \text{normalization factor}$

Polchinski's exact renormalisation group equation for tensors

$$\frac{\partial S}{\partial t} = \sum_{I,\overline{I}} K_{I,\overline{I}} \left(\frac{\partial^2 S}{\partial \overline{\Phi}_{\overline{I}} \partial \Phi_I} + \frac{\partial S}{\partial \overline{\Phi}_{\overline{I}}} \frac{\partial S}{\partial \Phi_I} \right)$$



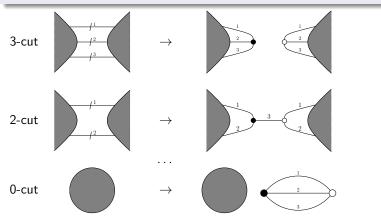
- $\frac{\partial S}{\partial \Phi_l}$ removes a white vertex ($\frac{\partial S}{\partial \overline{\Phi}_{\tau}}$ for black)
- K attaches resulting half-edges respecting colors

Tensorial group field theories 00000000

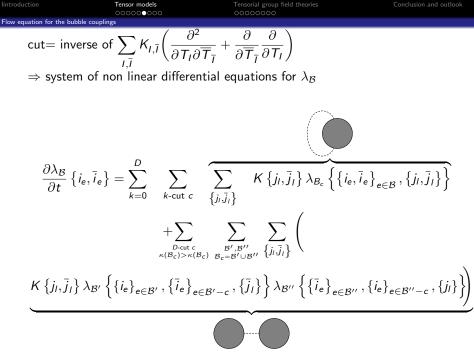
Cuts of bubble edges

Definition of a *c*-cut of $\{c \in 0, ..., D\}$ colors

- cut in 2 halves c edges of different colors
- attach the resulting half-edges to a new pair v, \overline{v}
- complete with D c new edges (colors not in the cut)



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

lintroduction

Tensor models

Differential equation for invariant tensors

Invariant tensor model with covariance $C_{I,\bar{I}} = z \int_0^t ds \, \delta_{i_1,\bar{j}_1} \cdots \delta_{i_D,\bar{j}_D}$

$$\frac{\partial \lambda_{\mathcal{B}}}{\partial t} = \sum_{k=0}^{D} \sum_{k-\operatorname{cut} c} z \, N^{D-k} \lambda_{B_c} + \sum_{D-\operatorname{cut} c \atop \kappa(\mathcal{B}_c) > \kappa(\mathcal{B}_c)} \sum_{\mathcal{B}' = \mathcal{B}' \cup \mathcal{B}'', v \in \mathcal{B}', \overline{v} \in \mathcal{B}''} z \lambda_{\mathcal{B}'} \lambda_{\mathcal{B}''}$$

Proof: Each edge not in *c* contributes $\sum_i = N$

Differential equations for rescaled couplings

Rescaling the covariance $z = \frac{1}{N^{D-1}}$ and bubble couplings $\lambda_{\mathcal{B}} = N^{D-\kappa_{\mathcal{B}}} u_{\mathcal{B}}$ ("dimensionless" quantites), with $\kappa_{\mathcal{B}} = \#$ {connected components of \mathcal{B} }

$$\frac{\partial u_{\mathcal{B}}}{\partial t} = \sum_{k=0}^{D} \sum_{k-\operatorname{cut} c} \frac{u_{B_{c}}}{N^{k-\kappa_{\mathcal{B},c}}} + \sum_{D-\operatorname{cut} c \atop \kappa(\mathcal{B}_{c}) > \kappa(\mathcal{B}_{c})} \sum_{B_{c}=B' \cup B'', y \in B', \overline{y} \in B''} u_{B'} u_{B''}$$

where $\kappa_{\mathcal{B},c} = \# \{ \text{connected components of } \mathcal{B} \text{ containing edges in } c \}$

• Proof:
$$\kappa_{\mathcal{B}_c} = \kappa_{\mathcal{B}} - \kappa_{\mathcal{B},c} + 1$$

κ_{B,c} ≤ k ⇒ only 0-cuts and k-cuts (k > 0) with one edge in each connected component contribute when N → ∞, others are O(1/N)

Tensorial group field theories

Conclusion and outlook

Examples for a D = 3 invariant tensor theory

$$\frac{\partial}{\partial t} u_{\bigcirc} = \left[u_{\bigcirc} \bigcirc \right] \Big|_{0 \text{ cut}} + \left[3 u_{\bigcirc} \right] \Big|_{1 \text{ cut}} + \left[u_{\bigcirc}^2 \right] \Big|_{3 \text{ cuts}} \\ + \frac{1}{N} \left[3 u_{\bigcirc} \bigcirc \right] \Big|_{2 \text{ cuts}} + \frac{1}{N^2} \left[u_{\bigcirc} \bigcirc \right] \Big|_{3 \text{ cuts}}$$

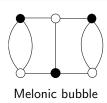
$$\begin{split} \frac{\partial}{\partial t} u_{OO} &= \left[u_{OO} \right] |_{0 \text{ cut}} + \left[4 u_{OO} + 2 u_{OO} \right] |_{1 \text{ cut}} + \left[4 u_{OO} u_{OO} \right] |_{3 \text{ cuts}} \\ &+ \frac{1}{N} \left[8 u_{OO} + 2 u_{OO} + 2 u_{OO} \right] |_{2 \text{ cuts}} \\ &+ \frac{1}{N^2} \left[4 u_{OO} \right] |_{3 \text{ cuts}} + \frac{1}{N^2} \left[4 u_{OO} \right] |_{3 \text{ cuts}} . \end{split}$$

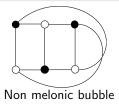
$$\begin{aligned} u \frac{\partial}{\partial t} u & \Longrightarrow = \left[u \bigotimes \bigoplus \right] \Big|_{0 \text{ cut}} + \left[6 \ u_{\bigotimes} \bigcup \right] \Big|_{1 \text{ cut}} + \left[6 \ u_{\bigcup} \bigcup \right] \Big|_{2 \text{ cuts}} \\ &+ \left[4 \ u \bigotimes \bigoplus u \bigotimes \right] \Big|_{3 \text{ cuts}} + \frac{1}{N} \Big\{ \left[6 \ u_{\bigotimes} \bigcup \right] \Big|_{2 \text{ cuts}} \\ &+ \left[\ u_{\bigotimes} \bigcup \right] \Big|_{3 \text{ cuts}} \Big\} + \frac{1}{N^2} \left[2 \ u \bigotimes \bigoplus \bigcup \right] \Big|_{3 \text{ cuts}} \end{aligned}$$

Large N limit

Melonic bubble

 \mathcal{B} a bubble is melonic if for every white vertex v there is a black vertex \overline{v} such that removing v and \overline{v} and reattaching the lines of identical colours increases the number of connected components by D-1.





Large N-universality of melonic couplings

At large *N*, melonic couplings $u_{\mathcal{B}}(t)$ only depend on melonic initial conditions $u_{\mathcal{B}}(t_0)$ (coupling of non melonic bubbles are irrelevant)

- Non melonic initial conditions yield $\frac{1}{N}$ corrections
- $\frac{\partial u_{\mathcal{B}}(t)}{\partial u_{\mathcal{B}_0}(t_0)}$ can be computed in a Gaußian theory for $\mathcal{B}, \mathcal{B}_0$ melonic (Gurau's Gaußian universality)

What is group field theory?

What is group field theory?

Group field theory = quantum field theory over *D* copies of a group SU(2), SO(4), SL(2, \mathbb{C}) whose perturbative expansion yields a sum over triangulations weighted by spin foam amplitudes

$$\int [\mathcal{D} \Phi \mathcal{D} \overline{\Phi}] \exp \mathcal{S}(\Phi, \overline{\Phi}) = \sum_{\substack{\mathcal{G} \Leftrightarrow \\ \text{triangulation}}} \frac{\mathcal{A}_{\mathcal{G}}}{\text{Sym}_{\mathcal{G}}}$$

• Group field $\Phi(g_1, \ldots, g_D)$: tetrahedron

• Same formalism as for random tensors with

$$T_{i_1,\ldots,i_D} o \Phi(g_1,\ldots,g_D) \qquad \overline{T}_{\overline{i}_1,\ldots,\overline{i}_D} o \overline{\Phi}(\overline{g}_1,\ldots,\overline{g}_D).$$

Effective actions in group field theory

Effective action

Effective action expanded over bubble couplings

$$S(\Phi,\overline{\Phi}) = \sum_{\mathcal{B}} \frac{1}{\sigma_{\mathcal{B}}} \int \prod_{e} dg_{e} d\overline{g}_{e} \lambda_{\mathcal{B}}(\{g_{e}\overline{g}_{e}^{-1}\}) \prod_{v} \Phi(G_{\mathcal{B}}(v)) \prod_{\overline{v}} \overline{\Phi}(\overline{G}_{\mathcal{B}}(\overline{v}))$$

where $G_{\mathcal{B}}(v)$ and $\overline{G}_{\mathcal{B}}(\overline{v})$ indicate the *D*-tuplets of group elements (ordered by their colours) incident to v and \overline{v} in \mathcal{B} .

- Covariance and coupling only depend on the products $g_e \overline{g}_e^{-1}$
- Closure constraint (tetrahedron) \Rightarrow gauge invariance (covariance and couplings)

$$C\left\{g_{e}\overline{g}_{e}^{-1}\right\} = C\left\{hg_{e}\overline{g}_{e}^{-1}\overline{h}^{-1}\right\} \quad \lambda_{\mathcal{B}}\left\{g_{e}\overline{g}_{e}^{-1}\right\} = \lambda_{\mathcal{B}}\left\{h_{v_{\mathcal{B}}(e)}g_{e}\overline{g}_{e}^{-1}\overline{h}_{\overline{v}_{\mathcal{B}}(e)}^{-1}\right\}$$

• Effective action expanded over bubble couplings with closure constraint

Conclusion and outlook

ж

Flow equation in group field theories

Covariance

$$C_{\Lambda,\Lambda_{0}}\left(\left\{g_{e}\overline{g}_{e}^{-1}\right\}\right)=\int_{\frac{1}{\Lambda_{0}^{2}}}^{\frac{1}{\Lambda^{2}}}d\alpha K_{\alpha}\left(\left\{g_{e}\overline{g}_{e}^{-1}\right\}\right)$$

with heat kernel on the group manifold

$$\mathcal{K}_{\alpha}\left(\left\{g_{e}\overline{g}_{e}^{-1}\right\}\right)=\int dhd\overline{h}\prod_{1\leq i\leq D}\mathcal{H}_{\alpha}(hg_{i}\overline{g}_{i}^{-1}\overline{h}^{-1}).$$

 $\Lambda \; (\propto e^t \; \text{for tensor models}) = " \, \text{ultraviolet" cut-off}$

Polchinski's equation for group field theories

$$\Lambda \frac{\partial S}{\partial \Lambda} = -\frac{2}{\Lambda^2} \int \prod_{1 \le i \le D} dg_i d\overline{g}_i K_{\frac{1}{\Lambda^2}} \left\{ g_i \overline{g}_i^{-1} \right\} \left(\frac{\delta S}{\delta \overline{\Phi}(\overline{G})} \frac{\delta S}{\delta \Phi(G)} + \frac{\delta^2 S}{\delta \overline{\Phi}(\overline{G}) \delta \Phi(G)} \right)$$

- Same structure as tensor models with $i \rightarrow g$ and $\sum_i \rightarrow \int dg$
- New ingredients: non trivial propagator and closure constraint

Abelian models

- Replace group by $(U(1))^d$ (technical simplification) with size L
- Discrete momenta \Rightarrow closure constraint $\delta_{\sum p,0}$
- Heat kernel covariance \Rightarrow Gaußian integrals (sums)

$$C_{\Lambda,\Lambda_{0}}\left\{\theta_{i}-\overline{\theta}_{i}\right\}=\int_{\frac{1}{\Lambda_{0}^{2}}}^{\frac{1}{\Lambda^{2}}}d\alpha\sum_{\{p_{i}\}\in\frac{\mathbb{Z}^{dD}}{L}}\exp\left\{\alpha\sum_{i}p_{i}^{2}+\mathsf{i}\sum p_{i}(\theta_{i}-\overline{\theta}_{i})\right\}\delta_{\sum p_{i},0}$$

Flow equation for bubble couplings in abelian models

$$\begin{split} \Lambda \frac{\partial \lambda_{\mathcal{B}}}{\partial \Lambda} \left\{ p_{e} \right\} &= \\ &- \frac{2}{\Lambda^{2}} \sum_{0 \leq k \leq D \atop k < \text{ut} c} \sum_{\{p_{l}\}_{l \notin c}} \delta_{(\sum_{e \in c} p_{e}), 0} \, e^{-\frac{\sum_{l \notin c} p_{l}^{2} + \sum_{e \in c} p_{e}^{2}}{\Lambda^{2}}} \, \lambda_{B_{c}} \left\{ \left\{ p_{e} \right\}_{e \in \mathcal{B}}, \left\{ p_{l} \right\}_{l \notin c} \right\} \\ &- \frac{2}{\Lambda^{2}} \sum_{D < \text{ut} c \atop \kappa(\mathcal{B}_{c}) > \kappa(\mathcal{B}_{c})} \sum_{\mathcal{B}', \mathcal{B}''} e^{-\frac{\sum_{e \in c} p_{e}^{2}}{\Lambda^{2}}} \, \lambda_{\mathcal{B}'} \left\{ p_{e} \right\}_{e \in \mathcal{B}'} \, \lambda_{\mathcal{B}''} \left\{ p_{e} \right\}_{e \in \mathcal{B}''} \end{split}$$

• Each field has D-1 momenta (closure constraint) with d components each

$$\#\left\{ \mathsf{number of modes with } \sum p^2 < \Lambda^2 \right\} \sim (L\Lambda)^{d(D-1)}$$

⇒ free field effective action scales as $(L\Lambda)^{d(D-1)}$ ("cosmological constant") ⇒ $\delta_S = d(D-1)$

• Kinetic term involves d(D-1) momentum integrations and

$$\delta_{S} = d(D-1) \text{ (momentum integration)} + 2(\text{Laplacian}) + 2\delta_{\Phi}$$

 $\Rightarrow \delta_{\Phi} = -1.$

Each bubble B with e_B edges, v_B vertices and κ_B connected components involves e_B - v_B + κ_B momentum summations

$$\delta_{S} = \delta_{\mathcal{B}} + d(e_{\mathcal{B}} - v_{\mathcal{B}} + \kappa_{\mathcal{B}}) + v_{\mathcal{B}}\delta_{\Phi}$$

Scaling dimension of a bubble coupling when $\Lambda \to \infty$ with L fixed

$$\delta_{\mathcal{B}} = d(D-1) - d\kappa_{\mathcal{B}} - [d(D-2)-2]\frac{v_{\mathcal{B}}}{2}$$

Renormalizability and flow equations

• Introduce rescaled ("dimensionless") couplings $u_{\mathcal{B}}$ and momenta q

$$\lambda_{\mathcal{B}}(\{p_e\},\Lambda) = \Lambda^{\delta_{\mathcal{B}}} u_{\mathcal{B}}(\{q_e\},\Lambda) \qquad \text{with } q_e = \frac{p_e}{\Lambda}.$$

• Assume L large enough so tha the continuum approximation holds

$$\sum_{p \in \frac{\mathbb{Z}^{(D-k)d}}{L}} \to L^{(D-k)d} \int dp \quad \text{and} \quad \delta_{\sum p_i,0} \to \frac{1}{L^d} \delta(\sum p_i).$$

Flow equation for rescaled variables

$$\Lambda \frac{\partial u_{\mathcal{B}}}{\partial \Lambda} \{q_e\} = -\delta_{\mathcal{B}} u_{\mathcal{B}} \{q_e\} + \sum_{e} q_e \frac{\partial u_{\mathcal{B}}}{\partial q_e} \{q_e\} \quad \text{(dimensional analysis)}$$

$$-2 \sum_{k=0}^{D} \sum_{k-\text{cut } c} \frac{L^{d(D-k-1)}}{\Lambda^{d(k-\kappa_{\mathcal{B},c})}} \int \prod_{l \notin c} dq_l \, \delta\Big(\sum_{e \in c} q_e\Big) \, e^{-\left(\sum_{\substack{l \notin c \\ e \in c}} q_{e,l}^2\right)} u_{\mathcal{B}_c} \{q_{e,l}\}_{e \in \mathcal{B}, l \notin c}$$

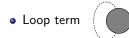
$$-2 \sum_{\substack{D-\text{cut } c \\ \kappa(\mathcal{B}_c) > \kappa(\mathcal{B})}} \sum_{\substack{\mathcal{B}', \mathcal{B}'' \\ \mathcal{B}_c = \mathcal{B}' \cup \mathcal{B}''}} e^{-\sum_{e \in c} q_e^2} u_{\mathcal{B}'} \{q_e\}_{e \in \mathcal{B}'} u_{\mathcal{B}''} \{q_e\}_{e \in \mathcal{B}''}$$

 \Rightarrow only non positive powers of the large cut-off Λ

Proof based on comparison of scaling dimensions on each side

• Tree term

$$\begin{split} \delta_{\mathcal{B}''} + \delta_{\mathcal{B}'} &= 2d(D-1) - d(\kappa_{\mathcal{B}'} + \kappa_{\mathcal{B}''}) - \left[d(D-2) - 2\right] \frac{v_{\mathcal{B}'} + v_{\mathcal{B}''}}{2} \\ &= 2d(D-1) - d(\kappa_{\mathcal{B}} + 1) - \left[d(D-2) - 2\right] \frac{v_{\mathcal{B}} + 2}{2} \\ &= \delta_{\mathcal{B}} + 2 \end{split}$$



$$\begin{split} \delta_{\mathcal{B}_c} &= d(D-1) - d\kappa_{\mathcal{B}_c} - \left[d(D-2) - 2\right] \frac{v_{\mathcal{B}_c}}{2} \\ &= d(D-1) - d(\kappa_{\mathcal{B}} - \kappa_{\mathcal{B},c} + 1) - \left[d(D-2) - 2\right] \frac{v_{\mathcal{B}} + 2}{2} \\ &= \delta_{\mathcal{B}} + d\kappa_{\mathcal{B},c} - d(D-1) + 2 \end{split}$$

 $p = \Lambda q$ in integration $\rightarrow \Lambda^{d(D-k)}$ and constraint $\rightarrow \Lambda^{-d}$ ・ロト・日本・モート モー うへぐ

Renormalizable interactions

Renormalization based on Polchinski's equation

Renormalizable couplings have positive scaling dimension

$$\delta_{\mathcal{B}} = d(D-2) - d(\kappa_{\mathcal{B}}-1) - [d(D-2)-2] \frac{v_{\mathcal{B}}}{2} \ge 0 \Rightarrow v_{\mathcal{B}} \le 2 + \frac{4}{d(D-2)-2}$$

List of renormalizable theories (finite number of couplings):

•
$$\frac{\text{Case } d(D-2)=3}{d=3, D=3}$$
 and $D=5, d=1$
2 vertices: $\overline{\Phi}\Phi$ ($\delta = 2 \text{ mass}$), $\partial^2 \overline{\Phi}\Phi$ ($\delta = 0$, kinetic)
4 vertices: $(\overline{\Phi}\Phi)^2$ ($\delta = 2$)
 $(\overline{\Phi}\Phi)(\overline{\Phi}\Phi)$ ($\delta = 1$, non connected, only for $d=1$)
6 vertices: $(\overline{\Phi}\Phi)^3$ ($\delta = 0$, melonic and non melonic)
• $\frac{\text{Case } d(D-2)=4}{(d=4, D=3, D=2, d=4 \text{ and } D=6, d=1)}$
2 vertices: $\overline{\Phi}\Phi$ ($\delta = 2 \text{ mass}$), $\partial^2 \overline{\Phi}\Phi$ ($\delta = 0$, kinetic)
4 vertices: $(\overline{\Phi}\Phi)^2$ ($\delta = 0$)

We recover results by Ben Geloun, Carrozza Rivasseau and Oriti based on multiscale analysis

Polchinski's equation for tensor models and tensorial group field theories

Formulation of an exact renormalization group equation in terms of bubble couplings (boundary triangulation)

- Evolution of bubble couplings in tensor models
 ⇒ Melonic bubble dominance at large N
- Dimensional analysis for abelian group field theories
 - \Rightarrow Classification of renormalizable theories

Outlook

- Rigorous bounds (perturbative and non perturbative)
- Systematic analysis of $\frac{1}{N}$ corrections
- Fixed points and truncations using Wetterich type equation
- Non abelian models
- Models involving a simplicity constraint (4d quantum gravity)