HOLOGRAPHIC ENTANGLEMENT ENTROPY

Veronika Hubeny Durham University

Workshop on Quantum Fields and Strings

Sep.17,2014

Entanglement

- Most non-classical manifestation of quantum mechanics
 - "Best possible knowledge of a whole does not include best possible knowledge of its parts — and this is what keeps coming back to haunt us" [Schrodinger '35]
- New quantum resource for tasks which cannot be performed using classical resources [Bennet '98]
- Plays a central role in wide-ranging fields
 - quantum information (e.g. cryptography, teleportation, ...)
 - quantum many body systems
 - quantum field theory
- Hints at profound connections to geometry...

OUTLINE

- Entanglement Entropy
- Holographic principle & AdS/CFT
- Holographic Entanglement Entropy

Entanglement in 2 qubit system

Consider a system of 2 spins, labeled A and B

- Simple product state: $|\psi\rangle = |\uparrow\rangle_{A} \otimes |\downarrow\rangle_{B} \equiv |\uparrow\downarrow\rangle$
- More complicated product state:
 |ψ⟩ = (↓)_A + |↑)_A ⊗ (↓)_B + |↑)_B = 1/2 (|↓↓⟩ + |↓↑⟩ + |↑↓⟩ + |↑↑⟩)
 Generic state (with arbitrary c_{ij} s.t. ∑ c²_{ij} = 1)
 |ψ⟩ = c₀₀ |↓↓⟩ + c₀₁ |↓↑⟩ + c₁₀ |↑↓⟩ + c₁₁ |↑↑⟩
 is entangled when it is not a product state.
- A Bell (EPR) pair, such as $|\psi\rangle = \frac{1}{\sqrt{2}}(|\downarrow\downarrow\rangle\rangle + |\uparrow\uparrow\rangle)$ is maximally entangled.

Entanglement in 2 qubit system

Now suppose we can only measure A. What does that tell us about B?

Entanglement Entropy (EE)

The amount of entanglement is characterized by Entanglement Entropy S_A . Since we can only measure A, integrate out B:

• reduced density matrix $\rho_A = \text{Tr}_B |\psi\rangle\langle\psi|$ (more generally, for a mixed total state, $\rho_A = \text{Tr}_B \rho$)

• EE = von Neumann entropy $S_A = -\mathrm{Tr}\,\rho_A\,\log\rho_A$

• For the maximally entangled state $|\psi\rangle = \frac{1}{\sqrt{2}}(|\downarrow\downarrow\rangle\rangle + |\uparrow\uparrow\rangle)$ $\rho_A = \frac{1}{2}\begin{pmatrix}1 & 0\\0 & 1\end{pmatrix} \implies S_A = \log 2$

• For the non-entangled state $|\psi\rangle = \frac{1}{2}(|\downarrow\downarrow\downarrow\rangle + |\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle + |\uparrow\uparrow\rangle)$ $\rho_A = \frac{1}{2}\begin{pmatrix}1 & 1\\ 1 & 1\end{pmatrix} \implies S_A = 0$

EE more generally

More generally: divide a quantum system into a subsystem A and its complement B, such that the Hilbert space decomposes:

 $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

e.g.:

• spin chain

EE more generally

More generally: divide a quantum system into a subsystem A and its complement B, such that the Hilbert space decomposes:

 $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

e.g.:

- spin chain
- many-body quantum system,
 e.g. on a lattice

EE more generally

More generally: divide a quantum system into a subsystem A and its complement B, such that the Hilbert space decomposes:

 $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

e.g.:

- spin chain
- many-body quantum system, e.g. on a lattice
- QFT: A and B can be spatial regions, separated by a smooth entangling surface

EE more generally

More generally: divide a quantum system into a subsystem A and its complement B, such that the Hilbert space decomposes:

 $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

e.g.:

- spin chain
- many-body quantum system, e.g. on a lattice
- QFT: A and B can be spatial regions, separated by a smooth entangling surface

In all cases, $S_A = -\operatorname{Tr}
ho_A \log
ho_A$, where $ho_A = \operatorname{Tr}_B
ho$.

Applications of EE

- Quantum Information theory: new quantum resource [Bennett '98 & Masanes '05]
 - quantum cryptography [Ekert, '91]
 - quantum dense coding [Bennett and Wiesner, '92]
 - quantum teleportation [Bennett et al., '93]
- Condensed Matter theory: diagnostic
 - quantum critical points
 - topological phases
 - computational difficulty, e.g. MERA [Vidal '09]
- Quantum Gravity:
 - suggested as origin of black hole entropy [Bombelli,Koul,Lee&Sorkin,'86 Srednicki, Frolov&Novikov, Callan&Wilczek, Susskind ...]
 - origin of macroscopic spacetime [van Raamsdonk et.al., Maldecena&Susskind]

The good news & the bad news

- But EE is hard to deal with...
 - non-local quantity, intricate & sensitive to environment
 - difficult to measure
 - difficult to calculate
 - ... especially in strongly-coupled quantum systems
- AdS/CFT to the rescue?
 - Is there a natural bulk dual of EE?
 (= ''Holographic EE'')

Yes! - described geometrically...

OUTLINE

• Entanglement Entropy

- Holographic principle & AdS/CFT
- Holographic Entanglement Entropy

Entropy Bound

- Generalized Second Law: combined matter+BH entropy increases \Rightarrow Bekenstein bound (weakly gravitating systems): $S_{\text{matter}} \leq 2\pi E R$
 - ⇒ Spherical entropy bound (slowly evolving systems): ['t Hooft '93, Susskind]

$$S_{\text{matter}} \leq \frac{A}{4} \implies \text{entropy } S \text{ is not extensive:}$$

 $S \not\sim V$

$$S(L) \le \frac{A(\sigma)}{4}$$

A

V

Holographic Principle

- Generalized Second Law: combined matter+BH entropy increases \Rightarrow Bekenstein bound (weakly gravitating systems): $S_{\text{matter}} \leq 2\pi E R$
 - ⇒ Spherical entropy bound (slowly evolving systems):

$$S_{\text{matter}} \leq \frac{A}{4} \implies \text{entropy } S \text{ is not extensive:}$$

 $S \not\sim V$

['t Hooft, Susskind]

- Covariant entropy bound: full spacetime construct [Bousso]
- Holographic Principle: in a theory of gravity, the number of degrees of freedom describing the physics on lightsheet $L(\sigma)$ cannot exceed $A(\sigma)/4$
- ⇒ physical equivalence between 2 theories living in different # of dimensions!
- Concrete realization: AdS/CFT correspondence

AdS/CFT correspondence

String theory (\ni gravity) \iff gauge theory (CFT) "in bulk" asymp. AdS \times K "on boundary"

Key aspects:

- * Gravitational theory maps to non-gravitational one!
- * Holographic: gauge theory lives in fewer dimensions.
- * Strong/weak coupling duality.

Invaluable tool to:

- Use gravity on AdS to learn about strongly coupled field theory (as successfully implemented in e.g. AdS/QCD & AdS/CMT programs)
- Use the gauge theory to define & study quantum gravity in AdS
 Pre-requisite: Understand the AdS/CFT 'dictionary'...

Onward from AdS/CFT

OUTLINE

- Entanglement Entropy
- Holographic principle & AdS/CFT
- Holographic Entanglement Entropy
 - bulk dual of EE:
 (= "Holographic EE")

?

bulk

Holographic Entanglement Entropy

Proposal [Ryu & Takayanagi, '06] for static configurations:

In the bulk EE S_A is captured by the area of minimal co-dimension 2 bulk surface \mathfrak{E} (at constant t) anchored on ∂A .

$$S_{\mathcal{A}} = \min_{\substack{\partial \mathfrak{E} = \partial \mathcal{A}}} \frac{\operatorname{Area}(\mathfrak{E})}{4 \, G_N}$$

Remarks:

- cf. black hole entropy...
- Minimal surface "hangs" into the bulk due to large distances near bdy.
- Note that both LHS and RHS are in fact infinite...

Area-law divergence of EE

cf. lattice system, with lattice spacing δ and A of size L, in d spacetime dims:

for the full system near the ground state, most of the entanglement is local:

$$S_A \sim \left(\frac{L}{\delta}\right)^{d-2}$$

~ # of links through ∂A

$$\rightarrow \infty$$
 as $\delta \rightarrow 0$

In a QFT, we can regulate the UV divergence by a short distance cutoff δ .

Area-law divergence of HEE

Short-distance cutoff δ in the CFT translates to large-radius cutoff R in AdS

with $\delta = \frac{\ell^2}{R}$ (cf. UV/IR duality)

Bulk area reproduces the correct divergence structure:

$$S_{\mathcal{A}} = c_0 \left(\frac{L}{\delta}\right)^{d-2} + c_1 \left(\frac{L}{\delta}\right)^{d-4} + \cdots + \begin{cases} c_{d-2} \log\left(\frac{L}{\delta}\right) + \cdots &, & d \text{ even} \\ cutoff-dependent coefficients} & + \begin{cases} c_{d-2} \log\left(\frac{L}{\delta}\right) + \cdots &, & d \text{ odd} \end{cases}$$

Universal coefficients

We can regulate EE by e.g. background subtraction.

Evidence for HEE

- Leading contribution correctly reproduces the area law
- Recover known results of EE for intervals in 2-d CFT [Calabrese&Cardy] both in vacuum and in thermal state
- Derivation of holographic EE for spherical entangling surfaces [Cassini,Huerta,&Myers]
- Attempted proof by [Fursaev] elaborated & refined by [Headrick, Faulkner, Hartman, Maldacena&Lewkowycz]

Further suggestive evidence:

- ✓ Automatically satisfies $S_A = S_{A^c}$ for pure states
- Automatically satisfies (strong) subadditivity [Lieb&Ruskai] & Araki-Lieb inequality -- easy to prove on the gravity side, far harder within field theory

Subadditivity

• Subadditivity:

 $S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \geq S_{\mathcal{A}_1 \cup \mathcal{A}_2}$

• Manifest in the gravity dual

• Implies positivity of mutual information: $I(A_1, A_2) = S_{A_1} + S_{A_2} - S_{A_1 \cup A_2}$

Strong Subadditivity

• strong subadditivity:

$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \geq S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$$
$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \geq S_{\mathcal{A}_1 \setminus \mathcal{A}_2} + S_{\mathcal{A}_2 \setminus \mathcal{A}_1}$$

• proof in static configurations [Headrick&Takayanagi]

In time-dependent configurations more involved but true [Headrick et.al., Wall]

strong subadditivity:

$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$$
$$S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \setminus \mathcal{A}_2} + S_{\mathcal{A}_2 \setminus \mathcal{A}_1}$$

• proof in static configurations [Headrick&Takayanagi]

strong subadditivity:

 $S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$ $S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \setminus \mathcal{A}_2} + S_{\mathcal{A}_2 \setminus \mathcal{A}_1}$

• proof in static configurations [Headrick&Takayanagi]

strong subadditivity:

 $S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$ $S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \setminus \mathcal{A}_2} + S_{\mathcal{A}_2 \setminus \mathcal{A}_1}$

proof in static configurations [Headrick&Takayanagi]

strong subadditivity:

 $S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_1 \cap \mathcal{A}_2}$ $S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \setminus \mathcal{A}_2} + S_{\mathcal{A}_2 \setminus \mathcal{A}_1}$

proof in static configurations [Headrick&Takayanagi]

 $S_{\mathcal{A}_1} + S_{\mathcal{A}_2} = \gamma + \delta \geq S_{\mathcal{A}_1 \setminus \mathcal{A}_2} + S_{\mathcal{A}_2 \setminus \mathcal{A}_1}$

Covariant Holographic EE

But the RT prescription is not well-defined outside the context of static configurations:

- In Lorentzian geometry, we can decrease the area arbitrarily by timelike deformations
- In time-dependent context, no natural notion of "const. t" slice...

In *time-dependent* situations, RT prescription must be covariantized:

[VH, Rangamani, Takayanagi '07]

- * minimal surface → extremal surface
- ∗ equivalently, € is the surface with zero null expansions;
 (cf. light sheet construction [Bousso])
- * equivalently, maximin construction: maximize over minimal-area surface on a spacelike slice [Wall]

Summary of HEE proposals:

In all cases, EE is given by Area/4G of a certain surface which is:

- bulk co-dimension 2 surface
- anchored on the boundary on entangling surface $\partial \mathcal{A}$
- homologous to ${\cal A}$ [Headrick, Takayanagi, et.al.]
- in case of multiple surfaces, $S_{\mathcal{A}}$ is given by the one with smallest area.

But the HEE proposals differ in the specification of the surfaces:

- RT [Ryu & Takayanagi] (static ST only): minimal surface on const. t slice
- HRT [Hubeny, Rangamani, & Takayanagi]: extremal surface in full ST
- maximin [Wall]: minimal surface on bulk achronal slice $\tilde{\Sigma}$, maximized over all $\tilde{\Sigma}$ containing \mathcal{A} (equivalent to extremal surface)

Homology constraint

• Usual phrasing: $\mathfrak{E}_{\mathcal{A}}$ is homologous to \mathcal{A} if \exists a smooth manifold whose only boundaries are $\mathfrak{E}_{\mathcal{A}}$ and \mathcal{A}

is <u>not</u> OK,

since the interpolating manifold either has another boundary or hits the singularity:

Entropy inequalities

- consider the full system in the state (density matrix) ho_{Σ}
- partition the full space Σ into subsystems $\mathcal{A} \cup \mathcal{A}^c$
- then EE satisfies:

$$|S_{\mathcal{A}} - S_{\mathcal{A}^{c}}| \leq S_{\rho_{\Sigma}} \leq S_{\mathcal{A}} + S_{\mathcal{A}^{c}}$$

$$\delta S_{\mathcal{A}}$$
Araki-Lieb subadditivity

• for a system in a pure state,

$$S_{\rho_{\Sigma}} = 0 \quad \Rightarrow \quad S_{\mathcal{A}} = S_{\mathcal{A}^c} \quad \Rightarrow \quad \delta S_{\mathcal{A}} = 0$$

• use $\delta S_{\mathcal{A}}$ to characterise deviations from purity

Curious properties of EE:

- Entanglement plateaux (δS_A saturates to $S_{\rho_{\Sigma}}$ for large enough A)
- EE is a 'fine-grained' observable
- EE satisfies very nontrivial causality constraints
- EE has two separate components

Warm-up: EE in 2-d thermal CFT:

• Consider extremal surfaces (= spacelike geodesics) in BTZ

• Area/4G is given by:

$$(S_{\mathcal{A}})_{\text{naive}} = \frac{c}{3} \log \left(\frac{2r_{\infty}}{r_{+}} \sinh(r_{+}\theta_{\infty}) \right)$$

Entanglement plateaux in 2-d CFT:

- Consider global BTZ, and compute $S_{\mathcal{A}}$ for varying \mathcal{A}
- Using connected $\mathfrak{E}_{\mathcal{A}}$, $(\delta S_{\mathcal{A}})_{\text{naive}} = \frac{c}{3} \log \left| \sinh(r_{+} \theta_{\infty}) \operatorname{csch}(r_{+} (\pi \theta_{\infty})) \right|$
- But this would lead to diverging $\delta S_{\mathcal{A}} \Rightarrow$ violates Araki-Lieb
- However, the disconnected $\mathfrak{E}_{\mathcal{A}}$ has smaller area for large enough $\theta_{\infty} \Rightarrow S_{\mathcal{A}} = S_{\mathcal{A}^c} + S_{\rho_{\Sigma}} \quad \forall \ \theta_{\infty} \ge \theta_{\infty}^{\mathcal{X}} = \frac{\coth^{-1}(2 \coth(\pi r_+) - 1)}{r_+}$
- Where the transition happens depends on BH size:

Entanglement plateaux in higher d:

 In higher dimensions, we can check similar saturation effect takes place: e.g. for Schw-AdS₅ [VH, Maxfield, Rangamani, Tonni '13]

Entanglement plateaux in higher d:

• However, unlike BTZ, new surprise for Schw-AdS_{d+1}: connected surface $\mathfrak{E}_{\mathcal{A}}$ actually does not exist for large enough \mathcal{A} ! What happened to it?

As closest approach to horizon shrinks,

- Size of \mathcal{A} initially increases, but then decreases, and in fact oscillates
- The surface develops thin neck and folds back around the black hole
- There can be arbitrarily many folds, increasingly close to horizon
- This gives an infinite family of minimal surfaces anchored on the same region ${\cal A}$

Entanglement plateaux in higher d:

• However, unlike BTZ, new surprise for Schw-AdS_{d+1}: connected surface $\mathfrak{E}_{\mathcal{A}}$ actually does not exist for large enough \mathcal{A} ! What happened to it?

As closest approach to horizon shrinks,

- Size of \mathcal{A} initially increases, but then decreases, and in fact oscillates
- The surface develops thin neck and folds back around the black hole
- There can be arbitrarily many folds, increasingly close to horizon
- This gives an infinite family of minimal surfaces anchored on the same region ${\cal A}$

• This nonexistence behaviour is robust to deforming the state, and follows directly from *causal wedge* arguments

Implication for entanglement entropy

- Important implication: whenever \mathcal{A} is large enough for $\Xi_{\mathcal{A}}$ to have two disconnected pieces, there cannot exist a single connected extremal (minimal) surface $\mathfrak{E}_{\mathcal{A}}$ homologous to \mathcal{A} !
 - However, the homology constraint is required for EE, i.e. part of $\mathfrak{E}_{\mathcal{A}}$ must reach around the BH.
 - So $\mathfrak{E}_{\mathcal{A}}$ must likewise have two disconnected pieces, one on the horizon and one homologous to \mathcal{A}^c (=complement of \mathcal{A})
- Hence we have the universal formula for the entanglement entropy, whenever ${\cal A}$ is large enough: $S_{{\cal A}}=S_{{\cal A}^c}+S_{
 ho_\Sigma}$
 - Automatically saturates the Araki-Lieb inequality

= entanglement plateau [VH, Maxfield, Rangamani, Tonni]

• So we can extract BH (thermal) entropy from entanglement entropy [cf. Azeyanagi, Nishioka, Takayanagi]

Curious properties of EE:

- Entanglement plateaux (δS_A saturates to $S_{\rho_{\Sigma}}$ for large enough A)
- EE is a 'fine-grained' observable
- EE satisfies very nontrivial causality constraints
- EE has two separate components

EE is fine-grained observable!

Example: black hole formed from a collapse

• In contrast to the static (i.e. eternal) black hole, for a collapsed black hole, there is no non-trivial homology constraint on extremal surfaces. [cf.Takayanagi & Ugajin]

• Hence we always have $S_{\mathcal{A}} = S_{\mathcal{A}^c}$ as for a pure state.

EE is fine-grained observable!

- Despite the event horizon formation arbitrarily long in the past, EE `remembers' the state is pure: $S_A = S_{A^c} \quad \forall A$
- Hence entanglement entropy is sensitive to very 'fine-grained' information: it can tell whether the black hole is eternal or collapsed, arbitrarily late after the collapse (when all 'coarse-grained' observables have thermalized).
- And this in spite of its classical geometrical nature...
- Other diagnostics of thermal vs. pure state (e.g. periodicity in imaginary time appear much more subtle).
- However this wouldn't necessarily tell apart individual microstates.

Curious properties of EE:

- Entanglement plateaux (δS_A saturates to $S_{\rho_{\Sigma}}$ for large enough A)
- EE is a 'fine-grained' observable
- EE satisfies very nontrivial causality constraints
- EE has two separate components

Two components to HEE

When Araki-Lieb inequality is saturated (sufficiently large \mathcal{A}), there is a natural decomposition of HEE:

- In general time-dependent 'eternal' (=2-sided) BH, one component of $\mathfrak{E}_{\mathcal{A}}$ (the one anchored on the boundary) depends on time, while the other (wrapping the horizon) is time-independent.
- Likewise, there are coarse-grained (since geometrical) and fine-grained (due to the minimalisation and homology constraints) aspects to HEE.
- Natural factorisation into two uncorrelated groups of DoFs in \mathcal{A} : those capturing the entanglement with \mathcal{A}^c and those giving the entropy of the full system... [Headrick]. [also cf. Zhang&Wu]

Summary

- The extremal surfaces $\mathfrak{E}_{\mathcal{A}}$:
 - can exist in large multiplicities (exhibit remarkably rich structure)
 - new families can appear at some critical region size
 - need not exist for static black hole in single homologous piece
- The entanglement entropy $S_{\mathcal{A}}$:
 - exhibits entanglement plateaux (required by homology & minimality)
 - distinguishes between pure and thermal states (collapsed versus eternal black holes), arbitrarily long after 'themalization'
 - hence has features of a 'fine-grained' observable (though not for distinguishing microstates)

Future directions

- Complete (fully covariant) prescription and proof of HEE...
 - Correct formulation of the homology constraint
 - Interpretation of fine-grained nature of EE
- Does entanglement reconstruct geometry?
 - Metric extraction from set of EE's of subregions $\{S_{\mathcal{A}}\}$
 - Dual of reduced density metrix $\rho_{\mathcal{A}}$
 - Entanglement renormalization (MERA) vs. AdS geometry
- Role of EE in fundamental nature of spacetime...

Space Ref (Harvard-Smithsonian CfA)

soihub.org/itschool