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Entanglement

Most non-classical manifestation of quantum mechanics!
 "Best possible knowledge of a whole does not include best possible 
knowledge of its parts — and this is what keeps coming back to 
haunt us”  [Schrodinger ’35]!

New quantum resource for tasks which cannot be 
performed using classical resources [Bennet ’98]!

Plays a central role in wide-ranging fields!
quantum information (e.g. cryptography, teleportation, …)!
quantum many body systems!
quantum field theory

Hints at profound connections to geometry…



OUTLINE

Entanglement Entropy!

Holographic principle & AdS/CFT!

Holographic Entanglement Entropy!



Entanglement in 2 qubit system

Consider a system of 2 spins, labeled A and B ↑ ↓

Generic state (with arbitrary      s.t.               )!
!

!   is entangled when it is not a product state.
|  i = c00 | i+ c01 | i+ c10 | i+ c11 | i↓ ↓ ↓↑ ↑ ↑↓↑

X
c2ij = 1cij

|  i = | i ⌦ | i ⌘ | i↑ ↓ ↑↓
A B

Simple product state:

↓ ↓ ↓↑ ↓↑ ↑ ↑↓ ↑ ↓ ↑A BA B|  i = | i+ | ip
2

⌦ | i+ | ip
2

=
1

2
( | i+ | i+ | i+ | i)

More complicated product state:

↓ ↓ ↑ ↑|  i = 1p
2
( | i + | i)A Bell (EPR) pair, such as                                   !

    is maximally entangled.



Entanglement in 2 qubit system

Now suppose we can only measure A.!
What does that tell us about B?

↑ ↑ ↑⇒
↓ ↓ ↓⇒

↑ ↑ ?⇒

For the maximally entangled state, measuring A  determines B  :!
!

!

For a non-entangled state, measuring A gives no knowledge of B

↓ ↓ ↑ ↑|  i = 1p
2
( | i + | i)

↓ ↓ ↓↑ ↓↑ ↑ ↑|  i = 1

2
( | i+ | i+ | i+ | i)



Entanglement Entropy (EE)

The amount of entanglement is characterized by Entanglement 
Entropy      .  Since we can only measure A, integrate out B:

reduced density matrix!
! !     (more generally, for a mixed total state,                    )!
!

EE = von Neumann entropy

⇢A = TrB | ih |
⇢A = TrB⇢

For the maximally entangled state!
!

!

For the non-entangled state

↓ ↓ ↑ ↑|  i = 1p
2
( | i + | i)

↓ ↓ ↓↑ ↓↑ ↑ ↑|  i = 1

2
( | i+ | i+ | i+ | i)

⇢A =
1

2

✓
1 0
0 1

◆

⇢A =
1

2

✓
1 1
1 1

◆

SA = log 2

SA = 0

)

)

SA = �Tr ⇢A log ⇢A

SA



EE more generally

↓ ↑↑ ↓ ↓ ↓↑ ↑↑↑↑ ↑ ↑↓↓ ↓↓ ↓

A

B

More generally: divide a quantum system into a subsystem A 
and its complement B, such that the Hilbert space decomposes:

spin chain

H = ⌦HA HB

e.g.:



spin chain
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e.g.:

many-body quantum system, 
e.g. on a lattice
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spin chain

H = ⌦HA HB

e.g.:

many-body quantum system, 
e.g. on a lattice
QFT:  A and B can be spatial regions, separated by a smooth entangling surface

EE more generally

In all cases,                                  ,  where                 .SA = �Tr ⇢A log ⇢A ⇢A = TrB⇢

More generally: divide a quantum system into a subsystem A 
and its complement B, such that the Hilbert space decomposes:



Applications of EE

Quantum Information theory:  new quantum resource   
[Bennett ’98 & Masanes ’05]!

quantum cryptography [Ekert, ’91] !
quantum dense coding [Bennett and Wiesner, ’92] !
quantum teleportation [Bennett et al., ’93] 

Condensed Matter theory:  diagnostic !
quantum critical points!
topological phases!
computational difficulty, e.g. MERA [Vidal ’09] 

Quantum Gravity:  !
suggested as origin of black hole entropy [Bombelli,Koul,Lee&Sorkin, ‘86  
Srednicki, Frolov&Novikov, Callan&Wilczek, Susskind ...]!
origin of macroscopic spacetime [van Raamsdonk et.al., Maldecena&Susskind]



The good news & the bad news

Yes! - described geometrically…

But EE is hard to deal with…!
non-local quantity, intricate & sensitive to environment!
difficult to measure!
difficult to calculate

Is there a natural bulk dual of EE?!
      (= “Holographic EE”)

boundary

bulk ?

AdS/CFT to the rescue?
A

B

… especially in strongly-coupled quantum systems



OUTLINE

Entanglement Entropy!

Holographic principle & AdS/CFT!

Holographic Entanglement Entropy!



Entropy Bound

Generalized Second Law:  combined matter+BH entropy increases!
⇒ Bekenstein bound (weakly gravitating systems):!

⇒ Spherical entropy bound (slowly evolving systems):
A

V

Smatter  2⇡ER

Smatter 
A

4
S

VS ⌧
entropy       is not extensive:⇒

[‘t Hooft ‘93, Susskind]

Covariant entropy bound:  full spacetime construct    [Bousso ‘99]

time

space

lightsheetEntropy on any lightsheet L of a 
surface     cannot exceed the 
area of    :

�
�

�S(L)  A(�)

4



Holographic Principle

Generalized Second Law:  combined matter+BH entropy increases!
⇒ Bekenstein bound (weakly gravitating systems):!

⇒ Spherical entropy bound (slowly evolving systems):

Holographic Principle: in a theory of gravity, the number of degrees of  
freedom describing the physics on lightsheet         cannot exceed  

A

V

Smatter  2⇡ER

Smatter 
A

4
S

VS ⌧
entropy       is not extensive:⇒

[‘t Hooft, Susskind]

Concrete realization:   AdS/CFT correspondence

Covariant entropy bound:  full spacetime construct [Bousso]

L(�) A(�)/4

⇒ physical equivalence between 2 theories living in different # of dimensions!



AdS/CFT correspondence

String theory (∋ gravity)  ⟺  gauge theory (CFT) 
“in bulk”  asymp. AdS × K “on boundary”

Key aspects:

Invaluable tool to:

Use gravity on AdS to learn about strongly coupled field theory"
(as successfully implemented in e.g. AdS/QCD & AdS/CMT programs)"
Use the gauge theory to define & study quantum gravity in AdS

Pre-requisite: Understand the AdS/CFT ‘dictionary’...

✴ Gravitational theory maps to non-gravitational one!"
✴ Holographic:  gauge theory lives in fewer dimensions."
✴ Strong/weak coupling duality.



Onward from AdS/CFT

String theory (∋ gravity)  ⟺  gauge theory (CFT) 
“in bulk”  asymp. AdS × K “on boundary”

Applied AdS/CFT:"
study specific system via its dual"
e.g. AdS/QCD,  AdS/CMT, …

Fundamentals of AdS/CFT:"
why/how does the duality work"
map between the 2 sides

Holographic Entanglement Entropy

Quantum Gravity



OUTLINE

Entanglement Entropy"

Holographic principle & AdS/CFT"

Holographic Entanglement Entropy"

bulk dual of EE:"
      (= “Holographic EE”)

boundary

bulk ?

A
B



Proposal [Ryu & Takayanagi, ‘06] for static configurations:

Holographic Entanglement Entropy

Remarks:"
cf. black hole entropy…

boundary

bulk
E

A

Minimal surface “hangs” into the bulk due to large distances near bdy.
Note that both LHS and RHS are in fact infinite…

In the bulk EE       is captured by the area of "
minimal co-dimension 2 bulk surface  !
(at constant t) anchored on        .@A

E

SA

SA = min
@E=@A

Area(E)

4GN



Area-law divergence of EE

for the full system near 
the ground state, most of 
the entanglement is local:

A

B

L �

~ # of links through @A

! 1 � ! 0as

SA ⇠
✓
L

�

◆d�2

cf. lattice system, with lattice spacing     and A of size    , in     spacetime dims: L� d

In a QFT, we can regulate the UV divergence by a short distance cutoff   .�



Area-law divergence of HEE

Short-distance cutoff     in the CFT translates to large-radius cutoff     in AdS 

We can regulate EE by e.g. background subtraction.

� R

boundary

bulk E

A
� R

� =
`2

R
with (cf. UV/IR duality)

Bulk area reproduces the correct "
divergence structure:

SA = c0

✓
L

�

◆d�2

+ c1

✓
L

�

◆d�4

+ · · ·

+

⇢
cd�2 log

�
L
�

�
+ · · · , d even

cd�2 + · · · , d odd

universal coefficients

cutoff-dependent coefficients

r

1
L



Evidence for HEE

✓ Leading contribution correctly reproduces the area law"
✓ Recover known results of EE for intervals in 2-d CFT    [Calabrese&Cardy] 

both in vacuum and in thermal state"
✓ Derivation of holographic EE for spherical entangling surfaces 

[Cassini,Huerta,&Myers]  "
✓ Attempted proof by [Fursaev]                                                     

elaborated & refined by [Headrick, Faulkner, Hartman, Maldacena&Lewkowycz]"
!

Further suggestive evidence:"
✓ Automatically satisfies                   for pure states"
✓ Automatically satisfies (strong) subadditivity [Lieb&Ruskai] & Araki-Lieb 

inequality -- easy to prove on the gravity side, far harder within field 
theory

SA = SAc



Subadditivity
!

Subadditivity:

Manifest in the gravity dual

SA1 SA2+ SA1[A2
�

bdy

bulk

A1 A2

Implies positivity of mutual information: I(A1,A2) = SA1 + SA2 � SA1[A2



Strong Subadditivity
!

strong subadditivity:

proof in static configurations  [Headrick&Takayanagi]   

SA1 SA2+ SA1[A2 + SA1\A2
�

SA1 SA2+ � SA1\A2
+ SA2\A1

bdy

bulk

A1 A2

In time-dependent configurations more involved but true  [Headrick et.al., Wall]



Proof of Strong Subadditivity
!

strong subadditivity:
SA1 + SA2 � SA1[A2 + SA1\A2

SA1 + SA2 � SA1\A2
+ SA2\A1

proof in static configurations  [Headrick&Takayanagi]   

SA1 SA2+ = ↵ + �

bdy

bulk ↵
�=

A1 A1A2 A2



Proof of Strong Subadditivity
!

strong subadditivity:
SA1 + SA2 � SA1[A2 + SA1\A2

SA1 + SA2 � SA1\A2
+ SA2\A1

proof in static configurations  [Headrick&Takayanagi]   

SA1 SA2+ = ↵ + � SA1[A2 + SA1\A2

bdy

bulk
�

�

A1 A1A2 A2



Proof of Strong Subadditivity
!

strong subadditivity:
SA1 + SA2 � SA1[A2 + SA1\A2

SA1 + SA2 � SA1\A2
+ SA2\A1

proof in static configurations  [Headrick&Takayanagi]   

SA1 SA2+ = +

bdy

bulk
=

�

�

�

�

A1 A1A2 A2



Proof of Strong Subadditivity
!

strong subadditivity:
SA1 + SA2 � SA1[A2 + SA1\A2

SA1 + SA2 � SA1\A2
+ SA2\A1

proof in static configurations  [Headrick&Takayanagi]   

SA1 SA2+ =

bdy

bulk
�

+� � � SA1\A2
+ SA2\A1

A1 A1A2 A2



In time-dependent situations, RT prescription must be covariantized:

But the RT prescription is not well-defined outside the context of 
static configurations:

Covariant Holographic EE

boundary

bulk

A

E

[VH, Rangamani, Takayanagi ‘07]
✴ minimal surface  ⇾  extremal surface"
✴ equivalently,     is the surface with zero null expansions; 

(cf. light sheet construction [Bousso] )"
✴ equivalently, maximin construction: maximize over 

minimal-area surface on a spacelike slice [Wall] 

E

In Lorentzian geometry, we can decrease 
the area arbitrarily by timelike deformations"
In time-dependent context, no natural 
notion of  “const. t” slice…



Summary of HEE proposals:

In all cases, EE is given by Area/4G of a certain surface which is:
bulk co-dimension 2 surface"
anchored on the boundary on entangling surface "
homologous to     [Headrick, Takayanagi, et.al.] "
in case of multiple surfaces,       is given by the one with 
smallest area.

A
SA

@A

But the HEE proposals differ in the specification of the surfaces:
RT [Ryu & Takayanagi] (static ST only): minimal surface on const.    slice"
HRT [Hubeny, Rangamani, & Takayanagi]: extremal surface in full ST"
maximin [Wall]: minimal surface on bulk achronal slice    , maximized over 
all     containing       (equivalent to extremal surface)A

t

⌃̃
⌃̃



Homology constraint

Usual phrasing:       is homologous to     if ∃ a smooth 
manifold whose only boundaries are       and 

EA
EA

A
A

is OK, and 

BH

AdS

EA

EA

BUT:

are also OK,

A

BH

EA

A

A

is not OK,"
since the interpolating manifold "
either has another boundary "
or hits the singularity:

orBH

EA

A



Entropy inequalities

|SA � SAc |  S⇢⌃  SA + SAc

Araki-Lieb subadditivity
�SA

for a system in a pure state, "
!

!

use         to characterise deviations from purity

S⇢⌃ = 0 ) SA = SAc ) �SA = 0

�SA

consider the full system in the state (density matrix)"
partition the full space      into subsystems "
then EE satisfies:

A [Ac⌃

⇢⌃



!

Entanglement plateaux (        saturates to        for large enough     ) "

EE is a ‘fine-grained’ observable"

EE satisfies very nontrivial causality constraints"

EE has two separate components"

Curious properties of EE: 

�SA S⇢⌃ A



Warm-up: EE in 2-d thermal CFT:

Consider extremal surfaces (= spacelike geodesics) in BTZ

Area/4G is given by:

r+ = 1 r+ = 0.2

✓1

BH BH

(SA)naive =
c

3

log

✓
2 r1
r+

sinh(r+ ✓1)

◆



Entanglement plateaux in 2-d CFT:

A A

r+ = 1

r+ = 0.2

✓X1

✓X1

Consider global BTZ, and compute       for varying "
Using connected       , "
But this would lead to diverging               violates Araki-Lieb"
However, the disconnected       has smaller area for large 
enough "
Where the transition happens depends on BH size:

SA A

�SA )
EA

EA

(�SA)naive =
c

3

log


sinh(r+ ✓1) csch(r+ (⇡ � ✓1)

�

✓1 ) SA = SAc + S⇢⌃ 8 ✓1 � ✓X1 =

coth

�1
(2 coth(⇡ r+)� 1)

r+



Entanglement plateaux in higher d:

In higher dimensions, we can check similar saturation effect 
takes place:  e.g. for Schw-AdS5         [VH, Maxfield, Rangamani, Tonni ‘13]

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

r+ = 4 2 1 1/2 1/4

�SA
S⇢⌃

Vol(A)

Vol(⌃)

plateau



Entanglement plateaux in higher d:

However, unlike BTZ, new surprise for Schw-AdSd+1:  
connected surface         actually does not exist for large 
enough     !    What happened to it?"

!

!

!

!

!

!

!

EA
A

As closest approach to horizon shrinks,

Size of       initially increases, but then 
decreases, and in fact oscillates"
The surface develops thin neck and folds 
back around the black hole"
There can be arbitrarily many folds, 
increasingly close to horizon"
This gives an infinite family of minimal 
surfaces anchored on the same region 

A

A max size



max size



Entanglement plateaux in higher d:

However, unlike BTZ, new surprise for Schw-AdSd+1:  
connected surface         actually does not exist for large 
enough     !    What happened to it?"

!

!

!

!

!

!

!

This nonexistence behaviour is robust to deforming the 
state, and follows directly from causal wedge arguments

EA
A

As closest approach to horizon shrinks,

Size of       initially increases, but then 
decreases, and in fact oscillates"
The surface develops thin neck and folds 
back around the black hole"
There can be arbitrarily many folds, 
increasingly close to horizon"
This gives an infinite family of minimal 
surfaces anchored on the same region 

A

A max size



Implication for entanglement entropy

Important implication:  whenever      is large enough for      
to have two disconnected pieces, there cannot exist a single 
connected extremal (minimal) surface       homologous to    !

A ⌅A

AEA

EAHowever, the homology constraint is required for EE, i.e. part of       
must reach around the BH."
So       must likewise have two disconnected pieces, one on the 
horizon and one homologous to       (=complement of     )"

Hence we have the universal formula for the entanglement 
entropy, whenever      is large enough: "

Automatically saturates the Araki-Lieb inequality"
= entanglement plateau [VH, Maxfield, Rangamani, Tonni] "

So we can extract BH (thermal) entropy from entanglement entropy  
[cf. Azeyanagi, Nishioka, Takayanagi] 

EA

Ac

A

A

SA = SAc + S⇢⌃



!

Entanglement plateaux (        saturates to        for large enough     ) "

EE is a ‘fine-grained’ observable"

EE satisfies very nontrivial causality constraints"

EE has two separate components"

Curious properties of EE: 

�SA S⇢⌃ A



In contrast to the static (i.e. eternal) black hole, for a 
collapsed black hole, there is no non-trivial homology 
constraint on extremal surfaces.   [cf. Takayanagi & Ugajin]"
!

!

!

!

!

!

Hence we always have                    as for a pure state.    "SA = SAc

EE is fine-grained observable!

Example:  black hole formed from a collapse



EE is fine-grained observable!

Despite the event horizon formation arbitrarily long in the 
past, EE `remembers’ the state is pure:"
Hence entanglement entropy is sensitive to very ‘fine-grained’ 
information:  it can tell whether the black hole is eternal or 
collapsed, arbitrarily late after the collapse (when all ‘coarse-
grained’ observables have thermalized)."
And this in spite of its classical geometrical nature..."
Other diagnostics of thermal vs. pure state (e.g. periodicity in imaginary 
time appear much more subtle).

SA = SAc 8 A

However this wouldn’t necessarily tell apart individual microstates.



!

Entanglement plateaux (        saturates to        for large enough     ) "

EE is a ‘fine-grained’ observable"

EE satisfies very nontrivial causality constraints"

EE has two separate components"

Curious properties of EE: 

�SA S⇢⌃ A



In general time-dependent ‘eternal’ (=2-sided) BH, one 
component of       (the one anchored on the boundary) 
depends on time, while the other (wrapping the horizon) 
is time-independent."
Likewise, there are coarse-grained (since geometrical) and 
fine-grained (due to the minimalisation and homology 
constraints) aspects to HEE."
Natural factorisation into two uncorrelated groups of 
DoFs in     :  those capturing the entanglement with       
and those giving the entropy of the full system... [Headrick].

Two components to HEE

When Araki-Lieb inequality is saturated (sufficiently large     ), 
there is a natural decomposition of HEE:

EA

A

A Ac

[also cf. Zhang&Wu]



Summary

The extremal surfaces       :"
can exist in large multiplicities (exhibit remarkably rich structure)"
new families can appear at some critical region size"
need not exist for static black hole in single homologous piece"

EA

!

The entanglement entropy      :"
exhibits entanglement plateaux (required by homology & minimality)"
distinguishes between pure and thermal states (collapsed versus eternal 
black holes), arbitrarily long after ‘themalization‘    "
hence has features of a ‘fine-grained’ observable (though not for distinguishing 
microstates)"

SA



Future directions

!

Complete (fully covariant) prescription and proof of HEE..."
Correct formulation of the homology constraint"
Interpretation of fine-grained nature of EE"
!

Does entanglement reconstruct geometry?"
Metric extraction from set of EE’s of subregions "
Dual of reduced density metrix"
Entanglement renormalization (MERA) vs. AdS geometry "

!

Role of EE in fundamental nature of spacetime…"
!

{SA}
⇢A



Thank you
soihub.org/itschoolSpace Ref  (Harvard-Smithsonian CfA)


