

© Stephan Pastis/Dist. by UFS, Inc.

Higgs Physics

Sven Heinemeyer, IFCA (Santander)

Corfu, 09/2015

- 1. The Higgs in the Standard Model
- 2. The Higgs sector of the (N)MSSM

Higgs Physics

The Higgs sector in the (N)MSSM

Sven Heinemeyer, IFCA (Santander)

Corfu, 09/2015

- 1. Why SUSY?
- 2. The MSSM Higgs sector
- 3. Predictions for the light MSSM Higgs mass before discovery
- 4. The MSSM Higgs sector with complex parameters
- 5. The NMSSM Higgs sector

1. Why SUSY?

The Standard Model (SM) cannot be the ultimate theory

- The SM does not contain gravity
- Further problems: Hierarchy problem
- And another one: SM does not provide Cold Dark Matter candidate

Up to which energy scale Λ can the SM be valid?

800.0 $- \Lambda < M_{\rm Pl}$: inclusion of gravity effects necessary 600.0 M_H (GeV) – stability of Higgs potential: \Rightarrow 400.0 Landau pole - Hierarchy problem : Higgs mass unstable 200.0 w.r.t. quantum corrections Potential bounded from below $\delta M_H^2 \sim \Lambda^2$ 0.0 └__ 10³ 10^{6} 10¹⁵ 10^{9} 10¹² Λ (GeV)

Mass is what determines the properties of the free propagation of a particle

QM: integration over all possible loop momenta k dimensional analysis:

$$\Sigma_{H}^{f} \sim N_{f} \lambda_{f}^{2} \int d^{4}k \left(\frac{1}{k^{2} - m_{f}^{2}} + \frac{2m_{f}^{2}}{(k^{2} - m_{f}^{2})^{2}} \right)$$

for $\Lambda \to \infty$: $\Sigma_{H}^{f} \sim N_{f} \lambda_{f}^{2} \left(\int \frac{d^{4}k}{k^{2}} + 2m_{f}^{2} \int \frac{dk}{k} \right)$
 $\sim \Lambda^{2} \sim \ln \Lambda$

 \Rightarrow quadratically divergent!

For $\Lambda = M_{\text{Pl}}$:

$$\Sigma_H^f \approx \delta M_H^2 \sim M_{\rm Pl}^2 \quad \Rightarrow \quad \delta M_H^2 \approx 10^{30} \, M_H^2$$
 for $M_H \lesssim 1 \, {\rm TeV}$)

- no additional symmetry for $M_H = 0$
- no protection against large corrections

- ⇒ Hierarchy problem is instability of small Higgs mass to large corrections in a theory with a large mass scale in addition to the weak scale
- E.g.: Grand Unified Theory (GUT): $\delta M_H^2 \approx M_{GUT}^2$

Note however: there is another fine-tuning problem in nature, for which we have no clue so far – cosmological constant

Supersymmetry:

Symmetry between fermions and bosons

$$Q|boson\rangle = |fermion\rangle$$

 $Q|fermion\rangle = |boson\rangle$

Effectively: SM particles have SUSY partners (e.g. $f_{L,R} \rightarrow \tilde{f}_{L,R}$)

SUSY: additional contributions from scalar fields:

for $\Lambda \to \infty$: $\Sigma_{H}^{\tilde{f}} \sim N_{\tilde{f}} \lambda_{\tilde{f}}^{2} \Lambda^{2}$

 \Rightarrow quadratic divergences cancel for

$$N_{\tilde{f}_L} = N_{\tilde{f}_R} = N_f$$
$$\lambda_{\tilde{f}}^2 = \lambda_f^2$$

complete correction vanishes if furthermore

 $m_{\tilde{f}} = m_f$

Soft SUSY breaking:
$$m_{\tilde{f}}^2 = m_f^2 + \Delta^2$$
, $\lambda_{\tilde{f}}^2 = \lambda_f^2$
 $\Rightarrow \Sigma_H^{f+\tilde{f}} \sim N_f \ \lambda_f^2 \ \Delta^2 + \dots$

 \Rightarrow correction stays acceptably small if mass splitting is of weak scale

 \Rightarrow realized if mass scale of SUSY partners

 $M_{
m SUSY} \lesssim 1\,{
m TeV}$

 \Rightarrow SUSY at TeV scale provides attractive solution of hierarchy problem

Physics beyond the SM:

Interesting (new) physics models :

- 2HDM:
 - two Higgs doublets more natural than one
- MSSM:
 - solves hierarchy problem
 - automatic electroweak symmetry breaking
 - gauge coupling unification
 - cold dark matter candidate

• Little Higgs:

- (partially) solves the hierarchy problem
- cold dark matter candidate
- Extra dimensions:
 - solves the hierarchy problem
 - cold dark matter candidate

• . . .

\Rightarrow pick your favorite model now (I pick the MSSM)

Symmetry between

Bosons \leftrightarrow Fermions

Q |Fermionangle
ightarrow |Bosonangle

Q |Boson $\rangle \rightarrow$ |Fermion \rangle

Simplified examples:

 \Rightarrow each SM multiplet is enlarged to its double size

Unbroken SUSY: All particles in a multiplet have the same mass

Reality: $m_e \neq m_{\tilde{e}} \Rightarrow SUSY$ is broken . . .

... via soft SUSY-breaking terms in the Lagrangian (added by hand) SUSY particles are made heavy: $M_{SUSY} = O(1 \text{ TeV})$

Supersymmetry: Motivation

The SM is in a pretty good shape.

Why MSSM? (Is it worth to double the particle spectrum?)

- 1.) Stability of the Higgs mass against higher-order corr.
- 2.) Unification of gauge couplings: Not possible in the SM, but in the MSSM (although it was not designed for it.)
- 3.) Spontaneous symmetry breaking via Higgs mechanism is automatic in SUSY GUTs
- 4.) SUSY provides CDM candidate5.) ...

Unification of the Coupling Constants in the SM and the minimal MSSM

[Amaldi, de Boer, Fürstenau '92]

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles

$$\begin{bmatrix} u, d, c, s, t, b \end{bmatrix}_{L,R} \begin{bmatrix} e, \mu, \tau \end{bmatrix}_{L,R} \begin{bmatrix} \nu_{e,\mu,\tau} \end{bmatrix}_{L} & \text{Spin } \frac{1}{2} \\ \begin{bmatrix} \tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}, \tilde{t}, \tilde{b} \end{bmatrix}_{L,R} & \begin{bmatrix} \tilde{e}, \tilde{\mu}, \tilde{\tau} \end{bmatrix}_{L,R} & \begin{bmatrix} \tilde{\nu}_{e,\mu,\tau} \end{bmatrix}_{L} & \text{Spin } 0 \\ g & \underbrace{W^{\pm}, H^{\pm}}_{\tilde{\chi}_{1,2}} & \underbrace{\gamma, Z, H_{1}^{0}, H_{2}^{0}}_{\tilde{\chi}_{1,2,3,4}} & \text{Spin } 1 \text{ / Spin } 0 \\ \begin{bmatrix} \tilde{g} & \tilde{\chi}_{1,2}^{\pm} & \tilde{\chi}_{1,2,3,4}^{0} & \text{Spin } \frac{1}{2} \end{bmatrix}$$

Enlarged Higgs sector: Two Higgs doublets

Problem in the MSSM: more than 100 free parameters Nobody(?) believes that a model describing nature has so many free parameters! "Hidden sector": \longrightarrow Visible sector:SUSY breakingMSSM

"Gravity-mediated": CMSSM/mSUGRA "Gauge-mediated": GMSB "Anomaly-mediated": AMSB "Gaugino-mediated"

CMSSM/mSUGRA: mediating interactions are gravitational

GMSB: mediating interactions are ordinary electroweak and QCD gauge interactions

AMSB, Gaugino-mediation: SUSY breaking happens on a different brane in a higher-dimensional theory

⇒ all new low-energy parameters expressed through a few GUT scale parameters!

 $m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}\mu$

 $\begin{array}{c} m_0: \text{universal scalar mass parameter} \\ m_{1/2}: \text{universal gaugino mass parameter} \\ A_0: \text{universal trilinear coupling} \\ \tan\beta: \text{ratio of Higgs vacuum expectation values} \\ \text{sign}(\mu): \text{sign of supersymmetric Higgs parameter} \end{array}$

 \Rightarrow particle spectra from renormalization group running to weak scale \Rightarrow Lightest SUSY particle (LSP) is the lightest neutralino \Rightarrow particle spectra from renormalization group running to weak scale

 \Rightarrow one parameter turns negative \Rightarrow Higgs mechanism for free

"Typical" CMSSM scenario

(SPS 1a benchmark scenario):

Strong connection between

all the sectors

GUT based models: 2.) NUHM1: (Non-universal Higgs mass model)

Assumption: no unification of scalar fermion and scalar Higgs parameter at the GUT scale

 \Rightarrow effectively M_A or μ as free parameters at the EW scale

 \Rightarrow besides the CMSSM parameters $$M_A$$ or μ

And there is more: 3.) VCMSSM 4.) mSUGRA 5.) NUHM2

... no time here ...

2. The MSSM Higgs sector

Comparison with SM case:

$$\mathcal{L}_{\mathsf{SM}} = \underbrace{m_d \bar{Q}_L \Phi d_R}_{\mathsf{d}-\mathsf{quark}} + \underbrace{m_u \bar{Q}_L \Phi_c u_R}_{\mathsf{u}-\mathsf{quark}}$$

$$\mathsf{u}-\mathsf{quark} \mathsf{mass} \qquad \mathsf{u}-\mathsf{quark} \mathsf{mass}$$

$$Q_L = \left(\begin{array}{c} u\\ d\end{array}\right)_L, \quad \Phi_c = i\sigma_2 \Phi^*, \quad \Phi \to \left(\begin{array}{c} 0\\ v\end{array}\right), \quad \Phi_c \to \left(\begin{array}{c} v\\ 0\end{array}\right)$$

In SUSY: term $\bar{Q}_L \Phi^*$ not allowed

Superpotential is holomorphic function of chiral superfields, i.e. depends only on φ_i , not on φ_i^*

No soft SUSY-breaking terms allowed for chiral fermions

 \Rightarrow $H_d(\equiv H_1)$ and $H_u(\equiv H_2)$ needed to give masses to down- and up-type fermions

Furthermore: two doublets also needed for cancellation of anomalies, quadratic divergences

Enlarged Higgs sector: Two Higgs doublets

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1} + i\chi_{1})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = \begin{pmatrix} \phi_{2}^{+} \\ \phi_{2}^{+} \\ \psi_{2}^{-} + (\phi_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix}$$

 $V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.})$

$$+\underbrace{\frac{g'^2+g^2}{8}}_{8}(H_1\bar{H}_1-H_2\bar{H}_2)^2+\underbrace{\frac{g^2}{2}}_{2}|H_1\bar{H}_2|^2$$

gauge couplings, in contrast to SM

physical states: h^0, H^0, A^0, H^{\pm}

Goldstone bosons: G^0, G^{\pm}

Input parameters: (to be determined experimentally)

$$\tan \beta = \frac{v_2}{v_1}, \qquad M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$$

Rotation to physical basis:

$$\begin{pmatrix} H^{0} \\ h^{0} \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix} \qquad \tan(2\alpha) = \tan(2\beta) \frac{M_{A}^{2} + M_{Z}^{2}}{M_{A}^{2} - M_{Z}^{2}}$$
$$\begin{pmatrix} G^{0} \\ A^{0} \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \chi_{1}^{0} \\ \chi_{2}^{0} \end{pmatrix}, \qquad \begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \phi_{1}^{\pm} \\ \phi_{2}^{\pm} \end{pmatrix}$$

Three Goldstone bosons (as in SM): G^0 , G^{\pm}

- \longrightarrow longitudinal components of W^{\pm} , Z
- \Rightarrow Five physical states: h^0, H^0, A^0, H^{\pm}
 - *h*, *H*: neutral, CP-even, A^0 : neutral, CP-odd, H^{\pm} : charged

Gauge-boson masses:

$$M_W^2 = \frac{1}{2}g'^2(v_1^2 + v_2^2), \quad M_Z^2 = \frac{1}{2}(g^2 + g'^2)(v_1^2 + v_2^2), \quad M_\gamma = 0$$

Parameters in MSSM Higgs potential V (besides g, g'):

 $v_1, v_2, m_1, m_2, m_{12}$

relation for M_W^2 , $M_Z^2 \Rightarrow 1$ condition

minimization of V w.r.t. neutral Higgs fields H_1^1 , $H_2^2 \Rightarrow 2$ conditions

 \Rightarrow only two free parameters remain in V, conventionally chosen as $\tan\beta=\frac{v_2}{v_1},\qquad M_A^2=-m_{12}^2(\tan\beta+\cot\beta)$

 \Rightarrow $m_h,~m_H,$ mixing angle $\alpha,~m_{\rm H^\pm}$: no free parameters, can be predicted

In lowest order:

$$m_{\mathsf{H}^\pm}^2 = M_A^2 + M_W^2$$

Predictions for m_h , m_H from diagonalization of tree-level mass matrix:

 $\phi_1-\phi_2$ basis:

Tree-level result for m_h , m_H :

$$m_{H,h}^{2} = \frac{1}{2} \left[M_{A}^{2} + M_{Z}^{2} \pm \sqrt{(M_{A}^{2} + M_{Z}^{2})^{2} - 4M_{Z}^{2}M_{A}^{2}\cos^{2}2\beta} \right]$$

 $\Rightarrow m_h \leq M_Z$ at tree level

 \Rightarrow Light Higgs boson h required in SUSY

Measurement of m_h , Higgs couplings

 \Rightarrow test of the theory (more directly than in SM)

Higgs couplings, tree level:

$$g_{hVV} = \sin(\beta - \alpha) g_{HVV}^{SM}, \quad V = W^{\pm}, Z$$
$$g_{HVV} = \cos(\beta - \alpha) g_{HVV}^{SM}$$
$$g_{hAZ} = \cos(\beta - \alpha) \frac{g'}{2\cos\theta_W}$$

$$\begin{split} g_{hb\overline{b}}, g_{h\tau^{+}\tau^{-}} &= -\frac{\sin\alpha}{\cos\beta} g_{Hb\overline{b},H\tau^{+}\tau^{-}}^{\mathsf{SM}} \\ g_{ht\overline{t}} &= \frac{\cos\alpha}{\sin\beta} g_{Ht\overline{t}}^{\mathsf{SM}} \\ g_{Ab\overline{b}}, g_{A\tau^{+}\tau^{-}} &= \gamma_5 \tan\beta g_{Hb\overline{b}}^{\mathsf{SM}} \end{split}$$

⇒ $g_{hVV} \leq g_{HVV}^{SM}$, g_{hVV} , g_{HVV} , g_{hAZ} cannot all be small $g_{hb\bar{b}}, g_{h\tau+\tau^{-}}$: significant suppression or enhancement w.r.t. SM coupling possible

For $M_A\gtrsim$ 150 GeV:

The lightest MSSM Higgs is SM-like \Rightarrow SM analysis applies!

The heavy MSSM Higgses: $M_A \approx M_H \approx M_{H^\pm}$

→ coupling to gauge bosons ~ 0 ⇒ no decay $H \rightarrow WW^{(*)}$, ...

The lightest MSSM Higgs boson

MSSM predicts upper bound on M_h :

tree-level bound: $m_h < M_Z$, excluded by LEP Higgs searches!

Large radiative corrections:

 \rightarrow excursion

Yukawa couplings: $\frac{e m_t}{2M_W s_W}$, $\frac{e m_t^2}{M_W s_W}$, ...

 \Rightarrow Dominant one-loop corrections: $\Delta M_h^2 \sim G_\mu m_t^4 \log\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$

The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector)

Present status of M_h prediction in the MSSM:

Complete 1L, 'almost complete' 2L available, also very leading 3L ...

Excursion: Higgs mass calculations

What is a mass

Definition: The mass of a particle is the pole of the propagator Example: scalar particle

Propagator:

$$\frac{i}{q^2 - m^2}$$

 q^2 : four-momentum squared m^2 : constant in the Lagrangian

If one chooses $q^2 = m^2$ then the propagator has a pole. This q^2 is then the mass of the particle.

 \Rightarrow Pole of the propagator corresponds to zeroth of the inverse propagator. Inverse propagator:

$$-i(q^2 - m^2)$$

Problem: quantum corrections

Inverse propagator:

$$-i(q^2 - m^2) \longrightarrow -i(q^2 - m^2 + \hat{\Sigma}_h(q^2))$$

 $\hat{\Sigma}_h(q^2)$: renormalized Higgs self-energy

Calculation of the blob:

$$\hat{\Sigma}(q^2) = \hat{\Sigma}(1)(q^2) + \hat{\Sigma}(2)(q^2) + \dots$$

: all MSSM particles contribute main contribution: t/\tilde{t} sector (\tilde{t} : scalar top, SUSY partner of the t)

Dominant 1-loop corrections: $\Delta m_h^2 \sim G_\mu m_t^4 \log \left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2} \right)$

size of the corrections: $\mathcal{O}(50 \text{ GeV})$

 \Rightarrow 2-Loop calculation necessary!

2-loop: $\hat{\Sigma}^{(2)}(0)$

[S. H., W. Hollik, G. Weiglein '98]

dominant contributions of $\mathcal{O}(\alpha_t \alpha_s)$:

(a) pure scalar diagrams(b) diagrams with gluonexchange(c) diagrams with gluinoexchange

Quite complicated calculation . . . ⇒ Need for computer algebra programms

 $['98 - '13:] \Rightarrow$ many more corrections calculated!

End of excursion: Higgs mass calculations

The lightest MSSM Higgs boson

MSSM predicts upper bound on M_h :

tree-level bound: $m_h < M_Z$, excluded by LEP Higgs searches!

Large radiative corrections:

 \rightarrow excursion

Yukawa couplings: $\frac{e m_t}{2M_W s_W}$, $\frac{e m_t^2}{M_W s_W}$, ...

 \Rightarrow Dominant one-loop corrections: $\Delta M_h^2 \sim G_\mu m_t^4 \log\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$

The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector)

Present status of M_h prediction in the MSSM:

Complete 1L, 'almost complete' 2L available, also very leading 3L ...

Mixing of the $\mathcal{CP}\text{-}even$ Higgs bosons:

Propagator/Mass matrix at tree-level:

$$\left(\begin{array}{cc} q^2 - m_H^2 & 0\\ 0 & q^2 - m_h^2 \end{array}\right)$$

Propagator / mass matrix with higher-order corrections $(\rightarrow$ Feynman-diagrammatic approach):

$$M_{hH}^{2}(q^{2}) = \begin{pmatrix} q^{2} - m_{H}^{2} + \hat{\Sigma}_{HH}(q^{2}) & \hat{\Sigma}_{Hh}(q^{2}) \\ \\ \hat{\Sigma}_{hH}(q^{2}) & q^{2} - m_{h}^{2} + \hat{\Sigma}_{hh}(q^{2}) \end{pmatrix}$$

 $\hat{\Sigma}_{ij}(q^2)$ (i, j = h, H) : renormalized Higgs self-energies *CP*-even fields can mix

 \Rightarrow complex roots of det $(M_{hH}^2(q^2))$: $\mathcal{M}_{h_i}^2(i=1,2)$: $\mathcal{M}^2 = M^2 - iM\Gamma$

Upper bound on M_h in the MSSM:

"Unconstrained MSSM":

 M_A , tan β , 5 parameters in \tilde{t} -- \tilde{b} sector, μ , $m_{\tilde{g}}$, M_2

 $M_h \lesssim$ 135 GeV

for $m_t = 173.2 \pm 0.9 \, {
m GeV}$ and $m_{\widetilde{t}} \lesssim 2 \, {
m TeV}$

(including theoretical uncertainties from unknown higher orders) \Rightarrow observable at the LHC

Obtained with:

FeynHiggs

www.feynhiggs.de

[T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein '98 - '15]

 \rightarrow all Higgs masses, couplings, BRs, XSs (easy to link, easy to use :-)

Upper bound on M_h in the MSSM:

"Unconstrained MSSM":

 M_A , tan β , 5 parameters in \tilde{t} - \tilde{b} sector, μ , $m_{\tilde{g}}$, M_2

 $M_h \lesssim 135 \text{ GeV}$ Note : 125 < 135!

for $m_t = 173.2 \pm 0.9 \, {
m GeV}$ and $m_{\widetilde{t}} \lesssim 2 \, {
m TeV}$

(including theoretical uncertainties from unknown higher orders) \Rightarrow observable at the LHC

Obtained with:

FeynHiggs

www.feynhiggs.de

[T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein '98 – '15]

 \rightarrow all Higgs masses, couplings, BRs, XSs (easy to link, easy to use :-)

Effects of the two-loop corrections to the lightest Higgs mass:

Example for one set of MSSM parameters

Effects of the two-loop corrections to the lightest Higgs mass:

Example for one set of MSSM parameters

 $M_h = 125 \pm 3 \text{ GeV}$

*: best-fit point red: $\Delta \chi^2 < 2.3$ orange: $\Delta \chi^2 < 5.99$ blue: all points HiggsBounds allowed gray: all scan points

 $\Rightarrow M_h \sim 125 \text{ GeV}$ requires large X_t and/or large M_{SUSY}

$$M_h = 125 \pm 3 \text{ GeV}$$

*: best-fit point red: $\Delta \chi^2 < 2.3$ orange: $\Delta \chi^2 < 5.99$ blue: all points HiggsBounds allowed gray: all scan points

 \Rightarrow light and heavy stops compatible with $M_h \simeq 125~{\rm GeV}$

 $\Rightarrow M_h \sim 125 \text{ GeV}$ requires large X_t and/or large M_{SUSY}

\Rightarrow no clear prediction for the LHC!

Remaining theoretical uncertainties in prediction for M_h in the MSSM:

[G. Degrassi, S.H., W. Hollik, P. Slavich, G. Weiglein '02]

- From unknown higher-order corrections: $\Rightarrow \Delta M_h \approx 3 \text{ GeV}$
- From uncertainties in input parameters

 $m_t, \ldots, M_A, \tan \beta, m_{\tilde{t}_1}, m_{\tilde{t}_2}, \theta_{\tilde{t}}, m_{\tilde{g}}, \ldots$ $\Delta m_t \approx 1 \text{ GeV} \Rightarrow \Delta M_h \approx 1 \text{ GeV}$

⇒ Recent improvement published!
[arXiv:1312.4937 [hep-ph]]
⇒ ask me for details over coffee :-)

The heavy MSSM Higgs bosons

Differences compared to the SM Higgs:

Additional enhancement factors compared to the SM case:

\Rightarrow other parameters enter \Rightarrow strong μ dependence

Most powerful LHC search modes for heavy MSSM Higgs bosons:

$$b\overline{b} \to H/A \to \tau^+ \tau^- + X$$

$$gb \to tH^{\pm} + X, \ H^{\pm} \to \tau\nu_{\tau}$$

$$pp \to t\overline{t} \to H^{\pm} + X, \ H^{\pm} \to \tau\nu_{\tau}$$

Enhancement factors compared to the SM case:

$$H/A : \frac{\tan^2 \beta}{(1+\Delta_b)^2} \times \frac{\mathsf{BR}(H \to \tau^+ \tau^-) + \mathsf{BR}(A \to \tau^+ \tau^-)}{\mathsf{BR}(H \to \tau^+ \tau^-)_{\mathsf{SM}}}$$
$$H^{\pm} : \frac{\tan^2 \beta}{(1+\Delta_b)^2} \times \mathsf{BR}(H^{\pm} \to \tau \nu_{\tau})$$

⇒ Δ_b effects (often neglected by ATLAS/CMS analyses) also relevant for BR($H/A \rightarrow \tau^+ \tau^-$), BR($H^\pm \rightarrow \tau \nu_\tau$) also relevant: correct evaluation of $\Gamma(H/A/H^\pm \rightarrow \text{SUSY})$ ⇒ additional effects on BR($H/A \rightarrow \tau^+ \tau^-$), BR($H^\pm \rightarrow \tau \nu_\tau$)

Pre-LHC predictions for neutral heavy Higgs bosons:

MSSM Higgs discovery contours in M_A -tan β plane ($\Phi = H, A$) (m_h^{max} benchmark scenario): [*CMS PTDR '06*]

Pre-LHC predictions for charged Higgs boson searches:

MSSM Higgs discovery contours in M_A -tan β plane $(m_h^{\text{max}} \text{ benchmark scenario})$: [CMS PTDR '06]

heavy charged Higgs: $M_{H^\pm} > m_t$

3. Predictions for the light MSSM Higgs mass before discovery

Comparison of electro-weak precision observables with theory:

Test of theory at quantum level: Sensitivity to loop corrections, e.g. M_X

MSSM: limits on M_X

Very high accuracy of measurements and theoretical predictions needed

1.) New contributions from SUSY particles:

2.) CPV effects via new complex phases

3.) large Yukawa corrections:
$$\sim m_t^4 \log \left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2} \right)$$

4.) large corrections from the b/\tilde{b} sector for large tan β

5.) non-decoupling SUSY effects: $\sim \log \frac{M_{SUSY}}{M_W}$

Corrections to M_W , $\sin^2 \theta_{\text{eff}} \rightarrow \text{approximation via the } \rho$ -parameter:

 ρ measures the relative strength between neutral current interaction and charged current interaction

$$\rho = \frac{1}{1 - \Delta \rho} \qquad \Delta \rho = \frac{\Sigma_Z(0)}{M_Z^2} - \frac{\Sigma_W(0)}{M_W^2}$$

(leading, process independent terms)

 $\Delta \rho$ gives the main contribution to EW observables:

$$\Delta \rho^{\text{SUSY}}$$
 from \tilde{t}/\tilde{b} loops > 0 $\Rightarrow M_W^{\text{SUSY}} \gtrsim M_W^{\text{SM}}$

Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, G. Weiglein, L. Zeune '12]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

SM band: variation of M_H^{SM}

Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, G. Weiglein, L. Zeune '12]

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

SM band: variation of M_H^{SM}

MSSM: indirect constraints on M_h from existing data?

- Electroweak precision observables (EWPO) ?
- B physics observables (BPO) ?
- Cold dark matter (CDM) ?
- SUSY/Higgs data ?
 - \Rightarrow combination of EWPO, BPO, CDM, SUSY/Higgs ?

MSSM: indirect constraints on M_h from existing data?

- Electroweak precision observables (EWPO) ?
- B physics observables (BPO) ?
- Cold dark matter (CDM) ?
- SUSY/Higgs data ?

 \Rightarrow combination of EWPO, BPO, CDM, SUSY/Higgs ?

SUSY limits: information on $m_{\tilde{q}_{1,2}}$, $m_{\tilde{g}}$ Heavy Higgs results: informatin on $m_{\tilde{t}}, m_{\tilde{b}}, \ldots$ EWPO $(g-2)_{\mu}$: information on $\tan \beta$ and/or $m_{\tilde{\chi}^0}$, $m_{\tilde{\chi}^{\pm}}$ and/or $m_{\tilde{\mu}}$, $m_{\tilde{\nu}_{\mu}}$ BPO BR $(b \rightarrow s\gamma)$: information on $\tan \beta$ and/or $M_{H^{\pm}}$ and/or $m_{\tilde{t}}$, $m_{\tilde{\chi}^{\pm}}$ CDM (LSP gives CDM): information on $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\tau}}$ or M_A or \ldots

MSSM: indirect constraints on M_h from existing data?

- Electroweak precision observables (EWPO) ?
- B physics observables (BPO) ?
- Cold dark matter (CDM) ?
- SUSY/Higgs data ?

 \Rightarrow combination of EWPO, BPO, CDM, SUSY/Higgs ?

SUSY limits: information on $m_{\tilde{q}_{1,2}}$, $m_{\tilde{g}}$ Heavy Higgs results: informatin on $m_{\tilde{t}}, m_{\tilde{b}}, \ldots$ EWPO $(g-2)_{\mu}$: information on $\tan \beta$ and/or $m_{\tilde{\chi}^0}$, $m_{\tilde{\chi}^{\pm}}$ and/or $m_{\tilde{\mu}}$, $m_{\tilde{\nu}_{\mu}}$ BPO BR $(b \rightarrow s\gamma)$: information on $\tan \beta$ and/or $M_{H^{\pm}}$ and/or $m_{\tilde{t}}$, $m_{\tilde{\chi}^{\pm}}$ CDM (LSP gives CDM): information on $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\tau}}$ or M_A or \ldots

 \Rightarrow combination (so far) makes only sense if all parameters are connected! \Rightarrow GUT based models, ... \Rightarrow M_h in the CMSSM, NUHM1, ...

 $M_h = 118 \pm 3 \,(\text{exp}) \pm 1.5 (\text{theo}) \,\text{GeV} \Rightarrow \text{substantially higher than in SM!}$

Mas TeRcope CMSSM: post-LHC (5+5 fb⁻¹) red band plot: [2012] 4.0 3.5 3.0 2.5 ²×2.0 1.5 1.0 LEP 0.5 LHC excluded 0.0 110 115 120 125 130 M_h [GeV] $M_h = 117 \pm 4 \,(\text{exp}) \pm 1.5 (\text{theo}) \,\,\text{GeV} \qquad \Delta \chi^2 (M_h = 125 \,\,\text{GeV}) \lesssim 2$

NUHM1: post-LHC (5+5 fb⁻¹) red band plot:

4. The NMSSM Higgs sector $(Z_3 \text{ invariant NMSSM})$

MSSM Higgs sector: Two Higgs doublets

$$H_1 = \begin{pmatrix} H_1^1 \\ H_1^2 \end{pmatrix} = \begin{pmatrix} v_1 + (\phi_1 + i\chi_1)/\sqrt{2} \\ \phi_1^- \end{pmatrix}$$
$$H_2 = \begin{pmatrix} H_2^1 \\ H_2^2 \end{pmatrix} = \begin{pmatrix} \phi_2^+ \\ v_2 + (\phi_2 + i\chi_2)/\sqrt{2} \end{pmatrix}$$

$$V = (\tilde{m}_{1}^{2} + |\mu||^{2})H_{1}\bar{H}_{1} + (\tilde{m}_{2}^{2} + |\mu||^{2})H_{2}\bar{H}_{2} - m_{12}^{2}(\epsilon_{ab}H_{1}^{a}H_{2}^{b} + \text{h.c.})$$

+ $\frac{g'^{2} + g^{2}}{8}(H_{1}\bar{H}_{1} - H_{2}\bar{H}_{2})^{2} + \frac{g^{2}}{2}|H_{1}\bar{H}_{2}|^{2}$

4. The NMSSM Higgs sector $(Z_3 \text{ invariant NMSSM})$

NMSSM Higgs sector: Two Higgs doublets + one Higgs singlet

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1} + i\chi_{1})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = \begin{pmatrix} \phi_{2}^{+} \\ v_{2} + (\phi_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix}$$
$$S = v_{s} + S_{R} + IS_{I}$$

$$V = (\tilde{m}_{1}^{2} + |\not\!\!/ \lambda S|^{2})H_{1}\bar{H}_{1} + (\tilde{m}_{2}^{2} + |\not\!\!/ \lambda S|^{2})H_{2}\bar{H}_{2} - m_{12}^{2}(\epsilon_{ab}H_{1}^{a}H_{2}^{b} + \text{h.c.})$$

+ $\frac{g'^{2} + g^{2}}{8}(H_{1}\bar{H}_{1} - H_{2}\bar{H}_{2})^{2} + \frac{g^{2}}{2}|H_{1}\bar{H}_{2}|^{2}$
+ $|\lambda(\epsilon_{ab}H_{1}^{a}H_{2}^{b}) + \kappa S^{2}|^{2} + m_{S}^{2}|S|^{2} + (\lambda A_{\lambda}(\epsilon_{ab}H_{1}^{a}H_{2}^{b})S + \frac{\kappa}{3}A_{\kappa}S^{3} + \text{h.c.})$

Free parameters:

$$\lambda, \kappa, A_{\kappa}, M_{H^{\pm}}, \tan \beta, \mu_{\text{eff}} = \lambda v_s$$

CP-even : h_1, h_2, h_3 CP-odd : a_1, a_2 charged : H^+, H^- Goldstones : G^0, G^+, G^-

Neutralinos:

 $\mu
ightarrow \mu_{
m eff}$

compared to the MSSM: one singlino more

 $\rightarrow \tilde{\chi}^0_1, \tilde{\chi}^0_2, \tilde{\chi}^0_3, \tilde{\chi}^0_4, \tilde{\chi}^0_5$

Mass of the lightest CP-even Higgs:

$$m_{h,\text{tree},\text{NMSSM}}^2 = m_{h,\text{tree},\text{MSSM}}^2 + M_Z^2 \frac{\lambda^2}{g^2} \sin^2 2\beta$$

Mass of the \mathcal{CP} -odd Higgs:

$$\begin{split} \mathsf{MSSM} &: M_A^2 = -m_{12}^2(\tan\beta + \cot\beta) = \mu B(\tan\beta + \cot\beta) \\ \mathsf{NMSSM} &: "M_A^2" = \mu_{\mathsf{eff}} B_{\mathsf{eff}}(\tan\beta + \cot\beta) \\ & \text{with } B_{\mathsf{eff}} = A_\lambda + \kappa s, \ \mu_{\mathsf{eff}} = \lambda s \qquad \Rightarrow \text{ one very light } a_1 \end{split}$$

Mass of the charged Higgs:

$$\begin{split} \text{MSSM} &: M_{H^{\pm}}^2 = M_A^2 + M_W^2 = M_A^2 + \frac{1}{2} v^2 g^2 \\ \text{NMSSM} &: M_{H^{\pm}}^2 = M_A^2 + v^2 \left(\frac{g^2}{2} - \lambda^2 \right) \end{split}$$

Mass of the lightest CP-even Higgs:

$$m_{h,\text{tree},\text{NMSSM}}^2 = m_{h,\text{tree},\text{MSSM}}^2 + M_Z^2 \frac{\lambda^2}{g^2} \sin^2 2\beta$$

Mass of the \mathcal{CP} -odd Higgs:

$$\begin{split} \mathsf{MSSM} &: M_A^2 = -m_{12}^2(\tan\beta + \cot\beta) = \mu B(\tan\beta + \cot\beta) \\ \mathsf{NMSSM} &: "M_A^2" = \mu_{\mathsf{eff}} B_{\mathsf{eff}}(\tan\beta + \cot\beta) \\ & \text{with } B_{\mathsf{eff}} = A_\lambda + \kappa s, \ \mu_{\mathsf{eff}} = \lambda s \qquad \Rightarrow \text{ one very light } a_1 \end{split}$$

Mass of the charged Higgs:

$$\begin{split} \mathsf{MSSM} &: M_{H^{\pm}}^2 = M_A^2 + M_W^2 = M_A^2 + \frac{1}{2} v^2 g^2 \\ \mathsf{NMSSM} &: M_{H^{\pm}}^2 = M_A^2 + v^2 \left(\frac{g^2}{2} - \lambda^2 \right) \end{split}$$

 $\Rightarrow M_{h_1}^{\rm MSSM, tree} \leq M_{h_1}^{\rm NMSSM, tree}, \text{ one light } a_1, \ M_{H^\pm}^{\rm MSSM, tree} \geq M_{H^\pm}^{\rm NMSSM, tree}$

5. The MSSM Higgs sector with \mathcal{CP} violation

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1} + i\chi_{1})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = \begin{pmatrix} \phi_{2}^{+} \\ \phi_{2}^{+} \\ \psi_{2} + (\phi_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix} e^{i\xi}$$

$$V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.})$$

$$+\underbrace{\frac{g'^2+g^2}{8}}_{8}(H_1\bar{H}_1-H_2\bar{H}_2)^2+\underbrace{\frac{g^2}{2}}_{2}|H_1\bar{H}_2|^2$$

gauge couplings, in contrast to SM

physical states: h^0, H^0, A^0, H^{\pm}

2 CP-violating phases: ξ , $\arg(m_{12}) \Rightarrow$ can be set/rotated to zero Input parameters: (to be determined experimentally)

$$\tan\beta = \frac{v_2}{v_1}, \qquad M_{H^{\pm}}^2$$

The Higgs sector of the cMSSM at tree-level:

• phase of m_{12} :

 $m_{12} = 0$ and $\mu = 0 \Rightarrow$ additional U(1) (PQ) symmetry reality: $m_{12} \neq 0, \ \mu \neq 0$

 \Rightarrow perform PQ transformation with ϕ_{PQ}

$$m_{12}^{2\prime} = |m_{12}^2|e^{i(\phi_{m_{12}}-\phi_{PQ})}$$

$$\mu' = |\mu|e^{i(\phi_{\mu}-\phi_{PQ})}$$

 \Rightarrow m_{12} can always be chosen real

• phase of H_2 : ξ :

 $\Rightarrow \xi = 0$

mixing between CP-even and CP-odd states:

$$\mathcal{M}_{\mathcal{CP}-\text{even},\mathcal{CP}-\text{odd}} = \begin{pmatrix} 0 & m_{12}^2 \sin \xi \\ -m_{12}^2 \sin \xi & 0 \end{pmatrix}$$

Tadpoles have to vanish: $T_A^{\text{tree}} \propto \sin \xi m_{12}^2 \stackrel{!}{=} 0$
 $\Rightarrow \xi = 0 \Rightarrow \text{no } \mathcal{CPV}$ at tree-level

The Higgs sector of the cMSSM at the loop-level:

Complex parameters enter via loop corrections:

- $-\mu$: Higgsino mass parameter
- $-A_{t,b,\tau}$: trilinear couplings $\Rightarrow X_{t,b,\tau} = A_{t,b,\tau} \mu^* \{\cot\beta, \tan\beta\}$ complex
- $-M_{1,2}$: gaugino mass parameter (one phase can be eliminated)
- $-M_3$: gluino mass parameter
- \Rightarrow can induce $\mathcal{CP}\text{-violating}$ effects

Result:

$$(A, H, h) \rightarrow (h_3, h_2, h_1)$$

with

 $m_{h_3} > m_{h_2} > m_{h_1}$

\Rightarrow strong changes in Higgs couplings to SM gauge bosons and fermions

 \tilde{t}/\tilde{b} sector of the MSSM: (scalar partner of the top/bottom quark)

Stop, sbottom mass matrices $(X_t = A_t - \mu^* / \tan \beta, X_b = A_b - \mu^* \tan \beta)$:

$$\mathcal{M}_{\tilde{t}}^2 = \begin{pmatrix} M_{\tilde{t}_L}^2 + m_t^2 + DT_{t_1} & m_t X_t^* \\ m_t X_t & M_{\tilde{t}_R}^2 + m_t^2 + DT_{t_2} \end{pmatrix} \xrightarrow{\theta_{\tilde{t}}} \begin{pmatrix} m_{\tilde{t}_1}^2 & 0 \\ 0 & m_{\tilde{t}_2}^2 \end{pmatrix}$$

$$\mathcal{M}_{\tilde{b}}^2 = \begin{pmatrix} M_{\tilde{b}_L}^2 + m_b^2 + DT_{b_1} & m_b X_b^* \\ m_b X_b & M_{\tilde{b}_R}^2 + m_b^2 + DT_{b_2} \end{pmatrix} \xrightarrow{\theta_{\tilde{b}}} \begin{pmatrix} m_{\tilde{b}_1}^2 & 0 \\ 0 & m_{\tilde{b}_2}^2 \end{pmatrix}$$

mixing important in stop sector (also in sbottom sector for large tan β) soft SUSY-breaking parameters A_t, A_b also appear in $\phi - \tilde{t}/\tilde{b}$ couplings

$$m_{\tilde{t}_{1,2}}^2 = m_t^2 + \frac{1}{2} \left(M_{\tilde{t}_L}^2 + M_{\tilde{t}_R}^2 \mp \sqrt{(M_{\tilde{t}_L}^2 - M_{\tilde{t}_R}^2)^2 + 4m_t^2 |X_t|^2} \right)$$

 $\Rightarrow \text{ independent of } \phi_{X_t}$ but $\theta_{\tilde{t}}$ is now complex

 $SU(2) \text{ relation} \Rightarrow M_{\tilde{t}_L} = M_{\tilde{b}_L} \Rightarrow \text{ relation between } m_{\tilde{t}_1}, m_{\tilde{t}_2}, \theta_{\tilde{t}}, m_{\tilde{b}_1}, m_{\tilde{b}_2}, \theta_{\tilde{b}_1}$

More on complex phases: Neutralinos and charginos:

Higgsinos and electroweak gauginos mix

charged:

$$\tilde{W}^+, \tilde{h}_u^+ \to \tilde{\chi}_1^+, \tilde{\chi}_2^+, \qquad \tilde{W}^-, \tilde{h}_d^- \to \tilde{\chi}_1^-, \tilde{\chi}_2^-$$

 \Rightarrow charginos: mass eigenstates

mass matrix given in terms of M_2 , μ , tan β

neutral:

$$\underbrace{\tilde{\gamma}, \tilde{Z}, \tilde{h}_u^0, \tilde{h}_d^0 \to \tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0}_{\tilde{W}^0, \tilde{B}^0}$$

 \Rightarrow neutralinos: mass eigenstates

mass matrix given in terms of M_1 , M_2 , μ , tan β

 \Rightarrow only one new parameter

 \Rightarrow MSSM predicts mass relations between neutralinos and charginos

Mixing of the $\mathcal{CP}\text{-}even$ Higgs bosons:

Propagator/Mass matrix at tree-level:

$$\left(\begin{array}{cc} q^2 - m_H^2 & 0\\ 0 & q^2 - m_h^2 \end{array}\right)$$

Propagator / mass matrix with higher-order corrections $(\rightarrow$ Feynman-diagrammatic approach):

$$M_{hH}^{2}(q^{2}) = \begin{pmatrix} q^{2} - m_{H}^{2} + \hat{\Sigma}_{HH}(q^{2}) & \hat{\Sigma}_{Hh}(q^{2}) \\ \\ \hat{\Sigma}_{hH}(q^{2}) & q^{2} - m_{h}^{2} + \hat{\Sigma}_{hh}(q^{2}) \end{pmatrix}$$

 $\hat{\Sigma}_{ij}(q^2)$ (i, j = h, H) : renormalized Higgs self-energies *CP*-even fields can mix

 \Rightarrow complex roots of det $(M_{hH}^2(q^2))$: $\mathcal{M}_{h_i}^2(i=1,2)$: $\mathcal{M}^2 = M^2 - iM\Gamma$

Propagator/Mass matrix at tree-level with CP violation:

$$\left(egin{array}{cccc} q^2 - m_A^2 & 0 & 0 \ 0 & q^2 - m_H^2 & 0 \ 0 & 0 & q^2 - m_h^2 \end{array}
ight)$$

Propagator / mass matrix with higher-order corrections $(\rightarrow$ Feynman-diagrammatic approach):

$$M_{hHA}^{2}(q^{2}) = \begin{pmatrix} q^{2} - m_{A}^{2} + \hat{\Sigma}_{AA}(q^{2}) & \hat{\Sigma}_{AH}(q^{2}) & \hat{\Sigma}_{Ah}(q^{2}) \\ & \hat{\Sigma}_{HA}(q^{2}) & q^{2} - m_{H}^{2} + \hat{\Sigma}_{HH}(q^{2}) & \hat{\Sigma}_{Hh}(q^{2}) \\ & \hat{\Sigma}_{hA}(q^{2}) & \hat{\Sigma}_{hH}(q^{2}) & q^{2} - m_{h}^{2} + \hat{\Sigma}_{hh}(q^{2}) \end{pmatrix}$$

 $\hat{\Sigma}_{ij}(q^2)$ (i, j = h, H, A) : renormalized Higgs self-energies $\hat{\Sigma}_{Ah}, \hat{\Sigma}_{AH} \neq 0 \Rightarrow CPV, CP$ -even and CP-odd fields can mix \Rightarrow complex roots of det $(M_{hHA}^2(q^2))$: $\mathcal{M}_{h_i}^2(i = 1, 2, 3)$: $\mathcal{M}^2 = M^2 - iM\Gamma$ $\frac{M_{h_1}}{[S.H., W. Hollik, H. Rzehak, G. Weiglein '07]}$

$$\begin{split} M_{\text{SUSY}} &= 1000 \text{ GeV} \\ |A_t| &= 2000 \text{ GeV} \\ \tan \beta &= 10 \\ M_{H^{\pm}} &= 150 \text{ GeV} \\ \text{OS renormalization} \\ &\Rightarrow \text{modified dependence} \\ & \text{on } \phi_{A_t} \text{ at the 2-loop level} \end{split}$$

 $\frac{M_{h_1}}{[S.H., W. Hollik, H. Rzehak, G. Weiglein '07]}$

 $M_{SUSY} = 500 \text{ GeV}$ $A_t = 1000 \text{ GeV}$ $\tan\beta = 10$ $M_{H^{\pm}} = 500 \text{ GeV}$ OS renormalization \Rightarrow threshold at $m_{\tilde{q}} = m_{\tilde{t}} + m_t$ \Rightarrow large effects around threshold \Rightarrow phase dependence has to be taken

into account

Back-up

6. New results for MSSM Higgs boson mass predictions

Predictions for m_h , m_H from diagonalization of tree-level mass matrix: $\phi_1 - \phi_2$ basis:

 $\Rightarrow m_h \leq M_Z$ at tree level

Method I:

Higher-order corrections in the Feynman diagrammatic method:

Propagator/Mass matrix at tree-level:

$$\left(\begin{array}{cc} q^2 - m_H^2 & 0\\ 0 & q^2 - m_h^2 \end{array}\right)$$

Propagator / mass matrix with higher-order corrections $(\rightarrow$ Feynman-diagrammatic approach):

$$M_{hH}^{2}(q^{2}) = \begin{pmatrix} q^{2} - m_{H}^{2} + \hat{\Sigma}_{HH}(q^{2}) & \hat{\Sigma}_{Hh}(q^{2}) \\ \\ \hat{\Sigma}_{hH}(q^{2}) & q^{2} - m_{h}^{2} + \hat{\Sigma}_{hh}(q^{2}) \end{pmatrix}$$

 $\hat{\Sigma}_{ij}(q^2)$ (i, j = h, H) : renormalized Higgs self-energies *CP*-even fields can mix

 \Rightarrow complex roots of det $(M_{hH}^2(q^2))$: $\mathcal{M}_{h_i}^2(i=1,2)$: $\mathcal{M}^2 = M^2 - iM\Gamma$
Calculation of renormalized Higgs boson self-energies:

 $\hat{\Sigma}(q^2) = \hat{\Sigma}^{(1)}(q^2) + \hat{\Sigma}^{(2)}(q^2) + \dots$

all MSSM particles contribute main contribution: t/\tilde{t} sector (\tilde{t} : scalar top, SUSY partner of the t)

1-Loop: Feynman diagrams:

Dominant 1-loop corrections: $\Delta M_h^2 \sim G_\mu m_t^4 \log\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$

size of the corrections: O(50 GeV)

\Rightarrow 2-Loop calculation necessary!

Example for two-loop: $\hat{\Sigma}^{(2)}(0)$

[S. H., W. Hollik, G. Weiglein '98]

dominant contributions of $\mathcal{O}(\alpha_t \alpha_s)$:

(a) pure scalar diagrams(b) diagrams with gluonexchange(c) diagrams with gluinoexchange

Quite complicated calculation . . .

⇒ Need for computer algebra programs

To avoid large corrections: On-shell renormalization of the scalar top sector $\Rightarrow X_t^{OS}$

$$\sim m_t^4 \left[\log^2 \left(\frac{m_{\tilde{t}}}{m_t} \right) + \log \left(\frac{m_{\tilde{t}}}{m_t} \right) \right]$$

 $['98 - '13:] \Rightarrow$ many more corrections calculated!

Structure of higher-order corrections:

One-loop:
$$\Delta M_h^2 \sim m_t^2 \alpha_t \left[L + L^0 \right] , \quad L := \log \left(\frac{m_{\tilde{t}}}{m_t} \right)$$

Two-loop:
$$\Delta M_h^2 \sim m_t^2 \left\{ \alpha_t \alpha_s \left[L^2 + L + L^0 \right] + \alpha_t^2 \left[L^2 + L + L^0 \right] \right\}$$

$$\Delta M_h^2 \sim m_t^2 \Big\{ \begin{array}{c} \alpha_t \alpha_s^2 \left[L^3 + L^2 + L + L^0 \right] \\ + \alpha_t^2 \alpha_s \left[L^3 + L^2 + L + L^0 \right] \\ + \alpha_t^3 \left[L^3 + L^2 + L + L^0 \right] \Big\} \end{array}$$

Partial results: [S. Martin '07]

[R. Harlander, P. Kant, L. Mihaila, M. Steinhauser '08] \Rightarrow H3m

H3m adds $\mathcal{O}\left(\alpha_t \alpha_s^2\right)$ corrections to FeynHiggs

Large $m_{\tilde{t}} \Rightarrow$ large $L \Rightarrow$ resummation of logs necessary \Rightarrow Method II

Advantages of Feynman-diagrammatic method:

- all contributions at fixed order are captured
- trivial to include many SUSY scales
- full control over Higgs boson self-energies \rightarrow needed for other quantities (production and decay)

Problems of Feynman-diagrammatic method:

- always only fixed order
- large logs not captured beyond the calculated order

Method II: Log resummation via RGE's:

Simple example for log resummation:

SUSY mass scale: $M_{SUSY} = M_S \sim m_{\tilde{t}}$

Above M_{SUSY} : MSSM Below M_{SUSY} : SM

Relevant SM parameters: – quartic coupling λ

- top Yukawa coupling h_t ($\alpha_t = h_t^2/(4\pi)$)
- strong coupling constant g_s ($\alpha_s = g_s^2/(4\pi)$)

Procedure:

- 1. Take: $h_t(m_t), g_s(m_t)$ SM RGEs for $h_t, g_s: h_t, g_s(m_t) \rightarrow h_t, g_s(M_S)$
- 2. Take $\lambda(M_S), h_t(M_S), g_s(M_S)$ SM RGEs for $\lambda, h_t, g_s: \lambda, h_t, g_s(M_S) \rightarrow \lambda, h_t, g_s(m_t)$
- **3**. Evaluate M_h^2

$$M_h^2 \sim 2\lambda(m_t)v^2$$

Advantages of RGE log resummation:

- large logs taken into account to all orders
- calculation can easily be extended to very large scales

Problems of RGE log resummation:

- not all contributions at fixed order are captured
 - \rightarrow sub-leading logs more difficult
 - \rightarrow momentum dependence
- difficult (impossible?): include many different SUSY scales
- difficult (impossible?): control over Higgs boson self-energies \rightarrow needed for other quantities (production and decay)

Status

Our code (until 11/13):

FeynHiggs

www.feynhiggs.de

[T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein '98 - '14]

- \rightarrow all Higgs masses, couplings, BRs, XSs (easy to link, easy to use :-)
- full one-loop (also for complex parameters)
- leading and subleading two-loop: $\mathcal{O}\left(\alpha_t \alpha_s, \alpha_b \alpha_s, \alpha_t^2, \alpha_t \alpha_b, \alpha_b^2\right)$
- running top mass (to minimize three-loop)

Remaining theoretical uncertainties in prediction for M_h in the MSSM:

[G. Degrassi, S.H., W. Hollik, P. Slavich, G. Weiglein '02]

- From unknown higher-order corrections: $\Rightarrow \Delta M_h \approx 3 \text{ GeV}$
 - \rightarrow point-by-point calculation available in FeynHiggs
- From uncertainties in input parameters $\Delta m_t \approx 1 \text{ GeV} \Rightarrow \Delta M_h \approx 1 \text{ GeV}$

*FeynHiggs*2.10.0

www.feynhiggs.de

First and only code that provides:

Combination of

1.) Best available Feynman-diagrammatic result

and

2.) Leading and subleading logs from the top/stop sector

Supplemented by

Improved calulation of theory uncertainty: $\Delta M_h \lesssim 1.5 \text{ GeV}$ (for the points analyzed so far)

RGE log resummation:

$$\begin{array}{lll} \text{SM one-loop RGEs:} & 16\pi^2\beta_\lambda = 6(\lambda^2 + \lambda - h_t^4) \ , \\ & 16\pi^2\beta_{h_t^2} = h_t^2(9/2h_t^2 - 8g_s^2) \ , \\ & 16\pi^2\beta_{g_s^2} = -7g_s^4 \qquad \Rightarrow \text{ at n-loop order: L^n} \end{array}$$

Our procedure:

- SM two-loop RGEs
- one-loop threshold correction for $\lambda(M_{SUSY})$:

$$\lambda(M_{\rm S}) = \frac{3 h_t^4}{8 \pi^2} x_t^2 \left[1 - 1/12 x_t^2 \right] , \quad x_t = X_t^{\rm \overline{MS}} / M_{\rm S}$$

- \Rightarrow at *n*-loop order: $L^n + L^{n-1}$
- add correction $(\times 1/\sin^2\beta)$ to $\hat{\Sigma}_{\phi_2\phi_2}$
- subtract leading and subleading logs at one- and two-loop (with X_t^{OS}) to avoid double counting
- \Rightarrow combination of best FD result with resummed LL, NLL corrections for large $m_{\tilde{t}}$
- \Rightarrow most precise M_h prediction for large $m_{\tilde{t}} \Rightarrow$ FeynHiggs 2.10.0

Some numerical results

[FeynHiggs 2.10.0]

Parameters:

$$\begin{split} M_{\rm S} &= \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} \\ M_A &= 1000 ~{\rm GeV} \\ \mu &= 1000 ~{\rm GeV} \\ M_2 &= 1000 ~{\rm GeV} \\ m_{\tilde{g}} &= 1600 ~{\rm GeV} \\ \tan\beta &= 10 \end{split}$$

Vary M_{S} , X_{t} to analyze effects

$M_h(X_t/M_S)$:

 \Rightarrow increase with M_S , maxima at $X_t/M_S = \pm 2$

 $M_h(M_S)$ for various approximations:

 \Rightarrow 3-loop good for $M_S \lesssim$ 2 TeV, 7-loop: $\Delta \sim 1$ GeV for $M_S =$ 20 TeV

 $M_h(M_S)$ compared with H3m:

 \Rightarrow 3-loop $\mathcal{O}\left(\alpha_t^2 \alpha_s, \alpha_t^3\right) \oplus$ beyond 3-loop important for precise M_h prediction!

 $M_h(M_S)$:

[FeynHiggs 2.10.0 - PRELIMINARY]

\Rightarrow upper bound on M_S ?

 \Rightarrow "upper bound": $M_S \lesssim 650 \text{ TeV} \Rightarrow \text{needs refinement!}$

Effects in the CMSSM

red-dashed: FeynHiggs 2.8.5 black: FeynHiggs 2.10.0

 \Rightarrow shift to larger masses, $M_h \sim 125.5$ GeV "easier"

red: FeynHiggs 2.8.5 (incl. unc.) blue: FeynHiggs 2.10.0 (incl. updated unc.)

 \Rightarrow shift to larger masses, not captured by other codes

Perspectives

Can the theory precision meet the experimental precision?

A) Intrinsic uncertainty in the Feynman-diagrammatic method

B) Intrinsic uncertainty in the RGE method

C) Parametric uncertainties from SM input

A) Intrinsic uncertainty in the Feynman-diagrammatic method

 $\mathcal{O}\left(\alpha_t \alpha_s^2\right)$ exists in *H3m*

 \rightarrow expansion in many mass scales necessary

 \Rightarrow progress possible, but difficult and slow

 $\mathcal{O}\left(\alpha_t^2 \alpha_s, \alpha_t^3\right)$ probably possible

Inclusion of b/\tilde{b} very difficult (more and very different scales)

Corrections beyond 3-loop???

 \Rightarrow dedicated effort necessary!

B) Intrinsic uncertainty in the RGE method

Good recent overview paper: [P. Draper, G. Lee, C. Wagner, arXiv:1312.5743]

Missing in *FeynHiggs*:

- 3-loop RGE's
- 2-loop threshold corrections
- inclusion of more scales: EW scale, M_A
- \Rightarrow inclusion in *FeynHiggs* probably possible, but far from trivial \Rightarrow combination of FD and RGE method crucial!
- \Rightarrow dedicated effort necessary!

Goal for future *FeynHiggs* version (5-10 years from now): $\Delta M_h^{\text{intr.}} \lesssim 500 \text{ MeV}$

 \Rightarrow knowledge of SUSY mass scales would be extremely helpful ...

C) Intrinsic uncertainty from m_t :

Nearly any model: large coupling of the Higgs to the top quark:

 \Rightarrow one-loop corrections $\Delta M_H^2 \sim G_\mu m_t^4$

 $\Rightarrow M_H$ depends sensitively on m_t in all models where M_H can be predicted (SM: M_H is free parameter)

SUSY as an example: $\Delta m_t \approx \pm 1 \text{ GeV} \Rightarrow \Delta M_h \approx \pm 1 \text{ GeV}$

⇒ Precision Higgs physics needs e^+e^- precision of $\Delta m_t \sim 100$ MeV ⇒ $\Delta M_h \sim 100$ MeV cannot be surpassed (soon)