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Foothote

® The first derivative of a potential (when set
to zero) defines the vacuum expectation
value(s)

® The second derivatives of a potential define
a mass-squared matrix



“Problems”

® Vacuum:When many fields, get many
coupled equations (cubic and trigonometric)

® Mass matrices:¥WWhen many fields, get large
matrices to diagonalize

® Degeneracies



Simpler approach

Pick a vacuum of interest (must identify possibilities)

Pick a mass spectrum of interest
Construct potential

Check consistency (positivity etc)

Advantages

® Control of physical content

® linear equations!
End of footnote



Motivation for three Higgs doublets

Three fermion generations may suggest three doublets

Interesting scenario for dark matter

Possibility of having a discrete symmetry and still having
spontaneous CP violation

Rich phenomenology
Motivation for imposing discrete symmetries

Symmetries reduce the number of free parameters
leading to (testable) predictions

Symmetries help to control HFCNC

Symmetries are needed to stabilise dark matter



Three SU(2) x U(1)-symmetric doublets

Most general potential has 46 parameters (counted by Olaussen et al, 2011)

Consider S35 symmetric potential

Basic papers:

(a) Pakvasa & Sugawara, 1978
(b) Derman, 1979
(c) Kubo, Okada, Sakamaki, 2004

(a,c): irreducible reps, (b): reducible rep



Two “Frameworks”

May work with the

reducible representation (Derman) or the
irreducible representations (Pakvasa & Sugawara,
Das & Dey)

There is a linear map from one framework to the other



Reducible representation
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Irreducible representations
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Decomposition into these two irreducible representations
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This definition does not treat equally @1, ¢2, @3, they could be interchanged

Notice similarity with tribimaximal mixing: Harrison, Perkins and Scott, 1999
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This potential exhibits
but ho — —hs

Equivalent doublet representation
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In the irreducible-rep framework
the case )\4 = (

or, in the reducible-rep framework
4A —2(C+C+D)—E, +Ey+E3+ E; =0

leads to a continuous SO(2) symmetry
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At this stage, the two frameworks are
equivalent

However, introducing Yukawa
couplings, for example, in terms of
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they would naturally be different



The vevs are related
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Vacua

Derivatives of potential wrt (complex) fields must vanish

Three complex derivatives =0 or

Five real derivatives (3 moduli, 2 relative phases) =0

The minimisation conditions must be consistent.
This is an important

May work in either framework

But a particular vacuum may look simpler in one framework
than in the other.



Classical (real) vacua

The early literature focused on fermion masses
and real vacua (no CPV):

Examples:

P2 = pP3 Derman 1979

w; = 3w, Das & Dey 2014



Complex vacua

Complex vacua may allow CP violation

Examples:

C-0 (p1, P2, p3) =
C-I-a  (p1,p2, p3) =
C-l-al  (p1, p2, p3) =
C-I-a2  (p1, p2, p3) =
C-I-a3  (p1, p2, p3) =

C-I-a  violates CP,
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C-0 does not
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Complex vacua

Here, an overall phase rotation brings us from vacuum
C-I-a to C-I-al

Cla 97 cqal

Next:

C-l-al "8 (Cl-a2 72285 (CI-a3

These are all different names for one and the same vacuum



Complex vacua

Spontaneous CP violation
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® Complex vevs are no guarantee for SCPV

® The symmetry of the Lagrangian could
“hide” the complex conjugation

2im /3 —2m/3)

Example C-0: (P17P27P3) — 33(1,6 , €

Complex conjugation:
x(la 6%71—/3, 6—22'71'/3) s 55(17 6—2’&'7r/37 622'71'/3)
But the Lagrangian has a symmetry:

P2 <> @3 and  p2 <> p3
which will undo the complex conjugation



Complex vacua

Complex vacua may allow CP violation

More:
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Complex vacua

Spontaneous CP violation
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Complex vacua Ay =0

C-Il-a (wy,ws, wg) = (0,we', wg) = (p,p,p’)
C-II-b  (wy, we, wg) = (We, —we™ /v/3,g) = (p, 0, p)
C-1II-c (w1, wsy, wg) = (u?ew,u?ew/\/g, W) = (0, p, p)
C-II-d  (wy, wa, ws) = (W17, W9e"2, 0) = (p1, P2, P3)
C-1I-PS  (wy, ws, ws) = (We', we ", g) = (p1, P2, P3)
C-II-IN  (wy, ws, wg) = (weza,we“,ws) = (p1, P2, P3)
C-I11 (w1, wsy, wg) = (wlewl,uﬁgem,wg) = (p1, P2, P3)



Spontaneous CP violation
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Note that C-1I-PS does not violate CP

(w1, ws, wg) :(we@'“,we—w,ws) RN (1@6‘“,1@6“,@?)5)

When )\, =0 have symmetry

hl < hg and W1 <7 W9



When M\, =0
there are massless states

Add a soft SO(2)-breaking term:

1
V — VA 2u2(h;h1 + hiho)

Vacuum conditions are changed



Our Aims

Determine whether Spontaneous CP violation in Sz is
compatible with a good inert dark matter candidate and what
are the properties

Challenges include:

Determine necessary and sufficient vacuum stability conditions

Obey unitarity constraints for the potential
Obtain correct dark matter density



Concluding comments

® The S3-symmetric scalar sector is very rich
® [wo different (equivalent) frameworks

® Spontaneous CP violation can take place

® Room for Dark Matter

® Next:Yukawa couplings



